掺杂尖晶石LiMn_2O_4系和层状LiNiO_2系化合物的制备、结构和电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有高电压、比能量高、无记忆效应、无环境污染等特点,已经成为21世纪绿色电池的主要选择。目前商业化使用的锂离子电池正极材料LiCoO_2,由于钴储量有限,价格昂贵,毒性大,作为锂离子电池正极材料成本高和安全性问题,严重阻碍了锂离子电池的进一步发展,限制了它在更广领域的应用。迫切需要研究者开发出成本低,性能优良的锂离子电池正极材料以满足电动汽车等新兴行业的需求。本文主要研究价格低廉的尖晶石LiMn_2O_4系和性能优异的层状LiNiO_2系正极材料。通过采用新型的制备方法和元素掺杂、取代改性等手段来改善这两个系列产物的电化学性能。用XRD、SEM、TEM等表征合成产物的结构特性,结合电化学性能的结果,研究元素掺杂、取代导致的结构变化对材料电化学性能的影响。
     以醋酸盐为原料,通过喷雾干燥法合成了结晶好,细小、颗粒分布均匀的单相尖晶石LiMn_2O_4粉体。分析了煅烧温度和时间对LiMn_2O_4的结构、形貌和电化学性能的影响。研究表明,喷雾干燥法得到的前驱物在空气中750℃下煅烧24h,制备的LiMn_2O_4晶体生长完整,并具有最好的电化学性能。对比相同热处理条件下固相法制备的LiMn_2O_4,喷雾干燥法所制备的LiMn_2O_4颗粒分布均匀,在室温下具有更好的电化学性能,首次放电容量和高倍率放电能力都有所提高。喷雾干燥法及750℃下煅烧24h制备的LiMn_2O_4在0.1C下首次放电容量达到123mAh g~(-1),2C下首次放电容量为107mAh g~(-1)。采用水热法一步直接制备了尖晶石LiMn_2O_4,省略了在高温下煅烧前驱物的过程。水热法直接制备的尖晶石LiMn_2O_4在0.1C下首次放电容量为121 mAh g~(-1),在0.1C下经过40次循环以后,容量维持在111mAh g~(-1)以上。
     采用喷雾干燥法合成了掺杂Ni~(2+)(0.01≤x≤0.06)的尖晶石LiMn_(2-x)Ni_xO_4,研究了掺杂对尖晶石材料结构和电化学性能的影响。与未掺杂的LiMn_2O_4相比,Ni(2+)掺杂LiMn_(2-x)Ni_xO_4中Mn的平均化合价提高,Mn~(3+)数量减少,可以抑制Jahn-Teller效应和减少Mn的溶解损失。电化学测试结果表明,随着Ni含量的增加,尖晶石LiMn_(2-x)Ni_xO_4在常温下的放电容量减小,但循环性能得到改善。
     Ni~(2+)的取代量控制在0.1≤x≤0.5,喷雾干燥法制备了富含Ni~(2+)的LiMn_(2-x)Ni_xO_4。XRD结构分析,LiMn_(2-x)Ni_xO_4仍为单一尖晶石结构,其晶格常数与Ni~(2+)的取代量x呈线性减小的关系,晶格常数变小,晶胞收缩。同时,随着Ni~(2+)的取代量x变化,LiMn_(2-x)Ni_xO_4的电化学性能也将发生明显的变化。研究表明,随着Ni~(2+)的取代量x增加,决定4V区平台容量的Mn~(3+)离子数量减少,导致4V区平台的充放电容量不断减小。相应的,由于Ni~(2+)/Ni~(4+)氧化还原对数量增加,引起高电压区的充放电容量增加。各电压区间容量的变化,也同Ni离子的取代量呈线性关系。当Ni取代量达到0.5时(产物为LiMn_(1.5)Ni_(0.5)O_4),由于存在少量的O缺失,LiMn_(1.5)Ni_(0.5)O_4中仍含有极少量的Mn~(3+)离子。其充放电容量除极少量在4V区外,主要集中在高电压区。在常温下的各个充放电区域,尖晶石LiMn_(1.5)Ni_(0.5)O_4都具有很好的电化学循环性能。在3.2-4.95V间,其首次放电容量为124mAh g~(-1),50次循环以后,容量仍维持在110mAh g~(-1)以上。对LiMn_(1.5)Ni_(0.5)O_4非原位XRD分析结果表明,该材料在此充放电电压范围内,晶体结构不发生改变,只有晶格有限的收缩与扩张。
     较强的Co-O键,可以加强尖晶石LiMn_2O_4结构的稳定性,从而可能提高电极的循环稳定性。将Co~(3+)离子引入到LiMn_(1.5)Ni_(0.5)O_4结构中,喷雾干燥法制备了尖晶石LiMn_(1.5)Ni_(0.5-x)Co_xO_4(0.1≤x≤0.5),LiMn_(1.5-x)Ni_(0.5)Co_xO_4(0.1≤x≤0.5)和LiMn_(1.5-x)Co_(2x)Ni_(0.5-x)O_4(0.05≤x≤0.25)三个系列化合物,进一步提高5V电极材料LiMn_(1.5)Ni_(0.5)O_4的高温循环性能。通过XRD结果分析,三组材料各自都随着Co~(3+)离子取代量的增加,晶格常数变小,晶格常数与Co离子呈线性减小的关系。电化学性能测试发现,Mn~(3+)/Mn~(4+)氧化还原对对应充放电过程中的4V平台,Ni~(2+)/Ni~(4+)对应4.6V平台,而Co~(3+)/Co~(4+)则对应5V以上的平台。由此得出,随着Co~(3+)离子的取代,化合物中各金属元素的价态会发生变化,引起各个平台之间的变化。由于无法测试5V以上的充放电容量,各系列化合物都随着Co取代量的增加,在3.2-4.95V之间,容量发生衰减。但各系列化合物的高温循环性能得到了提高。LiMn_(1.5)Ni_(0.5-x)Co_xO_4系列中,Co~(3+)数量增加,则Ni~(2+)减少,而Mn~(3+)增加,所以造成与Ni~(2+)相关的4.6V平台的容量减少,4V区平台的容量增加。当x=0.5时,LiMn_(1.5)Co_(0.5)O_4材料在3.2-4.95V的区间,只有4V区的容量,放电容量为66mAh g~(-1),高温下经过20次循环后容量几乎没有变化。在LiMn_(1.5-x)Ni_(0.5)Co_xO_4系列中,Co~(3+)取代Mn~(4+),随Co~(3+)数量x的增加,Mn的化合价不变,有部分的Ni~(2+)为Ni~(3+)离子,同时也导致该材料在4.6V区的理论容量减小,LiMn_(1.5-x)Ni_(0.5)Co_xO_4的放电容量分别是119,111,95,80和63mAh g~(-1)(x=0.1,0.2,0.3,0.4和0.5)。对于LiMn_(1.5-x)Co_(2x)Ni_(0.5-x)O_4(0.05≤x≤0.25)系列,Co~(3+)同时取代部分的Mn和Ni,发现Mn和Ni的化合价都不随Co~(3+)数量的变化而发生改变。尖晶石结构中Mn仍为+4价,Ni仍为+2价,但数量均减少,引起4.6V区平台的容量减少。在LiMn_(1.5-x)Ni_(0.5)Co_xO_4系列中,LiMn_(1.35)Co_(0.3)Ni_(0.35)O_4在高温下(55℃)首次放电容量为99mAh g~(-1),经过20次循环以后容量仍维持在90mAh g~(-1)以上。
     本文还采用醋酸盐为原料,通过喷雾干燥法制备了层状LiNiO_2系的正极材料。将喷雾干燥法制备的前驱物在氧气中处理合成了层状LiNi_(0.8)Co_(0.2)O_2锂离子电池正极材料。所制备的材料不含别的杂质,结晶良好,颗粒尺寸在200-500 nm之间,晶体结构为层状R-3m。同空气中制备的材料相比,在氧气中制备的LiNi_(0.8)Co_(0.2)O_2具有完好的层状结构,(006)/(102)和(108)/(110)分峰明显,表征材料结构中阳离子混排特性的I(003)/I(104)比值高达1.5,说明在氧气中合成的材料具有更好的层状结构,原子的分布得当。在氧气中制备的LiNi_(0.8)Co_(0.2)O_2首次放电容量为176mAh g~(-1),经过20次循环以后,容量为172mAh g~(-1),循环性能良好。
     掺入+4价Mn离子,降低Ni离子的化合价,通过喷雾干燥法在空气中制备了层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2锂离子电池正极材料。前驱物在空气中850℃煅烧24h,所合成的材料具有良好的晶体结构和微观形貌。电化学测试表明,层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2在截止电压在4.8V时,首次放电容量为183mAh g~(-1)。截止电压在4.3V时,首次放电容量为151mAh g~(-1),且具有良好的循环性能,经过10次循环后,容量保持率维持在97%以上。
Lithium ion batteries have become the primary choice of the green batteries in the 21th century due to its high voltage, high energy density, no memory and non-pollution. At present, the lithium cobaltate, LiCoO_2, is the major cathode active material of commercial lithium ion rechargeable batteries. However, because of its expensive costs and toxicity, it couldn't meet lithium ion batteries development. Many attempts have been made to develop new cathode materials with lower cost, safety and excellent electrochemical performance. This work aims at developing spinel LiMn_2O_4 and layered LiNiO_2. New synthesized methods, and doping or substituting by metal element are employed to enhance their electrochemical performance. The structure and morphology of these products were investigated by the means of TG/DTA, XRD, SEM and TEM. The electrochemical performances of the compounds have been evaluated by the means of galvanostatic charge-discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS).
    Spinel LiMn_2O_4 powder was prepared by a spray-drying method, in which the corresponding acetate salts as the reagents. The product showed a high purity, good crystallinity, small particle size and homogenous size distribution. The effects of synthesis temperature and time on the morphology, structure and electrochemical performances of LiMn_2O_4 had been discussed. It was found that well-crystallized LiMn_2O_4 prepared at 750°C for 24 h in air exhibited the best electrochemical performance. In contrast with LiMn_2O_4 prepared by solid-state reaction with the same sintered process, the LiMn_2O_4 prepared by spray-drying method showed better particle characteristics and better electrochemical performances. Its initial charge capacity and rate capability were improved. The initial capacity was 123 mAh g~(-1) at 0.1 C, and at 2 C it also delivered 107 mAh g~(-1). Spinel LiMn_2O_4 powder had been successfully synthesized by a hydrothermal method directly, which was no any pretreatment and following treatment in the process. The LiMn_2O_4 delivered reversible capacity of about 121 mAh g~(-1) at a current density of 1/10 C. Cycled the cell to 40 cycles, the capacity remained at about 111 mAh g~(-1) at 1/2 C.
    Ni-doped spinel LiMn_(2-x)Ni_xO_4 (0.01≤x≤0.06) was prepared and the dopant effects on structures and electrochemical performances were investigated. Compared with the pure LiMn_2O_4, with increasing the value x of Ni-doped, the Mn average valence in LiMn_(2-x)Ni_xO_4 increased, and the amount of Mn~(3+) decreased, which could restrain the Jahn-Teller effect and reduce the Mn~(3+) dissolution. Through some electrochemical tests, it showed that the capacity of spinel LiMn_(2-x)Ni_xO_4 (0.01≤ x ≤0.06) decreased with the increase of the amounts of
    Ni-doped, but the cycle capability improved.
    Abundant Ni-substitated LiMn_(2-x)Ni_xO_4 powders were prepared by spray-drying method, and the x of Ni content was controlled from 0.1 to 0.5. The Ni-substitated LiMn_(2-x)Ni_xO_4 still showed single spinel phase (Fd-3m) without any impurity. The change of lattice parameter was accord to a linearity relation with the Ni-substitated amount. The cell shrunk with the decrease in the lattice parameter. The electrochemical performance would change with the variation of Ni content. When the value x of Ni increased, the amount of Mn~(3+) decreased, which determined the theoretical capacity of 4 V range, and also the amount of the redox pair of Ni~(2+)/Ni~(4+) increased, which was relevant to the theoretical capacity of 4.6 V plateau. The results showed the factual capacity of LiMn_(2-x)Ni_xO_4 (0.1≤x ≤0.5) had a linearity relation with the Ni-substitated amount. When x was 0.5, the product LiMn_(1.5)Ni_(0.5)O_4 still had little Mn~(3+) due to the oxygen absence, and the main capacity happened in 4.6 V plateau. At room temperature, the LiMn_(1.5)Ni_(0.5)O_4 exhibited good cycle performance. The initial capacity of LiMn_(1.5)Ni_(0.5)O_4 was 124 mAh g~(-1), after 50 cycles, it still retained over 110 mAh g~(-1) Through ex situ XRD measurement, there were only the shrinkage and enlargement of the lattice parameter, and the structure of LiMn_(1.5)Ni_(0.5)O_4 did not change during the charge and discharge process between 3.2-4.95 V.
    Co~(3+) was doped to stabilize the structure of LiMn_(1.5)Ni_(0.5)O_4 due to stronger Co-O bond being than Mn-O and Ni-O. Spinel LiMn_(1.5)Ni_(0.5-x)Co_xO_4 (0.1≤x ≤0.5), LiMn_(1.5-x)Ni_(0.5)Co_xO_4 (0.1≤ x ≤0.5) and LiMn_(1.5-x)Co_(2x)Ni_(0.5-x)O_4 (0.05≤ x ≤0.25) compounds were prepared by spray-drying method. The XRD results showed that lattice parameter of three series compounds were accord to a linearity relation with the Co-doped amount respectively. With increasing the amount of Co, the lattice parameter diminished. After electrochemical tests, it is found that the redox pair of Mn~(3+)/Mn~(4+) corresponds to the 4 V plateau, Ni~(2+)/Ni~(4+) corresponds to the 4.6 V plateau and Co~(3+)/Co~(4+) corresponds to the plateau above 5 V during the charge/discharge process. With increasing the Co~(3+) amount, the valances of the transition metals (Mn, Ni, Co) in the compounds would bring variety, which arose the change of the charge/dischage plateaus. The upper voltage was limited to 4.95 V for fear of possible electrolyte decomposition, especially upon extended cycling, which led to the capacity related to Co~(3+)/Co~(4+) (which is above 5 V from the CV results) abandon. In the range of 3.2-4.95 V, the discharge capacity would decrease, while all of three series compounds showed good cycle stability at high temperature (55℃). For the spinel LiMn_(1.5)Ni_(0.5-x)Co_xO_4 (0.1≤x ≤0.5), when the amount x of Co~(3+) increased, the amount of Ni~(2+) decreased, and the amount of Mn~(3+) increased, which led to the theoretical capacity of 4.6 V diminished and the theoretical capacity of 4 V increased. When x =0.5, the capacity of LiMn_(1.5)Co_(0.5)O_4 only happened in 4 V range between 3.2-4.95 V. The initial capacity was 66 mAh g~(-1), and after 20 cycles the
    capacity didn't any obviously fade. About spinel LiMn_(1.5-x)Ni_(0.5)Co_xO_4 (0.1≤ x ≤0.5), when Co~(3+) doped Mn~(4+), the valence of Mn didnot change, and partial Ni~(2+) changed to Ni~(3+), which induced the theoretical capacity of 4.6 V decreased. The spinel LiMn_(1.5-x)Ni_(0.5)Co_xO_4(0.1≤ x ≤0.5) delivered the capacity of 119, 111, 95, 80 and 63 mAh g~(-1) (x=0.1, 0.2, 0.3, 0.4 and 0.5). For the spinel LiMn_(1.5-x)Co_(2x)Ni_(0.5-x)O_4 (0.05≤ x ≤0.25), Co substituted the Mn and Ni site at same time. When the amount of Co~(3+) increased, the valence of both of Mn and Ni retained stability, the amount of Mn~(4+) and Ni~(2+) decreased, and the theoretical capacity of 4.6 V decreased. In the series of LiMn_(1.5-x)Co_(2x)Ni_(0.5-x)O_4 compounds, LiMn_(1.35)Co_(0.3)Ni_(0.35)O_4 showed the initial capacity value of 99 mAh g~(-1) , and after 20 cycles, the capacity obtained over 90 mAh g~(-1) at high temperature (55℃).
    The layered structure LiNi_(0.8)Co_(0.2)O_2 cathode material for lithium-ion batteries was synthesized by sintering the precursor at 750℃ for 24 h in oxygen, which was obtained from the corresponding metal acetate solution via a spray-drying method. Compared with the product prepared in air, the LiNi_(0.8)Co_(0.2)O_2 particles obtained in oxygen were fine, narrowly distributed and well crystallized. The product had better layered structure with obvious (108)/ (110) and (006)/ (102) peak splitting and higher ratio of I(003)/I(104) than that prepared in air. As a result, the LiNi_(0.8)Co_(0.2)O_2 prepared in oxygen had excellent electrochemical properties. The initial discharge capacity reached 176 mAh g~(-1), and its 20th cycle capacity kept to be 172 mAh g~(-1) at a current density of 0.1 C.
    Some Mn~(4+) were introduced to layered LiNi_(1-x)Co_xO_2, the valence of Ni would decreased. The layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode was prepared by spray-drying method. It was found that at at 850℃ for 24 h in air, the obtained layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 showed better crystal structure and better particle characteristics. When the cut-off voltage was controlled at 4.8 V, the initial discharge capacity was 183 mAh g~(-1), when the cut-off voltage decreased to 4.3 V, the initial discharge capacity was 151 mAh g~(-1), and it showed excellent cycle performance, after 10 cycles, the capacity was over 97% of initial capacity.
引文
[1] 顾登平,童汝亭,化学电源,北京,高等教育出版社,1993:1-3.
    [2] 张文保,倪生麟,化学电源导论,上海:上海交通大学出版社,1992:148-185.
    [3] C. M. Julien, Lithium intercalated compounds charge transfer and related properties, Mat. Sci. Eng. R, 2003, 40: 47-102.
    [4] N. Goldenfeld, Dynamics of dendritic growth, J. Power Sources, 1989, 26(1-2): 121-128.
    [5] Zen-Ichiro Takehara, Kiyoshi Kanamura, Historical development of rechargeable lithium batteries in Japan, Electrochim. Acta, 1993, 38(9): 1169-1177.
    [6] M. Armand, In materials for advandced batteries (G. W. Murphy, J. Broodhead, B. C. H. Steele, Editors), Plenum Press, New York, 1980, 145.
    [7] J. J. Auborn, Y. L. Barberio, Lithium intercalation cells without metallic lithium, J. Electrochem. Soc., 1987, 134(3): 638-641
    [8] Bruno Scrosati, Lithium rocking chair batteries: an old concept, J. Electrochem. Soc., 1992, 139(10): 2776-2781.
    [9] D. Guyomard, J. M. Tarascon, The carbon/Li_(1+x)Mn_2O_4 system, Solid State Ionics, 1994, 69(3-4): 222-237.
    [10] J. -M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414: 359-367.
    [11] 任学佑,锂离子电池及其发展前景,电池,1996,26(1):39-41.
    [12] T. Nagaura, K Tozawa, Lithium ion rechargeable battery, Prog. Batts. Sol. Cell, JEC Press, Cleaveland, Ohio, 1990: 66.
    [13] J. R. Dahn, V. U. Sacken, The Electrochemical society extenced abstracts, vol 902, Seattle, 1990: 66.
    [14] T. Nagarura, 4th international rechargeable battery seminar, Florida, 1990.
    [15] Bruno Scrosati, Challenge of portable power, Nature, 1995, 373: 557-558.
    [16] A. Robert Armstrong, Peter G. Bruce, Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries, Nature, 1996, 381: 499-500.
    [17] 郭丙焜,徐徽,王先友,肖立新,锂离子电池,中南大学出版社,34-36.
    [18] 吴宇平,万春荣,姜长印,锂离子二次电池,北京:化学工业出版社,2002:57-59.
    [19] Doron Aurbach, Yair Ein-Eli, Orit Chusid (Youngman), Yaakov Carmeli, Matsliach Babai, Herzel Yamin, The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable 'Rocking-Chair' type batteries, J. Electrochem. Soc., 1994, 141(3): 603-611.
    [20] Roman Imhof, Petr Novak, In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes, J. Electrochem. Soc., 1998, 145(4): 1081-1087.
    [21] Y. P. Wu, R. Holze, Anode materials for lithium ion batteries obtained by mild and uniformly controlled oxidation of natural graphite, J. Solid State Electrochem., 2003, 8(1): 73-78.
    [22] Honghe Zheng, Yanbao Fu, Hucheng Zhang, Takeshi Abe, Zempachi Ogumi, Potassium salts, Electrochem. Solid-State Lett., 2006, 9(3): A115-A119.
    [23] Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko Popov, and Ronald Guidotti, Study of Sn-coated graphite as anode material for secondary lithium-eon batteries J. Electrochem. Soc., 2002, 149(6): A675-A681.
    [24] D. Aurbach, B. Markovsky, A. Nimberger, E. Levi, Y. Gofer, Electrochemical Li-insertion processes into carbons produced by milling graphitic powders: The impact of the carbons' surface chemistry, J. Electrochem. Soc., 2002, 149(2): A152-A161.
    [25] R. Holze, Y. P. Wu, Novel composite anode materials for lithium ion batteries with low sensitivity towards humidity, J. Solid State Electrochem., 2003, 8(1): 66-72.
    [26] Ang Xiao, Wentao Li, Brett L. Lucht, Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF_6-based electrolyte, J. Power Sources, 2006, 162(2): 1282-1288.
    [27] Akihiro Mabuchi, Hiroyuki Fujimoto, Katsuhisa Tokumitsu, Takahiro Kasuh, Charge-discharge mechanism of graphitized mesocarbon microbeads, J. Electrochem. Soc., 2002, 142(9): 3049-3051.
    [28] 苏玉长,徐仲榆,高温热处理石油焦在不同电解液中的嵌锂特性,电池,2001,31(4):157-160.
    [29] R. Kanno, Y. Kawamoto, Y. Takeda, S. Ohashi, N. Imanishi, O. Yamamoto, Carbon fiber as a negative electrode in lithium secondary cells, J. Electrochem. Soc., 1992: 139(12): 3397-3404.
    [30] E. Peled, C. Menachem, D. Bar-Tow, A. Melman Improved graphite anode for lithium-ion batteries chemically. J. Electrochem. Soc., 1996, 143(1): L4-L7.
    [31] Jose L. Tirado, Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mat. Sci. Eng. R, 2003, 40(3): 130-136.
    [32] K. Kato, M. Noguchi, A. Demachi, A mechanism of lithium storage in disordered carbons, Science, 1994, 263: 556-558.
    [33] Yinghu Liu, J. S. Xue, Tao Zheng, J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 1996, 34(2): 193-200.
    [34] T. Zheng, W. Xing, J. R. Dahn, Carbons prepared from coals for anodes of lithium-ion cells, carbon, 1996, 34(12): 1501-1507.
    [35] Akihiro Mabuchi, Katsuhisa Tokumitsu, Hiroyuki Fujimoto, Takahiro Kasuh, Charge-Discharge Characteristics of the Mesocarbon Miocrobeads Heat-Treated at Different Temperatures, J. Electrochem. Soc., 1995, 142(4): 1041-1046.
    [36] Ge Zhang, Kelong Huang, Suqin Liu, Wei Zhang, Benli Gong, Comparison of the electrochemical performance of mesoscopic Cu_2Sb, SnSb and Sn/SnSb alloy powders, J. Alloy. Compd., 2006, 426(1-2): 432-437.
    [37] Martin Winter, Jurgen O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta, 1999, 45(1-2): 31-50.
    [38] Pengjian Zuo, Geping Yin, Jun Zhao, Yulin Ma, Xinqun Cheng, Pengfei Shi, Tsutomu Takamura, Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries, Electrochim. Acta, 2006, 52(4): 1527-1531.
    [39] Ke Wang, Xiangming He, Jianguo Ren, Li Wang, Changyin Jiang, Chunrong Wan, Preparation of Sn_2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides, Electrochim. Acta, 2006, 52(3): 1221-1225.
    [40] L. Yuan, Z. P. Guo, K. Konstantinov, H. K. Liu, S. X. Dou, Nano-structured spherical porous SnO_2 anodes for lithium-ion batteries, J. Power Sources, 2006, 159(1): 345-348.
    [41] Pimpa Limthongkul, Young-Ⅱ Jang, Nancy J. Dudney, Yet-Ming Chiang, Electrochemically-driven solid-state amorphization in lithium-metal anodes, J. Power Sources, 2003, 119-121: 604-609.
    [42] Yoo-Sung Lee, Jong-Hyuk Lee, Yeon-Wook Kim, Yang-Kook Sun, Sung-Man Lee, Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries, Electrochim. Acta, 2006, 52(4): 1523-1526.
    [43] Young Ho Rho, Kiyoshi Kanamura, Li~+ ion diffusion in Li_4Ti_5O_(12) thin film electrode prepared by PVP sol-gel method, J. Solid State Chem., 2004, 177(6): 2094-2100.
    [44] Yan-Jing Hao, Qiong-Yu Lai, Ji-Zheng Lu, Hong-Li Wang, Yuan-Duan Chen, Xiao-Yang Ji, Synthesis and characterization of spinel Li_4Ti_5O_(12) anode material by oxalic acid-assisted sol-gel method, J. Power Sources, 2006, 158(2): 1358-1364.
    [45] I. E. Grey, P. Bordet, C. Li, R. S. Roth, Phase stability and non-stoichiometry in M-phase solid solutions in the system LiO_(0.5)-NbO_(2.5)-TiO_2, J. Solid State Chem., 2004, 177(3): 660-669.
    [46] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407: 496-499.
    [47] Yongning Zhou, Hua Zhang, Mingzhe Xue, Changliang Wu, Xiaojing Wu, Zhengwen Fu, The electrochemistry of nanostructured In_2O_3 with lithium, J. Power Sources, 2006, 162(2): 1373-1378.
    [48] Jin Hu, Hong Li, Xuejie Huang, Liquan Chen, Improve the electrochemical performances of Cr_2O_3 anode for lithium ion batteries, Solid State Ionics, 2006, 177(26-32): 2791-2799.
    [49] Hao Sun, Xiangming He, Jianjun Li, Jianguo Ren, Chang Yin Jiang, Chunrong Wan, Hard carbon/Li_(2.6)Co_(0.4)N composite anode materials for Li-ion batteries, Solid State Ionics, 2006, 177(15-16): 1331-1334.
    [50] Duncan H. Gregory, Paul M. O'Meara, Alexandra G. Gordon, Daniel J. Siddons, Alexander J. Blake, Marten G. Barker, Thomas A. Hamor, Peter P. Edwards, Layered ternary transition metal nitrides; synthesis, structure and physical properties. J. Alloy. Compd., 2001, 317-318: 237-244.
    [51] M. Nishijima, T. Kagohashi, Y. Takeda, M. Imanishi, O. Yamamoto, Electrochemical studies of a new anode material, Li_(3-x)M_xN(M=Co, Ni, Cu), J. Power Sources, 1997, 68(2): 510-514.
    [52] Y. Takeda, M. Nishijima, M. Yamahata, K. Takeda, N. Imanishi, O. Yamamoto, Lithium secondary batteries using a lithium cobalt nitride, Li_(2.6)Co_(0.4)N, as the anode, Solid State Ionics, 2000, 130(1-2): 61-69.
    [53] Y. Liu, T. Matsumura, N. Imanishi, T. Ichikawa, A. Hirano, Y. Takeda, Lithium transition metal nitrides with the modified morphology characteristics as advanced anode materials for lithium ion batteries, Electrochem. Commun., 2004, 6(7): 632-636
    [54] George Moumouzias, George Ritzoulis, Demetrios Siapkas, Demetrios Terzidis, Comparative study of LiBF_4, LiAsF_6, LiPF_6, and LiClO_4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn_2O_4 cells, J. Power Sources, 2003, 122(1): 57-66.
    [55] S. S. Zhang, K. Xu, T. R. Jow, Study of LiBF_4 as an electrolyte salt for a Li-ion battery, J. Electrochem. Soc., 2002, 149(5): A586-A590.
    [56] Ella Zinigrad, Liraz Larush-Asraf, Josef S. Gnanaraj, Milon Sprecher, Doron Aurbach, On the thermal stability of LiPF_6, Thermochim. Acta, 2005, 438(1-2): 184-191.
    [57] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, J. Power Sources, 1999, 81-82: 95-111.
    [58] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: spontaneous reactions at the electrode-electrolyte interface investigated by FTIR, J. Power Sources, 2001,103 (1): 10-17.
    [59] D. Aurbach, A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries, J. Power Sources, 2005, 146 (1-2): 71-78.
    [60] A. Manuel Stephan, Kee Suk Nahm, T. Prem Kumar, M. Anbu Kulandainathan, G. Ravi, J. Wilson, Nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) composite electrolytes for lithium batteries, J. Power Sources, 2006, 159 (2): 1316-1321.
    [61] R. Yazami, N. Lebrun, M. Bonneau, M. Molteni, High performance LiCoO_2 positive electrode material, J. Power Sources, 1995, 54 (2): 389-392.
    [62] G X. Wang, S. Zhong, D. H. Bradhurst, S. X. Dou, H. K. Liu, Synthesis and characterization of LiNiO_2 compounds as cathodes for rechargeable lithium batteries, J. Power Sources, 1998, 76 (2): 141-146.
    [63] S. S. Zhang, K. Xu, T. R. Jow, Study of the charging process of a LiCoO_2-based Li-ion battery, J. Power Sources, 2006, 160 (2): 1349-1354.
    [64] Jiang Fan, Studies of 18650 cylindrical cells made with doped LiNiO_2 positive electrodes for military applications, J. Power Sources, 2004, 138 (1-2): 288-293.
    [65] Hao-Hsun Chang, Chun-Chih Chang, Hung-Chun Wu, Zheng-Zhao Guo, Mo-Hua Yang, Yung-Ping Chiang, Hwo-Shuenn Sheu, Nae-Lih Wu, Kinetic study on low-temperature synthesis of LiFePO_4 via solid-state reaction, J. Power Sources, 2006, 158 (1): 550-556.
    [66] S. S. Zhang, K Xu, T. R. Jow, Charge and discharge characteristics of a commercial LiCoO_2-based 18650 Li-ion battery, J. Power Sources, 2006, 160 (2): 1403-1409.
    [67] D. Huang, Solid solution: new cathodes for next generation lithium-ion batteries, Adv Batt Tech, 1998, 11:23-27.
    [68] A. G. Ritchie, Recent developments and future prospects for lithium rechargeable batteries, J. Power Sources, 2001,96 (1): 1-4.
    [69] M. Inaba, Z. Ogumi, Up-to-date development of lithium-ion batteries in Japan, IEEE Electrical Insulation Magazine, 2001, 17 (6): 6-20.
    [70] Yasuhiko Takahashi, Norihito Kijima, Junji Akimoto, Single-crystal synthesis and structure refinement of the LiCoO_2-LiAlO_2 solid-solution compounds: LiAl_(0.32)Co_(0.68)O_2 and LiAl_(0.71)Co_(0.29)O_2, J. Solid State Chem., 2005,178 (12): 3667-3671.
    [71] M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev, Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO_2 electrodes. Electrochem. Commun., 2001, 3 (8): 410-416.
    [72] Seungsuk Oh, Joong Kee Lee, Dongim Byun, Won Ii Cho, Byung Won Cho, Effect of Al_2O_3 coating on electrochemical performance of LiCoO_2 as cathode materials for secondary lithium batteries, J. Power Sources, 2004, 132 (1-2): 249-255.
    [73] Armelle Ringuede, Athula Wijayasinghe, Valerie Albin, Carina Lagergren, Michel Cassir, Bill Bergman, Solubility and electrochemical studies of LiFeO_2-LiCoO_2-NiO materials for the MCFC cathode application J. Power Sources, 2006,160 (2): 789-795.
    [74] R. Sathiyamoorthi, R. Chandrasekaran, P. Santhosh, K. Saminathan, R. Gangadharan, T. Vasudevan, Electrochemical characterization of nanocrystalline LiM_xCo_(1-x)O_2 (M=Mg, Ca) prepared by a solid-state thermal method, Synth. React. Inorg. M., 2006, 36 (1): 71-81.
    [75] Nobuyuki Imanishi, Masaaki Fujii, Atsushi Hirano, Yasuo Takeda, Synthesis and characterization of nonstoichiometric LiCoO_2, J. Power Sources, 2001, 97-98: 287-289.
    [76] Jaephil Cho, Direct micron-sized LiMn_2O_4 particle coating on LiCoO_2 cathode material using surfactant, Solid State Ionics, 2003, 160 (3-4): 241-245.
    [77] J. Barker, In-situ measurement of the thickness changes associated with cycling of prismatic lithium ion batteries based on LiMn_2O_4 and LiCoO_2. Electrochim. Acta, 1999, 45 (1-2): 235-242.
    [78] Yucheng Sun, Yuki Shiosaki, Yonggao Xia, Hideyuki Noguchi, The preparation and electrochemical performance of solid solutions LiCoO_2-Li_2MnO_3 as cathode materials for lithium ion batteries, J. Power Sources, 2006, 159 (2): 1353-1359.
    [79] Hajime Arai, Masayuki Tsuda, Keiichi Saito, Masahiko Hayashi, Yoji Sakurai Nickel dioxide polymorphs as lithium insertion electrodes, Electrochim. Acta, 2002,47 (17): 2697-2705.
    [80] A. G. Ritchie, C. O. Giwa, J. C. Lee, P. Bowles, A. Gilmour, J. Allan, D. A. Rice, F. Brady, S. C. E. Tsang, Future cathode materials for lithium rechargeable batteries, J. Power Sources, 1999, 80 (1-2): 98-102.
    [81] L. El-Farh, M. Massot, M. Lemal, C. Julien, S. Chitra, P. Kalyani, T. Mohan, R. Gangadharan, Physical properties and electrochemical features of lithium nickel-cobalt oxide cathode materials prepared at moderate temperature. J. Electroceram., 1999, 3 (4): 425-432.
    [82] C. Delmas, J.P. Pérès, A. Rougier, A. Demourgues, F. Weill, A. Chadwick, M. Broussely, F. Perton, P. Biensan, P. Willmann. On the behavior of the Li_xNiO_2 system: an electrochemical and structural overview, J. Power Sources, 1997, 68 (1): 120-125.
    [83] D. Larcher, M. R. Palacin, G. G. Amatucci, J. -M. Tarascon, Electrochemically active LiCoO_2 and LiNiO_2 made by cationic exchange under hydrothermal conditions J. Electrochem. Soc, 1997, 144 (2): 408-417.
    [84] Yanzhi Sun, Pingyu Wan, Junqing Pan, Chunchun Xu, Xiaoguang Liu, Low temperature synthesis of layered LiNiO_2 cathode material in air atmosphere by ion exchange reaction, Solid State Ionics, 2006,177(13-14): 1173-1177.
    [85] B. Markovsky, A. Rodkin, Y. S. Cohen, O. Palchik, E. Levi, D. Aurbach, H. -J. Kim, M. Schmidt, The study of capacity fading processes of Li-ion batteries: major factors that play a role, J. Power Sources, 2003, 119-121: 504-510.
    [86] M. Broussely, F. Perton, J. Labat, R. J. Staniewicz, A. Romero, Li/Li_xNiO_2 and Li/Li_xCoO_2 rechargeable systems: comparative study and performance of practical cells. J. Power Sources, 1993, 43 (1-3): 209-216.
    [87] Si-Hai Cao, Zhi-Xing Wang, Xin-Hai Li, Ying LuHua-Jun Guo, Wen-Jie Peng, Comparative study on electrochemical behavior of Li(Ni_(0.5)Mn_(0.5))_((1-x))M_xO_2 (M=Ti, Al; x=0, 0.02) cathode materials, Chinese J. Inorg. Chem., 2006, 22 (8): 1540-1544.
    [88] Chung-Hsin Lu, Hsien-Cheng Wang, Reverse-microemulsion preparation and characterization of ultrafine orthorhombic LiMnO_2 powders for lithium-ion secondary batteries, J. Eur. Ceram. Soc., 2004, 24(5): 717-723.
    [89] Mengqiang Wu, Qiyi Zhang, Haipeng Lu, Ai Chen, Nanocrystalline orthorhombic LiMnO_2 cathode materials synthesized by a two-step liquid-phase thermal process, Solid State Ionics, 2004, 169 (1-4): 47-50.
    [90] Jung-Min Kim, Hoon-Taek Chung, Electrochemical characteristics of orthorhombic LiMnO_2 with different degrees of stacking faults, J. Power Sources, 2003, 115 (1): 125-130.
    [91] Y. Shao-Horn, S. A. Hackney, A. R. Armstrong, P. G Bruce, R. Gitzendanner, C. S. Johnson, M. M. Thackeray, Structural characterization of layered LiMnO_2 electrodes by electron diffraction and lattice imaging, J. Electrochem. Soc., 1999,146 (7): 2404-2412
    [92] G Vitins, K. West, Lithium intercalation into layered LiMnO_2, J. Electrochem. Soc., 1997, 144 (8): 2587-2592.
    [93] S. -J. Hwang, H. -S. Park, J. -H. Choy, G. Campet, Evolution of local structure around manganese in layered LiMnO_2 upon chemical and electrochemical delithiation/relithiation, Chem. Mater., 2000, 12(7): 1818-1826.
    [94] Kisuk Kang, Ying Shirley Meng, Julien Breger, Clare P. Grey, Gerbrand Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 2006,311: 977-980.
    [95] Xiong Wang, Fu Zhou, Xuemei Zhao, Zude Zhang, Mingrong Ji, Chenming Tang, Tao Shen, Huagui Zheng, Fabrication and characterization of nanosized single-crystalline LiNi_(0.5)Mn_(0.5)O_2, J. Cryst. Growth, 2004, 267: 184-187.
    [96] S. Madhavi, G. V. Subba Rao, Effect of aluminium doping on cathodic behavior of Li_xNi_(0.7)Co_(0.3)O_2, J. Power Sources, 2001, 97-98: 156-162.
    [97] K. B. Richard, K. Ryoji, The role of nickel content on the structure and electrochemical properities of Li_xNi_yCo_(1-y)O_2, J. Power Sources, 2001, 97-98: 316-320.
    
    [98] I. Saardoune, C. Delmas, On the Li_xNi_(0.8)Co_(0.2)O_2 system, J. Solid State Chem., 1998, 136: 8-15.
    [99] W. Li, J. C. Currie, Morphology effects on the electrochemical performance of LiNi_(1-x)Co_xO_2, J. Electrochem. Soc, 1997, 144 (8): 2773-2779.
    [100] Hui He, Xuan Cheng, Ying Zhang, Phase transformation of LiNi_(0.75)Co_(0.25)O_2, Mat. Sci. Eng. B-Solid, 2006, 133:8-13.
    [101] Shuting Yang, Hongyun Yue, Yanhong Yin, Jinxin Yang, Weiguang Yang, Microwave-assisted synthesis of LiNio.5Coo.5O2 cathode material for lithium batteries using PAM as template, Electrochim. Acta, 2006, 5 (23): 4971-4976.
    [102] D. Caurant, N. Baffler, B. Garcia, J. P. Pereira-Ramos, Synthesis by a soft chemistry route and characterization of LiNi_xCo_(1-x)O_2 (0≤x≤1) cathode materials, Solid State Ionics, 1996, 91 (1-2): 45-54.
    [103] G. Ting-Kuo Fey, Jian-Ging Chen, Zhi-Feng Wang, Hao-Zhong Yang, T. Prem Kumar, Saturated linear dicarboxylic acids as chelating agents for the sol-gel synthesis of LiNi_(0.8)Co_(0.2)O_2, Mater. Chem. Phys., 2004, 87(2-3): 246-255.
    [104] Chaolun Gan, Xiaohong Hu, Hui Zhan, Yunhong Zhou, Synthesis and characterization of Li_(1.2)Ni_(0.6)Co_(0.2)Mn_(0.2)O_(2+δ) as a cathode material for secondary lithium batteries, Solid State Ionics, 2005, 176 (7-8): 687-692.
    [105] Hui Cao, Yao zhang, Jian Zhang, Baojia Xia, Synthesis and electrochemical characteristics of layered Li_1Ni_(0.6)Co_(0.2)Mn_(0.2)O_2 cathode material for lithium ion batteries, Solid State Ionics, 2005, 176: 1207-1211.
    [106] Soo Kyung Jeong, Chi-Hoon Song, Kee Suk Nahm, A. Manuel Setphan, Synthesis and electrochemical properties of Li[Li_(0.07)Ni_(0.1)Co_(0.6)Mn_(0.23)]O_2 as a possible cathode material for lithium-ion batteries, Electrochem. Acta, 2006, 32: 885-891.
    [107] I. Belharouak, Y. -K. Sun, J. Liu, K. Amine, Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as a suitable cathode for high power applications, J. Power Sources, 2003, 123: 247-252.
    [108] N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries, J. Power Sources, 2003, 119-121: 171-174.
    [109] S. -H. Park, H. -S. Shin, S. -T. Myung, C. S. Yoon, K. Amine, Y. -K. Sun, Synthesis of nanostructured Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via a modified carbonate process, Chem. Mater., 2005, 17: 6-8.
    [110] M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Synthesis by molten salt and cathodic properties of Li(Ni_(1/3)Co_(1/3)Mn_(1/3)O_2, J. Power Sources, 2006, 159: 263-267.
    [111] M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Lithium insertion into manganese spinels, Mater. Res. Bull., 1983, 18(4): 461-472.
    [112] 李建保,李敬锋,新能源材料及其应用技术,锂离子电池、太阳能电池及温差电池,第一版.2005,北京:清华大学出版社,1-100.
    [113] Peter Bauerlein, Rudolf Herr, Matthias Kloss, Jorg Kumpers, Matthias Maul, Eberhard Meissner, Advanced lithium ion cells with lithium manganese spinel, J. Power Sources, 1999, 81-82: 585-588.
    [114] V. W. J. Verhoeven, I. M. de Schepper, G. Nachtegaal, A. P. M. Kentgens, E. M. Kelder, J. Schoonman, F. M. Mulder, Lithium dynamics in LiMn_2O_4 probed directly by two-dimensional Li-7NMR, Phys. Rev. Lett., 2001, 86(19): 4314-4317.
    [115] Yongyao Xia, Masaki Yoshio, An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds, J. Electrochem. Soc., 1996, 143(3): 825-833.
    [116] Kyung Yoon Chung, Kwang-Bum Kim, Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn_2O_4 thin film electrodes, Electrochim. Acta, 2004, 49(20): 3327-3337.
    [117] Hong-Wei Chan, Jenq-Gong Duh, Jyh-Fu Lee, Valence change by in situ XAS in surface modified LiMn_2O_4 for Li-ion battery, Electrochem. Commun., 2006, 8(11): 1731-1736.
    [I18] Kyung Yoon Chung, Kwang-Bum Kim, Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn_2O_4 thin film electrodes, Electrochim. Acta, 2004, 49(20): 3327-3337.
    [119] 王要武,蔡砚,何向明,应皆荣,尖晶石LiMn_2O_4作为锂离子正极材料的研究与开发,无机材料学报,2004,19(1):1-8.
    [120] Yongjao Xia, Yasufumi Hideshima, Naoki Kumada, Masamitsu Nagano, Masaki Yoshio, Studies on Li-Mn-O spinel system(obtained from melt-impregnation method) as a cathode for 4 V lithium batteries: Part V. Enhancement of the elevated temperature performance of Li/LiMn_2O_4 cells, J. Power Sources, 1998, 74: 24-28.
    [121] G. Ting-Kuo Fey, Yung-Da Cho, T. Prem Kumar, Nanocrystalline LiMn_2O_4 derived by HMTA-assisted solution combustion synthesis as a lithium-intercalating cathode material, Mater. Chem. and Phy., 2006, 99(2-3): 451-458.
    [122] Yen-Pei Fu, Yu-Hsiu Su, She-Huang Wu, Cheng-Hsiung Lin, LiMn_(2-y)M_yO_4 (M=Cr, Co) cathode materials synthesized by the microwave-induced combustion for lithium ion batteries, J. Alloy. Compd., 2006, 426(1-2): 228-234.
    [123] 刘光明,李美栓,高虹,曾潮流,钱余海,锂离子蓄电池正极材料LiMn_2O_4的合成,电源技术,2002,1:9-10.
    [124] Xiangming He, Jianjun Li, Yan Cai, Changyin Jiang, Chunrong Wan, Preparation of spherical spinel LiMn_2O_4 cathode material for Li-ion batteries, Mater. Chem. Phys., 2006, 95(1): 105-108.
    [125] J. N. Reimers, Eric W. Fuller, Erik Rossen, J. R. Dahn, Synthesis and electrochemical studies of LiMnO_2 prepared at low temperatures, J. Electrochem. Soc., 1993, 140(12): 3396-3401.
    [126] H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, A. R. West, R. Kanno, S. Morimoto, S. Nasu, M. Tabuchi, Structure and electrochemical properties of LiFe_xMn_(2_x)O_4(0≤x≤0.5) spinel as 5 V electrode material for lithium batteries, J. Electrochem. Soc., 2001, 148(7): 730-736.
    [127] Shu-Juan Bao, Yan-Yu Liang, Wen-Jia Zhou, Ben-Lin He, Hu-Lin Li, Enhancement of the electrochemical properties of LiMn_2O_4 through Al~(3+) and F~- co-substitution, J. Colloid Interf. Sci., 2005, 291(2): 433-437.
    [128] M. Kopec, D. Lisovytskiy, M. Marzantowicz, J. R. Dygas, F. Krok, Z. Kaszkur, J. Pielaszek, X-ray diffraction and impedance spectroscopy studies of lithium manganese oxide spinel, J. Power Sources, 2006, 159(1): 412-419.
    [129] Chi-Hwan Han, Young-Sik Hong, Hyun-Sil Hong, Keon Kim, Electrochemical properties of iodine-containing lithium manganese oxide spinel, J. Power Sources, 2002 111(1): 176-180.
    [130] Yongyao Xia, Hideyuki Noguchi, Masaki Yoshio, Differences in electrochemical behavior of LiMn_2O_4 and Li_(1+x)Mn_2O_4 as 4-V Li-cell cathodes, J. Solid State Chem., 1995, 119(1): 216-218.
    [131] 胡晓宏,杨汉西,艾新平,李升宪,洪昕林,LiMn_2O_4正极在高温下性能衰退现象的研究,电化学,1999,5(2):224-230.
    [132] 卢世刚,李明勋,黄松涛,刘人敏,尖晶石LiMn_2O_4的改性及性能,电池,2002,32(s1):34-35.
    [133] R. J. Gummow, A. de Kock, M. M. Thackeray. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide(spinel) cells. Solid State Ionics, 1994, 69(1): 59-67.
    [134] Hyun Joo Bang, V. S. Donepudi, Jai Prakash, Preparation and characterization of partially substituted LiM_yMn_(2-y)O_4 (M= Ni, Co, Fe) spinel cathodes for Li-ion batteries, Electrochim. Acta, 2002, 48: 442-451.
    [135] Gui-Ming Song, Wen-Jiang Li, Yu Zhou, Synthesis of Mg-doped LiMn_2O_4 powders for lithium-ion batteries by rotary heating, Mater. Chem. Phys., 2004, 87: 162-167.
    [136] 彭忠东,胡国荣,周向阳,刘业翔,稀土掺杂对LiMn_2O_4电化学性能的影响,电池,2002,32(4):191-193.
    [137] A. Subramania, N. Angayarkanni, T. Vasudevan, Synthesis of nano-crystalline LiSr_xMn_(2-x)O_4 powder by a novel sol-gel thermolysis process for Li-ion polymer battery, J. Power Sources, 2006, 158(2): 1410-1413.
    [138] 汤昊,冯传启,刘浩文,雷太鸣,张克立,孙聚堂,掺杂Y~(3+)的锂锰尖晶石的合成及电化学性能研究,化学学报,2003,61(1):47-50.
    [139] 杨书廷,贾俊华,陈红军,稀土掺杂锂锰氧化物LiMn_(2-x)Nd_xO_4(x=0.005~0.1)的结构和电性能研究,无机材料学报,2003,18(2):301-306.
    [140] 唐致远,冯季军,徐国祥,尖晶石LiMn_2O_4的多元掺杂改性研究,化学学报,2003,61(8):1316-1318.
    [141] 刘烈炜,田炜,赵新强,赵志祥,尖晶石LiMn_2O_4的掺杂研究进展,材料导报,2003 17(6):47-49
    [142] Yen-Pei Fu, Cheng-Hsiung Lin, Yu-Hsiu Su, She-Huang Wu, Electrochemical characteristic of LiMn_(1.925)M_(0.075)O_4(M=Cr, Co) cathode materials synthesized by the microwave-induced combustion method, J. Power Sources, 2006, 159(1): 215-218.
    [143] 涂健,曹高劭,庄大高,赵新兵,LiMn_(2-2x)Li_xNi_xO_4(0≤x≤0.1)阴极材料的结构和电化学性能,无机材料学报,2005,20(5):1120-1126.
    [144] Woosuk Cho, Wonkyung Ra, Junichi Shirakawa, Masanobu Nakayama, Masataka Wakihara, Synthesis and electrochemical properties of nonstoichiometric LiAl_xMn_(2_x)O_4-delta as cathode materials for rechargeable lithium ion battery J. Solid State Chem., 2006, 179(11): 3534-3540.
    [145] Y. -K. Sun, Synthesis and electrochemical characterization of a new Se-doped spinel material for lithium secondary batteries, J. Appl. Electrochem., 2001, 31(10): 1149-1153.
    [146] G. G. Amatucci, N. Pereira, T. Zheng, J. -M. Tarascon, Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2_x)O_(4_z)F_z solid solution, J. Electrochem. Soc., 2001, 148(2): A171-A182.
    [147] Y. -J. Kang, J. -H. Kim, Y. -K. Sun, Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries, J. Power Sources, 2005, 146(1-2): 237-240.
    [148] Ben-Lin He, Shu-Juan Bao, Yan-Yu Liang, Wen-Jia Zhou, Hua Li, Hu-Lin Li, Electrochemical properties and synthesis of LiAl_(0.05)Mn_(1.95)O_(3.95)F_(0.05) by a solution-based gel method for lithium secondary battery, J. Solid State Chem., 2005, 178(3): 897-901.
    [149] Hyunjoo Bang, Hui Yang, Yang Kook Sun, Jai Prakash, In situ studies of Li_xMn_2O_4 and Li_xAl_(0.17)Mn_(1.83)O_(3.97)S_(0.03) cathode by IMC, J. Electrochem. Soc., 2005, 152(2): A421-428.
    [150] Y. W. Tsai, R. Santhanam, B. J. Hwang, S. K. Hu, H. S. Sheu, Structure stabilization of LiMn_2O_4 cathode material by bimetal dopants, J. Power Sources, 2003, 119-121: 701-705.
    [151] Shu-Juan Bao, Yan-Yu Liang, Wen-Jia Zhou, Ben-Lin He, Hu-Lin Li, Enhancement of the electrochemical properties of LiMn_2O_4 through Al~(3+) and F~- co-substitution, J. Colloid Interf. Sci., 2005, 291(2): 433-437.
    [152] G. G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, J. M. Tarascon, Surface treatments of Li_(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance. Solid State Ionics, 1997, 104(1-2): 13-25.
    [153] J. T. Son, H. G. Kim, Y. J. Park, New preparation method and electrochemical property of LiMn_2O_4 electrode, Electrochim. Acta, 2004, 50(2-3): 453-459.
    [154] Lihong Yu, Xinping Qiu, Jingyu Xi, Wentao Zhu, Liquan Chen, Enhanced high-potential and elevated-temperature cycling stability of LiMn_2O_4 cathode by TiO_2 modification for Li-ion battery, Electrochim. Acta, 2006, 51(28): 6406-6411.
    [155] 陈敬波,胡国荣,禹筱元,彭忠东,陈艳玲,锂离子蓄电池正极材料 LiMn_2O_4-包覆LiCoO_2 对LiMn_2O_4循环性能的影响,电源技术,2003,27(3):284-286.
    [156] Yasushi Idemoto, Hirosuke Narai, Nobuyuki Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn_(1.5)Ni_(0.5)O_4 as a cathode material for secondary lithium batteries, J. Power Sources, 2003, 119-121: 125-129.
    [157] Kaoru Dokko, Mohamed Mohamedi, Narmi Anzue, Takashi Itoh, Isamu Uchida, In situ Raman spectroscopic studies of LiNi_xMn_(2.x)O_4 thin film cathode materials for lithium ion second batteries, J. Mater. Chem., 2002, 12: 3688-3693.
    [158] Ki-Joo Hong, Yang-Kook Sun, Synthesis and electrochemical characteristics of LiCr_xNi_(0.5-x)Mn_(1.5)O_4 spinel as 5 V cathode materials for lithium secondary batteries, J. Power Sources, 2002, 109(2): 427-430.
    [159] 刘国强,其鲁,高电压锂离子电池正极材料的制备和性能,电池,2005,35(4):261-262.
    [160] George Ting-Kuo Fey, Cheng-Zhang Lu, T. Prem Kumar, Preparation and electrochemical properties of high-voltage cathode materials, LiM_yNi_(0.5-y)Mn_(1.5)O_4 (M=Fe, Cu, Al, Mg; y=0.0-0.4), J. Power Sources, 2003, 115(2): 332-345.
    [161] Y. S. Lee, Y. K. Sun, S. Ota, T. Miyashita, M. Yoshio, Preparation and characterization of nano-crystalline LiNi_(0.5)Mn_(1.5)O_4 for 5 V cathode materials by composite carbonate process, Electrochem. Commun., 2002, 4(12): 989-994.
    [162] Sung Bin Park, Won Sob Eom, Won Ⅱ Cho, Ho Jang, Electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode after Cr doping, J. Power Sources, 2006, 159(1): 679-684.
    [163] 刘国强,其鲁,闻雷,锂离子电池正极材料LiNi_xMn_(2-x)O_4 的制备和电化学性能研究,稀有金属材料与工程,2006,35(2):299-232.
    [164] Sang-Ho Park, Yang-Kook Sun, Synthesis and electrochemical properties of 5 V spinel LiNi_(0.5)Mn_(1.5)O_4 cathode materials prepared by ultrasonic spray pyrolysis method, Electrochim. Acta, 2004, 50: 431-434.
    [165] S. -H. Park, S. -W. Oh, S. -T. Myung, Y. C. Kang, Y. -K. Sun, Effects of synthesis condition of LiNi_(1/2)Mn_(3/2)O_4 cathode material for prepared by ultrasonic pyrolysis method, Solid State lonics, 2005, 176: 481-486.
    [166] Hai-Sheng Fang, Zhi-xing Wang, Xin-hai Li, Hua-jun Guo, Wen-jie Peng, Low temperature synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel, Mater. Lett., 2006, 60: 1273-1275.
    [167] Boris Markovsky, Yosef Talyossef, Gregory Salitra, Doron Aurbach, Hyeong-Jin Kim, Seungdon Choi, Cycling and storage performance at elevated temperatures of LiNi_(0.5)Mn_(1.5)O_4 positive electrodes for advanced 5 V Li-ion batteries, Electrochem. Commun., 2004, 6: 821-826.
    [168] George Ting-Kuo Fey, Cheng-Zhang Lu, T. Prem Kumar, Preparation and electrochemical properties of high-voltage cathode materials, LiM_yNi_(0.5-y)Mn_(1.5)O_4 (M=Fe, Cu, Al, Mg; y=0.0-0.4), J. Power Sources, 2003, 115: 332-345.
    [169] Sung Bin Park, Won Sob Eom, Won Ⅱ Cho, Ho Jang, Electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode after Cr doping, J. Power Sources, 2006, 159: 679-684.
    [170] J. X. Dai, F. Y. Sam, Z. Q. Gao, K. S. Siow, A new form of vanadium oxide for use as a cathode material in lithium battery. J. Power Sources, 1998, 74(1): 40-45.
    [171] P. Suresh, A. K. Shukla, N. Munichandraiah, Synthesis and characterization of LiFeO_2 and LiFe_(0.9)Co_(0.1)O_2 as cathode materials for Li-ion cells, J. Power Sources, 2006, 159(2): 1395-1400.
    [172] 储炜,吴升辉,尤金跨,纳米科学技术在电源领域的新进展,电源技术,1998,22(6):256-260.
    [173] J. H. Chog, D. H. Kim, C. W. Kwom, S. J. Hwang, Y. I. Kim, Physical and electrochemical characterization of nano-crystalline LiMn_2O_4 prepared by a modified citrate route. J. Power Sources, 1998, 77(1): 1-11.
    [174] K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds, Solid State lonics, 1996, 92: 1-10.
    [175] Yanqiang Wang, Bulin Wang, Jun Yang, Yanna Nuli, High-rate LiFePO_4 electrode material synthesized by a novel route from FePO_4 center dot 4H_2O, Adv. Funct. Mater., 2006, 16(16): 2135-2140.
    [176] Shigeto Okada, Shoichiro Sawa, Minato Egashira, Jun-ichi Yamaki, Mitsuharu Tabuchi, Hiroyuki Kageyama, Tokuzo Konishi, Akira Yoshino, Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries, J. Power Sources, 2001, 97-98: 430-432.
    [177] Bustam M. Azmi, Tatsumi Ishihara, Hiroyasu Nishiguchi, Yusaku Takita, Cathodic performance of VOPO_4 with various crystal phases for Li ion rechargeable battery, Electrochim. Acta, 2002, 48 (2): 165-170.
    [178] M. Alvarez-Vega, U. Amador, M E. Arroyo-de Dompablo, Electrochemical study of Li_3Fe(MoO_4)_3 as positive electrode in lithium cells, J. Electrochem. Soc., 2005, 152 (7): A1306-A1311.
    [179] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Rem(s|ˇ)kar, J. Jamnik, Structure and electrochemical performance of Li_2MnSiO_4 and Li_2FeSiO_4 as potential Li-battery cathode materials, Electrochem. Commun., 2006, 8 (2): 217-222.
    [180] A. K. Padhi, K. S. Nanjundawamy, J. B. Goodenough, Phospho-olivine as positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc, 1997, 144 (4): 1188-1194.
    [181] R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, Impact of LiFePO_4/C composites porosity on their electrochemical performance, J. Electrochem. Soc, 2005, 152(5):A858-A863.
    [182] Ho Chul Shin, Won II Cho, Ho Jang, Electrochemical properties of carbon-coated LiFePO_4 cathode using graphite, carbon black, and acetylene black, Electrochim. Acta, 2006, 52 (4): 1472-1476.
    [183] Sung-Yoon Chung, Jason T. Bloking, Yet-Ming Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater. 2002, 1 (10): 123-128.
    [184] J. Yao, S. Bewlay, K. Konstantionv, V. A. Drozd, R.S. Liu, X. L. Wang, H. K. Liu, G. X. Wang, Characterisation of olivine-type LiMn_xFe_(1-x)PO_4 cathode materials, J. Alloy. Compd., 2006, 425 (1-2): 362-366.
    [185] Jun Ma, Qi-Zong Qin, Electrochemical performance of nanocrystalline LiMPO_4 thin-films prepared by electrostatic spray deposition, J. Power Sources, 2005, 148: 66-71.
    [186] J. Jiang, J. R. Dahn, ARC studies of the thermal stability of three different cathode materials: LiCoO_2; Li[Ni_(0.1)Co_(0.8)Mn_(0.1)]O_2; and LiFePO_4, in LiPF_6 and LiBoB EC/DEC electrolytes, Electrochem. Commun., 2004, 6 (1): 39-43.
    [187] P. Subramanya Herle, B. Ellis, N. Coombs, L. F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates, Nat. Mater., 2004, 3 (3): 147-152.
    [188] C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche, C. Masquelier, Electrochemical and electrical properties of Nb- and / or C-containing LiFePO_4 composites, Solid State Ionics, 2006, 117: 333-341.
    [189] Nathalie Ravet, Ali Abouimrane, Michel Armand, From our readers: On the electronic conductivity of phospho-olivines as lithium storage electrodes, Nat. Mater., 2003, 2(11): 702-702.
    [190] M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO_4 olivine-type battery material, Chem. Mater., 2005, 17 (20): 5085-5092.
    [191] Yuan Gao, J. R. Dahn, The high temperature phase diagram of Li_(1+x)Mn_(2-x)O_4 and its implications, J. Electrochem. Soc, 1996, 143 (6): 1783-1788.
    [192] J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G Amatucci, D. Guyomard, Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn_2O_4, J. Electrochem. Soc., 1994, 141 (6): 1421-1431.
    [193] G. G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, J. M. Tarascon, Surface treatments of Li_(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance, Solid State Ionics, 1997, 104 (1-2): 13-25.
    [194] Lourdes Hernán, Julian Morales, Luis Sanchez, Jesus Santos, Use of Li-M-Mn-O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries, Solid State Ionics, 1999, 118(3-4): 179-185.
    [195] Kiyoshi Kanamura, Shigetaka Toriyama, Soshi Shiraishi, Zen-ichiro Takehara, Studies on electrochemical oxidation of nonaqueous electrolytes using in situ FTIR spectroscopy, J. Electrochem. Soc., 1995, 142 (5): 1383-1389.
    [196] Y. Gao, J. N. Reimers, J. R. Dahn, Changes in the voltage profile of Li/Li_(1+x)Mn_(2-x)O_4 cells as a function of x, Phys. Rev. B, 1996, 54 (6): 3878-3881.
    [197] Yan-Yu Liang, Shu-Juan Bao, Ben-Lin He, Wen-Jia Zhou, Hu-Lin Li, One-step, low-temperature route for the preparation of spinel LiMn_2O_4 as a cathode material for rechargeable lithium batteries, J. Electrochem. Soc, 2005, 152 (10): A2030-A2034.
    [198] Yong Cai Zhang, Hao Wang, Hai Yan Xu, Bo Wang, Hui Yan, Anwar Ahniyazm, Masahiro Yoshimura, Low-temperature hydrothermal synthesis of spinel-type lithium manganese oxide nanocrystallites, Solid State Ionics, 2003,158 (1-2): 113-117.
    [199] Kiyoshi Kanamura, Kaoru Dokko, Takahiro Kaizawa, Synthesis of spinel LiMn_2O_4 by a hydrothermal process in supercritical water with heat-treatment, J. Electrochem. Soc, 2005, 152: A391-A395.
    [200] Qi Feng, Hirofumi Kanoh, Yoshitaka Miyai, Kenta Ooi, Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions, Chem. Mater., 1995, 7 (6): 1226-1232.
    [201] J. -H. Kim, S. -T. Myung, C. S. Yoon, S. G. Kang, Y. -K. Sun, Comparative study of LiNi_(0.5)Mn_(1.5)O_(4-δ) and LiNi_(0.5)Mn_(1.5)O_4 cathodes having two crystallographic structures: Fd-3m and P4_332, Chem. Mater., 2004, 16: 906-914.
    [202] Christian Masquelier, Mitsuharu Tabuchi, Kazuaki Ado, Ryoji Kanno, Yo Kobayashi, Yuzuru Maki, Osamu Nakamura, John B. Goodenough, Chemical and magnetic characterization of spinel materials in the LiMn_2O_4-Li_2Mn_4O_9-Li_4Mn_5O_(12) system, J. Solid State Chem., 1996, 123 (2): 255-266.
    [203] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc, 1997,144 (4): 1188-1194.
    [204] Y. M. Todorov, Y. Hideshima, H. Noguchi, M. Yoshio, Determination of theoretical capacity of metal ion-doped LiMn_2O_4 as the positive electrode in Li-ion batteries. J. Power Sources, 1999, 77 (2): 198-201.
    [205] A. Yamada, S. C. Chung, K. Hinokuma, Optimized LiFePO_4 for lithium battery cathodes, J. Electrochem. Soc., 2001, 148 (3): A224-A229.
    [206] P. Arora, B. N. Popov, R. E. White, Electrochemical investigations of cobalt-doped LiMn_2O_4 as cathode material for lithium-ion batteries, J. Electrochem. Soc, 1998,145 (3): 807-815.
    [207] Tsutomu Ohzuku, Masaki Kitagawa, Taketsugu Hirai, Electrochemistry of manganese dioxide in lithium nonaqueous cell, J. Electrochem. Soc, 1990, 137 (3): 769-775.
    [208] Atsuo Yamada, Masahiro Tanaka, Koichi Tanaka, Koji Sekai, Jahn-Teller instability in spinel Li-Mn-O, J. Power Sources, 1999, 81 -82: 73-78.
    [209] S. H. Chang, K. S. Ryu, K. M. Kim, M. S. Kim, I. K. Kim, S. G. Kang, Electrochemical properties of cobalt-exchanged spinel lithium manganese oxide, J. Power Sources, 1999, 84 (1): 134-137.
    [210] 康慨,戴爱惠,万玉华,锂离子电池阴极材料LiM_xMn_(2-x)O_4的合成方法研究,无机材料学报,2001,16(4):586-594.
    [211] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, S. Colson, The spinel phase of LiMn_2O_4 as a cathode in secondary lithium cells, J. Electrochem. Soc., 1991, 138(10): 2859-2864.
    [212] A. Ott, P. Endres, V. Klein, B. Fuchs, A. Jager, H. A. Mayer, S. Kemmler-Sack, H. -W. Praas, K. Brandt, G. Filoti, Electrochemical performance and chemical properties of oxidic cathode materials for 4 V rechargeable Li-ion batteries, J. Power Sources, 1998, 72(1): 1-8.
    [213] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Mashkovich, Y. Cohen, New insights into the interactions of between electrode materials and electrolyte solutions for advanced nonaqueous batteries, J. Power Sources, 1999, 81-82: 95-111.
    [214] Decheng Li, Atsushi Ito, Koichi Kobayakawa, Hideyuki Noguchi, Yuichi Sato, Structural and electrochemical characteristics of LiNi_(0.5-x)Co_(2x)Mn_(1.5-x)O_4 prepared by spray drying process and post-annealing in O_2, J. Power Sources, 2006, 161(2): 1241-1246.
    [215] A. Yamada, S. C. Chung, K. Hinokuma, Optimized LiFePO_4 for lithium battery cathodes, J. Electrochem. Soc., 2001, 148: A224-A229.
    [216] J. Morales, C. Perez-Vicente, J. L. Tirado, Cation distribution and chemical deintercalation of Li_(1.x)Ni_(1+x)O_2, Mat. Res. Bull., 1990, 25(5): 623-630.
    [217] K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Performance of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 as cathode for Li-ion batteries, Electrochim. Acta, 2002, 48: 145-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700