Ti53311S、TP650和Zr-4合金热加工性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对合金热加工性的研究是合理制定热加工工艺,有效控制合金组织性能从而提高制品质量的重要依据。本文通过对近α钛合金Ti53311S,颗粒增强钛基复合材料TP650和Zr-4合金在较宽范围进行热压缩试验,全面、系统的研究了该三种合金的高温变形行为,利用数值模拟计算本构关系并建立流变模型,求出变形激活能,确定了该三种合金试验变形条件范围内流变应力与应变、应变速率及变形温度之间的关系;运用光学显微镜、透射电镜分析该三种合金的微观组织,研究变形温度、变形速率、变形程度对其组织的影响,并分析其变形机理,建立加工参数与显微组织演变的对应关系;运用系统稳定性分析原理,基于动态材料模型(DMM)构造出近α钛合金Ti53311S,颗粒增强钛基复合材料TP650和Zr-4合金的热加工图,结合高温变形组织对加工图进行综合分析,深入研究其热加工性并制定最优的热加工工艺参数,研究出最有利于材料变形的稳定加工区域,为工艺制定的一般原则和可行工艺参数范围的选择提供了理论依据。最后基于上述Ti53311S,TP650和Zr-4合金的变形机理分析和加工图建立了该三种合金的热变形机理图,来探明其加工参数和变形组织的关系,为该三种合金热加工工艺参数的选择、组织控制和性能优化提供理论指导,及以后类似钛、锆合金的加工提供理论参考。主要研究结果如下:
     根据Ti53311S、TP650和Zr-4合金的热变形特征分别采用幂指数和双曲正弦函数本构关系求得Ti53311S合金在相变点之下和相变点之上变形激活能(Q)的值分别为507和241KJ/mol,TP650合金在相变点之下和相变点之上变形激活能(Q)的值分别为691KJ/mol和202KJ/mol,Zr-4合金的变形激活能为387KJ/mol。并首次建立了Ti53311S、TP650、Zr-4合金的流变应力模型,拟和精度较高,
     Ti53311S合金对应变速率较为敏感。在两相区低应变速率0.001s~(-1)加工可以得到细小均匀的超塑性等轴组织,而中等应变速率0.1~1s~(-1)变形时,可以得到具有良好的塑性和疲劳性能的球化组织,随变形程度增加,其球化程度增加。在高温两相区980℃低应变速率0.001-0.1s~(-1)变形时主要发生了动态再结晶,而且再结晶核心的形成与位错的重新分布和再结晶前的多边形化形成亚晶有关;而在相变点之上,由刃位错的攀移、螺位错的交滑移控制的动态回复是Ti53311S合金的主要软化机理。
     TP650合金在900~980℃,应变速率为0.001~0.01~(-1)的区域,主要发生了超塑性。应变速率0.01-10s~(-1)变形时发生了动态再结晶以及部分α相球化,其中α相的再结晶主要与亚晶的形成、转动和聚合成核有关。TiC颗粒的加入对界面有钉扎和拖曳作用,因此有利于位错胞结构的形成和稳定基体中的细晶及亚晶。而在相变点之上,低应变速率0.001s~(-1)时主要的软化机理为动态回复,应变速率为0.01-10s~(-1)软化机理主要为动态再结晶。高温β区域TP650合金的变形特征主要由钛基体决定。
     Zr-4合金在α相区和低温α+β相区变形都发生了α-Zr为主的完全动态再结晶,形核机制为晶间弓出形核,晶界沉淀析出相Zr(CrFe)_2,阻碍界面迁移,引起界面弯曲,对Zr-4合金再结晶形核非常有利。而高温α+β相区,应变速率对其变形机理有重要影响,低应变速率0.005-0.05s~(-1)变形时,主要为β转变组织覆盖的粗大晶粒,软化机理无法判断,而当应变速率升高到0.5s~(-1)时,则发生晶内再结晶。变形机理和加工图的研究表明在Zr-4合金加工过程中,为形成均匀的组织,应避免在高应变速率成形。
     对Ti53311S和TP650合金的研究表明近α钛合金及其复合材料在两相区具有较宽的加工范围。而TP650合金由于TiC颗粒的加入对其晶界迁移有拖曳作用,影响基体中各滑移系的相互作用,使其再结晶区域较大。
     低温高应变速率变形容易形成绝热剪切带,由于钛合金的低热传导性,使高应变速率下变形热效应较为显著,塑性变形产生的热量传递不均造成局部温升过高在Ti53311S合金中发生相变剪切带。
In order to determine the hot working parameter,optimize the structure and property of alloy,hot work ability of the alloy must be studied.In this work,the near-alpha titanium alloy Ti53311S,TiC particles reinforced titanium matrix composite TP650 and Zr-4 alloy were hot compressed in a broad range of temperature.The flow behavior was described by the constitutive equation and numerical simulation,the deformation activation energy were calculated and the relationship between the flow stress and deformation parameters was studied systematically.The microstructure of the deformed specimens were studied by the optical microscope and the transmission electron microscope,the effect of deformation temperature,strain rate and deformation ratio on the microstructure of deformed specimens and the deformation mechanism were analyzed,and the relationship between the deformation parameter and the microstructure evolution was defined.The processing maps of Ti53311S,TP650 and Zr-4 alloy were plotted by Dynamic Material Model and the principle of system stability analysis,and the different regime in processing map was analyzed by the microstructure observation,the hot work ability was studied profoundly and the deformation parameters were optimized,in order to select the "safety" regime and instruct the hot procedure.Lastly,the deformation mechanism map for Ti53311S, TP650 and Zr-4 alloy were plotted,which is the guide for the hot procedure of like-kind alloy.From this work,it was found that:
     The hot deformation behaviors of Ti53311S、TP650 and Zr-4 alloy were described by the power exponent and hyperbolic sine constitutive equation respectivly,and the deformation activation energy of Ti53311S alloy were calculated to be 507KJ/mol in (α+β)phase field and 241KJ/mol inβphase field,the deformation activation energy of TP650 alloy were calculated to be 691KJ/mol in(α+β)phase field and 202KJ/mol inβphase field,and the deformation activation energy of Zr-4 alloy were calculated to be 387KJ/mol.In addition,the flow stress model of Ti53311S、TP650 and Zr-4 alloy were established,and the fitting precision of which is satisfying.
     Ti53311S alloy is sensitive to the strain rate and different softening mechanism occurred at(α+β)phase.Superplasticity was observed at the strain rate of 0.001s~(-1),it is mean that this alloy can be superplastic forged.At middle strain rate of 0.1~1s~(-1),the microstructure of the specimens is spheroidization,and with the increase of deformation ratio,spheroidizing is strengthening.Dynamic recrystallization occurred at 980℃and 0.001-0.1s~(-1),and the nucleation is related with the redistribution of dislocations and the subgrain which created by polygonization.However,dynamic recovery which controlled by climb motion and cross slip is the deformation mechanism of Ti53311S alloy above the transformation temperature.
     Superplasticity was observed in TP650 alloy also at 900~980℃and 0.001~0.01s~(-1).Dynamic recrystallization and spheroidizing of small quantity ofαphase occurred at 0.01-10s~(-1),and the dynamic recrystallization is related with the formation, rotation and aggregation of subgrain.The addition of TiC particles is help for the formation of structure cell and stabilization of subgrain and close grain by drageffect. Above the transformation temperature,the director softening mechanism is dynamic recovery at low strain rate of 0.001s~(-1),dynamic recrystallization is the primary softening mechanism at 0.01-10s~(-1),and the recrystal grain generated priority at the cross point and grain boundary.The deformation characteristic of TP650 alloy atβphase field is depending on the deformation of titanium matrix,it is due to the softening of matrix by the start of more slip system atβphase,the TiC particles turned in the matrix and the hardening effect is weakening.
     Dynamic recrystallization of Zr-4 alloy occurred inαphase and(α+β)phase,and the nucleation mechanism is intercrystal projection.The precipitated phase of Zr(CrFe)_2 play an important role in the recrystallization nucleation by hindering the interface migration.The effect of strain rate on the softening mechanism is important at high temperature rang of(α+β)phase,the softening mechanism is not obvious at low strain rate of 0.005-0.05s~(-1)and dynamic recrystallization occurred at high strain rate.When deformed in high temperatureαphase regime and middle strain rate,the higher efficiency of power dissipation is result form the inconsistent of the intercrystalline deformation,and the deformation shear zone is obvious at 850℃,50s~(-1). Thus,in order to form the uniform structure,high strain rate should be avoided in the deformation of Zr-4 alloy.
     The research for Ti53311S and TP650 alloy showed that the good hot work ability of near-alpha titanium alloy and near-alpha titanium matrix composite can be obtained at(α+β)phase.The addition of TiC particles in near-alpha titanium alloy expended the field of dynamic recrystallization.
     Adiabatic shear zone is easy to occur at high strain rate and low temperature due to the low heat conductivity of titanium alloy.The non-uniform delivery of heat which produced by plastic deformation created phase transformation shear zone in Ti53311S alloy.
引文
[1] H. J. McQueen, E. Evangelista, J. Bowles, etal. Hot Deformation and Dynamic Recrystallization of Al-5Mg-0.8Mn Alloy[J]. Metals. 1968,20(4):31-38
    [2] H. B. Mcshane, T. Sheppard. On the Elevated-temperature Constitutive Relationship and Structure of an Austenitic Stainless Steel [J]. Mech Work Technol. 1984,9(2):147-160
    [3] D. S. Wright, T. Sheppard. Determination of Flow Stress: Part 2-radial and axial temperate distribution during torsion testing[J]. Met Technol. 1979,6(6):224-229
    [4] M. E. Kassner, M. M. Myshlyaev, H. J. McQueen. Large-strain Torsional Deformation in Aluminum at Elevated Temperatures[J]. Mater Sci Eng. 1989,A108(2):45-61
    [5] S. B. Davenport, N. J. Silk, C. N. Sparks, C. M. Sellars. Development of Constitutive Equations for modeling of Hot Rolling[J]. Mater sci and Technol. 2000,16(5):539-546
    [6] F. Montheillet, M. Cohen, J. J. Jonas. Axial Stresses and Texture Development during the Torsion Testing of Al, Cu and α-Fe[J]. Acta Metall. 1984,32(11):2077-2089
    [7] F. Montheillet, P. Gilormini, J. J. Jonas. Relation between Axial Stresses and Texture Development during Torsion Testing: a simplified theory[J]. Acta Metall. 1985,33(4):705-717
    [8] C. M. Sellars, W. J. McG. Tegart. Hot Workability. Int Metall Rev. 1972,158(17): 1-24
    [9] P. J. Regenet, H. P. Stuwe. Zur Entstehung von Oberflachentexturen beim Walzen Kubisch flachenzentriertre Metall[J]. Z Metallkunde. 1963,54(5):2735-2738
    [10] G. Gottstein, U. F. Kocks. Deformation structure and nucleation of dynamic recrystallization in copper single crystals[J]. Acta Met. 1983,31(10): 1525-1536
    [11] D. C. Steytler, P .S. Moulson, S. A. Clark, et al. Network recrystallization in a supercritical fluid[J]. J. Phys. Chem..1990,94(25):8748-8750
    [12] T. Sakai, J. J. Jonas. Flow stress and substructural change during transient dynamic recrystallization of nickel[J]. Acta Met. 1984,2(7):659-665
    [13] M. J. Luton, C. M. Sellars. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Met. 1969,17(8): 1033-1043
    [14] J. P. Sah, M. J. Richardson, C. M. Sellars. Grain size effects during dynamic recrystallization of nickel[J]. Metal Science. 1975,8(10):325-331
    [15] H. P. Stuwe, B. Ortner. Recrystallization in hot working and creep[J]. Met. Sci. 1974,8(6):161-170
    [16]蔡建明,李臻熙,马济民等.航空发动机用600℃高温钛合金研究于发展.材料导报,2005,(1):50-53
    [17]郝孟一,蔡建明,杜鹃.热处理对BT36钛合金组织及性能的影响.航空材料学报,2003,23(2):14
    [18]Han Chanxi,Liu Bingnan.Effects of Nb and W on mechanical properties and oxidation resistance of high temperature titanium alloys.Titanium'92:Science and Technology.FROES F H,CAPLAN I,ed.PA,Warrendale:TMS,1993,1891-1897
    [19]C.莱茵斯,M.皮特尔斯。陈振华等译。钛与钛合金。北京,化学工业出版社。
    [20]LiD.X.,Ping D.H.,Lu Y X.,Ye H.Q.,Characterization of the microstructure inTiB-wishker reinforced Ti alloy matrix compasites,Materials Letters,1993,16:322-326
    [21]Bania P.J,Hall J A.Titanum Science and Technology,Deutsche Gesellschaft fur Metallkunde[C].Germany:Oberursel,1985:2371
    [22]Thiehsen K E,Kassner M E,Pollard J etal.Metall Trans A[J],1993,24:1819
    [23]Miller W H,Chen R T,Starke E A.Metall TransA[J]1987,18A:1451
    [24]Andres C,Gysler A,Luetjering G.In:Froes F H,Caplan I eds.Titanium'92Science and Technology[C].Warrendale:TMS,1993:31
    [25]Mill W H,Chen RT,Starke EA.Metall Trans A[J],1987(18A):1451
    [26]Luetjering G,Albrecht J,Gysler A.In:Froes F H,Caplan I eds.Titanium'92Science and Technology[C].Warrendale:TMS,1993:163
    [27]Chao W,Jones J W,Allison J E et al.in:Lacomb P,Tricot R,Beranger G,Proc of sixth world conference on Titanium[C].Germany:Les Editions de Physique,1989:187
    [28]Phelps H R,Carol Harberg.TDA Confer proc,1994:103
    [29]Kuhlman G W,Rohde K A,Chakrabarti A K.Titanium'92 Science and Technology[C].Warrendale:TMS,1993:1371
    [30]J.Williams etal,Mater.Proc.Tchnol[J].2001,117:370-373
    [31]Y.Combres and B.Chapman.Mater.Tech.[J]1991,6:31-41
    [32]D.L.Bourell,H.J.McQueen,Thermal stability of rare-earth phase in high temperature titanium alloy,J.Appl.Mater.Shaping Technol[J].1987,15:53-57
    [33]H.J.McQueen,J.J.Jonas,in:R.J.Arsenault(Ed.),Treatise on Material Science and Technology,Plastic Deformation of Materials Vol.6,Acaemic Press,New York, 1975:393-493
    [34] H.J. McQueen, D.L. Bourell, in: A.K. Sachdev, J.D. Embury, (Eds.), Formability and Metallurgical Structure, TMS, Warrendale, PA, 1987:341-368
    [35] F. Dyment, C. M. Libarati, Thermal stability of rare-earth phase in high temperature titanium alloy, J. Mater. Sci[J]. 1968,3:349-354
    [36] H. Oikawa, M.X. Cui, in: H.J. McQueen, J.-P. Bailon, J. Dickson, J. Jonas, M.Akben (Eds.), Strength of Metals and Alloys, Vol. 1, ICSMA7, Pergamon Press,Oxford, 1986:601-606
    [37] H. Oikawa, in: S. Fujishiro, D. Eylon, T. Kishi, (Eds.), Metallurgy and Technology of Practical Titanium Alloys, TMS, Warrendale, PA, 1994:93-100
    [38] Y.V.R.K. Prasad, S. Sasidhara and Maps, ASM, Materials Park, OH,Hot Working Guide-A Compendium of Processing. 1997:459-461
    [39] LJ. Polmear, Light Alloys - Metallurgy of the Light Metals, Edward Arnold, London. 1981: 167-175
    [40] M.J. Donachie Jr., Titanium-A Technical Guide, ASM International, Metals Park OH, 1988: 353-365
    [41] D.F. Neal, Titanium '95 Science and Technology, Institute of Metals, London, 1996:2195-2204
    
    [42] P.vo,M.Jahazi,et al. Mater. Sci Eng A [J],2007,447:99-110
    [43] P.S.Bate,P.L.Blackwell,J.W.Brooks,in:P.Lacombe,R.Tricot,G.Beranger(Eds.),Sixt hWorldConferenceonTitanium,LesEditionsde,Physique,LesUlis,France, 1998:287-292
    [44] R.W.Evans,G.S.Clark,S.G.McKenzie,in:C.Teodosiu,J.L.Raphanel,F.Sidoroff(Eds.),MECAMAT'91 Large Plastic Deformations:Fundamenta Aspectsand Applicationsto Metal Forming, A.A.Balkema, Rotterdam, 1993, pp: 395-403
    [45] LuY, Li D., Ping D., Bi J., Ma Z., Microstructure of TiB whisker reinforced Ti matrix composite, Journal of Materials Science and Technology, 1997, 13:41-44
    [46] Ma Z.Y, Tjong S.C., Gen L., In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process, Scripta Materialia, 2000,42: 367-373
    [47] Ranganath S., Vijayakumar M., Subrahmanyam J., Combustion-assisted synthesis of Ti-TiB-TiC composite via the casting, Materials Science and Engineering A, 1992, A149: 253-257
    [48] Nagayama H., Ramaseshan R., Mabuchi H., Tsuda H., Matsui T.i, Morii K., Microstructure and mechanical properties of Ll:(Al, Cr)3Ti/TiB2+ Ti2AlC composites produced by reactive arc-melting, Materials Transactions(JIM), 2000, 41,(8):1064-1067
    [49]Soboyejo W.O.,Lederich R.J.,Sastry S.M.L.Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites,Acta Metallurgica et Materialia,1994,42(8):2579-2591
    [50]Lederich R.J.,Soboyejo W.O.,Srivatsan T.S.,Preparing damage-tolerant titanium-matrix composites,JOM,1994,46(11):68-71
    [51]Rangarajan S.,Aswath P.B.,Fatigue of in situ reinforced Ti一8.SA1-1B-1Si,Journal of Materials Research,1997,12(4):1102-1111
    [52]Fentman WP,Goosey RR.In:Jaffee RI,Promise IN E(eds).,The science technology and application of titanium,London:Pergamon Press,1970.987
    [53]Rrangarajan S.,Aswath P.B.,Soboyejo W.O.,Microsructure development and fracture of in-situ reinforced Ti-8.5A1-1B-1Si,Scripta Materialia[J],1996,35(2):239-245
    [54]Brindley P K.Met Trans[J],1992,(23A)2527-2531
    [55]Draper S L.Met Trans[J],1992(23A):2541-2545
    [56]Russ S M.Met Trans[J],1990(21A):1595-1599
    [57]张廷杰,曾泉浦,毛小南,张小明.颗粒增强MMCs中小粒子的强化作用.稀有金属材料与工程[J].1998,28(2):26-29
    [58]张廷杰,曾泉浦,毛小南,张小明,曾立英,戚玉莲TiC颗粒增强钛基复合材料的高温拉伸特性.稀有金属材料与工程[J].2001,30(2):35-38
    [59]马凤仓 热加工对原位自生钛基复合材料组织和力学性能的影响。上海交通大学博士论文,2006:47-55
    [60]吕维洁。原位合成TiC和TiB增强钛基复合材料的制备和性能研究。上海交通大学博士论文,2000
    [61]C M Landis.Stress concentrations in composites with interface slidinn,matrix stiffness and uneven fiber spacing using shear lag theory.International Journal of Solids and Structures[J].1999,36(28):4333-4361
    [62]Galvez F,Gonzalez C,Poza P,LLorca J.The effect of strain rate on the tensile deformation of Ti-6Al-4V/SiC composites.Script mater[J].2001,44:2667-2671
    [63]Vde Castro,T Lenuey,M A Monge.Discontinuously reinforced titanium matrix composites for fusion application.Journal of nuclear materials[J],2002,(307-311):191-695
    [64]Xiao Lin,Gu HaichenG,Kuang Zhenbang.Cycle Deformation Behavior of Zircaloy-4 at Different Temperatures[J].Acca Mecall Sinica,1995,8:219
    [65]彭倩,赵文金等.Zr-4合金板α相高温区轧制的织构演化.核动力工程[J].2003, (24)2:133-136
    [66]J.K.Chakravartty,S.Banerjee,Y.V.R.K.Prasad and M.K.Asundi,Hot working characteristics of Zr-2 in the temperature range of 650-950℃,Journal of nuclear Materials:1992,187:260-271
    [67]J.K.Chakravartty,R.Kapoor etal.Characterization of hot deformation behavior of Zr-1Nb-1Sn alloy.Journal of Nuclear Materials[J].2002,306:126-133
    [68]R.Kapoor,J.K.Chakravartty.Characterization of hot deformation behaviour of Zr-2.5Nb in β phase.Journal of Nuclear Materials[J].2007,362:75-86
    [69]J.K.Chakravartty,G.K.Dey,S.Banerjee.etal.Characterization of hot deformation behaviour of Zr-2.5Nb-O.5Cu using processing maps.Journal of Nuclear Materials[J]1995,218:247-255
    [70]J.K.Chakravartty,Optimization of Hot Workability and Control of Microstructure in Zirconium Alloys,PhD thesis Indian Institute of Science,Bangalore,1992.
    [71]T.Seshacharvulu.S.C.Medeiros.W.G.Frazier.Mater.Sci.Ene.A[J].2000,284184
    [72]T.Seshacharyulu,S.C.Medeiros,W.G.Frazier.Mater.Sci.Ene.A[J].2002,325:112
    [73]V.V.Balasubrahmanyam,Y.V.R.K.Prasad,Mater.Sci.Technol[J].2001,17:1222
    [74]V.V.Balasubrahmanvam,Y.V.R.K.Prasad,Mater.Sci Eng A[J].2002,336:150
    [75]J.K.Chakravartty,S.Banerjee,Y.V.R.K.Prasad,Mater Sci.Technol[J].1996,12:705.
    [76]79 J.K.Chakravarttv,Y.V.R.K.Prasad,M.K.Asundi.Metall Trans[J].1991,22A:829
    [77]80 J.K.Chakravartty,S.Banerjee,Y.V.R.K.Prasad.Scripta Metall.Mater[J].1992,26:75
    [78]R.Kapoor,J.K.Chakravartty.Journal of Nuclear Materials[J],2002,306:126-133
    [79]Zhou Bangxin.Chinese Journal of Nuclear Science and Engineering[J],1993,13(1):51-58
    [80]张建军,李中奎等。加工工艺对新锆合金性能的影响。稀有金属快报。2005(24),1:25-27
    [81]V.V.Balasubrahmanyam and Y.V.R.K.Prasad.Deformation behavior of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging.Materials Science and Engineering[J],2002,A336:150-158.
    [82]H.Oikawa,in:S.Fujishiro,D.Eylon,T.Kishi,(Eds.),Metallurgy and Technology of Practical Titanium Alloys,TMS,Warrendale,PA,1994,93-100
    [83] C.H.Park, Y.G.Ko,etal.High temperature deformation behavior of ELI grade Ti-6A1-4V alloy with martensite microstructure.Material Science Forum vols.2007,551-552.pp 365-372
    [84] H.J. McQueen, J.J. Jonas, in: R.J. Arsenault (Ed.), Treatise on Material Science and Technology, Plastic Deformation of Materials Vol. 6, Acaemic Press, New York, 1975, pp.393-493
    [85] H.J. McQueen, D.L. Bourell, in: A.K. Sachdev, J.D. Embury, (Eds.), Formability and Metallurgical Structure, TMS, Warrendale, PA, 1987,341-368
    [86] Miaoquan Li, Hongsi Pan etal. High temperature deformation behavior of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy. Material Processing Technology [J], 2007,183:71-76
    [87] P.Vo,M.Jahazi, S.Yue et al. Flow stress prediction during hot working of near-α titanium alloys. Materials Science and Engineering A.2007,447: 99-110
    [88] S.L. Semiatin, J.J. Jonas, Formability and workability of Metals-Plastic instability and flow localization, ASM, Metals Park, OH, 1984,2419-2424
    [89] F. Garofalo. An Empirical Relation Refining the Stress Dependence of Minimun Creep Rate in Metals[J]. Trans Metall Soc AIME. 1963,227(2):351-355
    [90] C. M. Sellars. The kinetics of softening processes during hot working of Austenite. Journal of Physics, 1985, B35:239-248
    [91] C. M. Sellars, W. J. McG Tegart. La Relation Entre la Resistance et la Structure Dans le Deformation a Chaud[J]. Mem Sci Rev Metall. 1966,63:731-746
    [92] Lenard J G. Modeling hot deformation of steels. Berlin: Springer-Veriag, 1989. 101-115
    [93] H. B. Mcshane, T. Sheppard. On the Elevated-temperature Constitutive Relationship and Structure of an Austenitic Stainless Steel [J]. J Mech Work Technol. 1984,9(2): 147-160
    [94] A. F. Castle, T. Sheppard. Hot-working Theory Applied to Extrusion of Some Aluminum Alloys[J]. Met Technol. 1976,10:454-464
    [95] J. J. Jonas, C. M. Sellars, W. J. McG. Tegart. Strength and Structure under Hot-working Conditions[J]. Int Metallurgical Reviews. 1969,14:1-24
    [96] W. A. Wong, J. J. Jonas. Aluminum Extrusion as a Thermally Activated Process[J]. Trans Metall Soc AIME. 1968,242(11):2271-2280
    [97] H. J. McQueen, S. Yue, N. D. Ryan, E. Fry. Hot Working Characteristics of Steels in Austenitic State[J]. J Mater Process Technol. 1995,53(l/2):293-310
    [98] F. R. Castro-Fernandez, C. M. Sellars, J. A. Whiteman. Change of Flow Stress and Microstructure during Hot Deformation of Al-1Mg-1Mn[J]. Mater Sci and Technol.1990,6(5):453-460
    [99]H.Shi,J.McLaren,C.M.Sellars,R.Shahani,R.Bolingbroke.Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys[J].Mater Sci and Technol.1997,13(3):210-216
    [100]黎文献,杨军军,肖于德.Al-Fe-V-Si合金高温变形热模拟[J].中南工业大学学报,2000,31(1):56-59
    [101]S.B.Davenport,N.J.Silk,C.N.Sparks,C.M.Sellars.Development of Constitutive Equations for Modeling of Hot Rolling[J].Mater Sci and Technol.2000,16(5):539-546
    [102]K.P.Rao,E.B.Hawbolt.Development of Constitutive Relationship Using Compressing Testing of a Medium Carbon Steel[J].AMSE J Engng Mater and Technol.1992,114(3):116-123
    [103]D.Hardwick,C.M.Sellars,W.J.McG.Tegart.The Occurrence of Recrystallization during High-temperature Creep[J].J Inst Metals.1961-62,90:17-1
    [104]E.S.Puchi,M.H.Staia.High-temperature Deformation of Commercial-puity Aluminum[J].Metall and Mater Trans A.1998,29A(9):2345-2359
    [105]王瑜,林栋梁,Chi.C.Law.TiAl合金高温拉伸流变应力与Zener-Hollomom 因子的关系函数[J].上海交通大学学报.2000,34(3):338-341
    [106]何宜柱,陈大宏,雷廷权,齐藤良行.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报.2000,12(1):26-30
    [107]C.Zener,J.H.Hollomon.Effect of Strain Rate upon the Plastic Flow of Steel[J].J Appl Phys.1944,15(1):22-32
    [108]H.Takuda,H.Fujimoto,N.Hatta.Modeling on Flow Stress of Mg-Al-Zn Alloy at Elevated Temperatures[J].J.Mater Process Technol..1998,80:513-516
    [109]R.N.Wright,M.S.Paulson.Constitutive Equation Development for High Strain Deformation Processing of Aluminum Alloys[J].J.Mater Technol.1998,80-81:556-559
    [110]C.A.C.Imbert,H.J.McQeen.Dynamic Recrystallisation of D2 and W1 Tool Steels[J].Mater Sci and Technol.2000,16(5):532-538
    [111]T.Sheppard,A.Jackson.Constitutive Equation for Use in Predicyion of Flow Stress during Extrusion of Aluminum Alloys[J].Mater Sci and Technol.1997,13(3):203-209
    [112]P.D.Hodgson.Microstructure Modelling for Property Prediction and Control[J].J.Mater Process Technol.1996,60:27-33
    [113]T.Seshacharyulu,S.C.Medeiros,W.G.Frazier et al.Microstructural mechanism during hot working of commercial grade Ti-6A1-4V with lamellar starting structure. Mater Sci Eng A325:112-125
    [114] V.V.Balasubrahmanyam, Y.V.R.K.Prasad. Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging. Mater Sci Eng A325:150-158
    [115] J.K. Chakravartty, S.Banerjee, Y.V.R.K. Prasad, Mater. Sci. Technol.1996, 12:705-709
    [116] J.K. Chakravartty, GK. Dey, S. Banerjee, Y.V.R.K. Prasad.J. Nucl. Mater. 1995, 218:247-252
    
    [117] Y.Liu. T.N.Baker, Mater.Sci.Eng. 1996, A205:117-126
    [118] I.Weiss, S.L.Semiatin, Mater.Sci.Eng, 1999, A263:243-256
    [119] I. Philippart, H. J. Rack. High Temperature Dynamic Yielding in Metastable Ti-6.8Mo-4.5F-1.5Al[J]. Mater Sci Eng. 1998,243A: 196-200
    [120] O. D. Sherby, R. D. Caiigiuri, E. S. Kayaii, R. A. White, in: J. J. Burke, R. Mahrabian. Advances in Metal Processing[M]. New York: Plenum Press, 1981: 133-171
    [121] D. G Robertson, H.B. Mcshane. Isothermal Hot Deformation Behaviour of Metastable β Titanium Alloy Ti-10V-2Fe-3Al[J]. Materials Science and Technology. 1997,13(7):575-583
    [122] R. Srinivasan, I. Weiss, D. Eylon, R.R. Boyer, D.A. Koss(Eds.). Beta Titanium Alloys in the 1990s[C]. Titanium '92: Science and Technology. TMS, Warrendale, PA. 1993:283-295
    [123] M. Long, H. J. Rack. High Temperature Discontinuous Yielding in β-phase Ti3Al(Nb, Mo) Alloys[A]. P. A. Blenkinsop, W. J. Evans, H. M. Flower. Titanium 1995 Science and Technology[C]. The Institute of Materials. London. 1996:316-323
    [124] MILLERR. M , BIEL ER T R , SEMIATIN S L. Flow softening during hot working of Ti26A124V wit h a lamellar colony microst ructure[J] . Scripta Mater, 1999 ,40 (12) :1387-1393.
    [125] WEISS I , SEMIATIN S L. Thermo2mechanical processing of alpha titanium alloys - an overview [J]. Mater Sci Eng, 1999 ,A263 : 243 - 256.
    [126] WEISS I , SEMIATIN S L. Thermo2mechanical processing of beta titanium alloys - an overview[J]. Mater Sci Eng, 1998 ,A243 :46 - 65.
    [127] SESHACHARYULU T , MEDEIROS S C , MORGAN J T , etal . Hot deformation mechanisms in ELI grade Ti26Al24V [J] .Scripta Mater, 1999,41 (3) :283 - 288.
    [128]SESHACHARYULU T,MEDEIROS S C,MORGAN J T,etal.Hot deformation and micro2st ructural damage mechanisms in ext ra2low interstitial (ELI)grade Ti26Al24V[J].Mater Sci Eng,2000,A279:289-299.
    [129]SESHACHARYULU T,MEDEIROS S C,FRAZIER W G,etal.Hot working of commercial Ti26Al24V wit h an equiaxed α 2 β microst ructure:materials modeling consideration[J].Mate SciEng,2000,A284:184-194.
    [130]PRASAD Y V R K,SESHACHARYULU T,MEDEIROS S C,et al.Influence of oxygen content on t he forging response of equiaxed(α+β)preform of Ti26Al24V:commercial vs ELI grade[J].J Mat Proc Tech,2001,108:320-327.
    [131]SESHACHARYULU T,MEDEIROS S C,FRAZIER W G,etal.Microst ructural mechanisms during hot working of commercial grade Ti26Al24V wit h lamellar starting st ructure[J].MaterSci Eng,2002,A325:112-125.
    [132]BRUN M,ANOSHKIN N,SHAKHANOVA G.Physical processesand regimes of t hermo2mechanical processing cont rolling development of regulated st ructure in t he α+β titanium alloys[J].MaterSci Eng,1998,A243:77-81.
    [133]SEMIATIN S L,BIEL ER T R.The effect of alpha platelet thickness on plastic flow during hot working of Ti26Al24V wit h at ransformed microst ructure[J].Acta Mater,2001,49:3565-3573.
    [134]SEMIATIN S L,SOPER J C,SU KONNIK I M.Short2time beta grain growth kinetics for a conventional titanium alloy[J].Acta Mater,1996,44(5):1979-1986.
    [135]IVASISHIN O M,SEMIATIN S L,MARKOVSKY P E,et al.Grain growt h and texture evolution in Ti26Al24V during beta annealing under continuous heating conditions[J].Mater Sci Eng,2002,A337:88-96.
    [136]IVASISHIN O M,SHEVCHEN KO S V,SEMIATIN S L.Effect of crystallographic texture on t he lsot hermal beta graingrow thkinetics of Ti26Al24V[J].Mater Sci Eng,2002,A332:343-350.
    [137]孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究[D].北京:清华大学博士学位论文,1999.
    [138]李萍,薛克敏,吕炎,等.热变形参数对Ti21523合金显微组织的影响及预测[J].金属学报,2002,38(2):145-148.
    [139]鲍利索娃等著,陈石卿译.钛合金金相学.北京,国防工业出版社,1986,pp.69-81
    [140]T.Seshacharyulu,S.C.Medeiros,J.T.Morgan,J.C.Malas,W.G.Frazier,Y.V.R.K.Prasad.Hot deformation and microstructural damage mechanisms in extra-low interstitial(ELI)grade Ti-6Al-4V.Materials Science and Engineering,2000,A279:289-299
    [141]H.Margolin,P.Cohen.Evolution of the Equiaxed Morphology of Phase in Ti-6Al-4V.Titanium '80:Science and technology.H.Kimura,O.Izumi.Eds.TMS.Warrendale,PA,1980:1555-1161
    [142]I.Wess,G.E.Welsch,F.H.Froes,D.Wylon.Mechanisms of Microstructure Refine Ment in Ti-6Al-4V.International Titanium Conference 5.G.Luetjering,U.Z wicker,W.Bunk eds.Titanium Science and Technology.Oberursel,Germany:Deutsche Gesellschaft Fur Metallkunde E.V,1985:1503-1510
    [143]Andres C,Gysler A,Luetjering G.In:Froes F H,Caplan I eds.Titanium'92Science and Technology[C].Warrendale:TMS,1993:31
    [144]Mill W H,Chen R T,Starke E A.Metall Trans A[J],1987(18A):1451
    [145]Luetjering G,Albrecht J,Gysler A.In:Froes F H,Caplan I eds.Titanium'92Science and Technology[C].Warrendale:TMS,1993:163
    [146]Chao W,Jones J W,Allison J E et al.in:Lacomb P,Tricot R,Beranger G,Proc of sixth world conference on Titanium[C].Germany:Les Editions de Physique,1989:187
    [147]J.Weertman.Theoy of Steady-State Creep Based on Dislocation Climb[J].J.Appl.Phys.1955,26(10):1213-1217
    [148]J.Weertman.Steady-State Creep through Dislocation Climb[J].J.Appl.Phys.1957,28(3):362-364
    [149]R.W.Christy.Theory of Creep Limited by Self-Diffusion[J].J.Appl.Phys.1959,30(5):760-764
    [150]J.K.Chakravartty,S.Banerjee,Y.V.R.K.Prasad etal.Hot-working characteristics of Zircaloy-2 in the temperature range of 650-950℃.Journal of Nuclear Materials,1992,187:260-27I
    [151]石德柯.材料科学基础.机械工业出版社.1999:264
    [152]J.K.Chakravartty,R.Kapoor,S.Banerjee etal.Characterization of hot deformation behavior of Zr-1Nb-1Sn alloy[J].Jounal of nuclear materials,2007,362:75-86
    [153]Y.V.R.K.Prasad.Recent advances in the Science of Mechanical Processing[J].Indian.J.Technol.1990,28:435-451
    [154]V.V.Kutumba Rao,T.Rajagopalachary:Recent Developments in.Modeling the Hot Working Behavior of Metallic Materials[J].Bull.Mater.Sci.1996,19:677-698
    [155]周义刚,曾卫东,俞汉清等。热加工图的研究进展与应用[J]。稀有金属材 料与工程,2005,10(34)s:715-719
    [156]黄光胜,汪凌云,陈华等.2618铝合金的热变形和加工图[J].中国有色金属学报,2005,15(5):763-767
    [157]J.J.Jonas,C.M.Sellars and W.J.McG.Tegart.Strength and Structure Under Hot Working conditions[J].Metall.Rev.130.1969,14(1):1-24
    [158]P.Dadras and J.F.Thomas.Jr.Characterization and Modeling for Forging Deformation of Ti-6Al-2Sn-4Zr-2Mo-0.1Si[J].Metall.Trans.A.1981,12:1867-1873
    [159]T.Sakai and J.J.Jonas.Dynamic Recrystallization:Mechanical and Microstructural Considerations[J].Acta Metall.1984,32:189-209
    [160]H.J.Frost,M.F.Ashby.Deformation Mechanism Maps:The Plasticity and Creep of Metals and Ceramics[M].New York.Pergamon Press.1982:26
    [161]R.Raj.Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes[J].Metall.Trans.1981,12A:1089-1097
    [162]Y.V.R.K.Prasad,H.L.Gegel,S.M.Doraivelu,J.C.Malas,J.T.Morgan,K.A.Lark,D.R.Barker.Modelling of Dynamic Material Behaviour in Hot Deformation:Forging of Ti-6242[J].Metall.Trans.1984,15A:1883-1892
    [163]H.L.Gegel.Material Behavior Modelling:An Overview.American Society for Metals[J].Proceedings of Symposium on Experimental Verification of Process Model.Metals Congress.Cincinnati.Oh.1981,21-23(9):3-32
    [164]H.Ziegler,Progress in Solid Mechanics[M].I.N.Sneddon,R.Hill eds.New York,John Wiley & Sons.Press.1965,4:91-193
    [165]P.E.Wellstead.Introduction to Physical Systems Modeling[M].London,Academic Press.1979
    [166]R.C.Hillbom,Chaos and Nonlinear Dynamics:An Introduction for Scientists and Engineers[M].New York and Oxford,Oxford University Press.1994
    [167]S.L.Semiatin,G.D.Lahoti.Deformation and Unstable Flow in Hot.Forging of Ti-6Al-2Sn-4Zr-JMo-0.1Si[J].Metall Trans.1981,12A(10):1705-1717
    [168]G.E.Dieter.Evaluation of workability.Metals Handbook[M].9~(th)Edition.Metals Park.American Society of Metals,OH.1988,14:363-372
    [169]S.L.Semiatin,G.D.Lahoti,The Occurrence of Shear Bands Inisothermal,Hot Forging[J],Metall.Trans.1982,A13:275-288.
    [170]P.K.Sagar,D.Banerjee,Y.V.R.K.Prasad.Unstable Flow during Hot Deformation of Ti-24Al-20Nb Alloy[J].Mater Sci Tech.1997,13(9):755-760
    [171]Y.V.R.K.Prasad.Recent Advances in the Science of Mechanical Processing[J].Indian J Tech.1990,28:435-451
    [185] H. L. Gegel, J. C. Malas, S. M. Doraielu, et al. Metals Handbook[M], Vol. 14. OH: ASM, Metals Parkm. 1988:417
    [186] S. V. S. Narayana Murty, B. N. Rao. Reinvestigation of Dynamic Materials Model Analysis of 99.94% Purity Aluminium[J]. Mater Sci Tech. 2002,18(5):571-574
    [187] S. V. S. Narayana Murty, B. N. Rao. On the Development of Instability Criteria during Hotworking with Reference to IN718[J]. Mater Sci Engi. 1998, A254:76-82
    [188] S. V. S. Narayana Murty, B. N. Rao, B. P. Kashyap. Development and Validation of a processing Map for AFNOR 7020 Aluminium Alloy [J]. Mater Sci Tceh. 2004,20(6):772-782
    [189] F. Montheillet, J. J. Jonas, K. W. Neale. Modeling of Dynamic Material Behaviour: A Critical Evaluation of the Dissipator Power Co-Content Approach [J]. Metall Mater Trans. 1996,27A:232-235
    [190] H. L. Chen. Intrinsic Workability and Metal Forming Analysis[D]. University of Missouri-Rolla. 1990:10-12
    [191] B. Bozzini, E.Cerri. Numerical Reliability of Hot Working Processing Maps [J]. Mater Sci Engi. 2002, A328:344-347
    [192] P. S. Robi, U. S. Dixit. Application of Neural Networks in Generating Processing Map for Hot Working[J]. J Mater Process Tech. 2003,142(11):289-294
    [193] N. Ravichandran, Y. V. R. K. Prasad. Influence of Oxygen on Dynamic Recrystallization During Hot Working of Polycrystalline Copper[J]. Mater Sci Engi. 1992,A156:195-204
    
    [194] 俞汉清,陈金德.金属塑性成形原理[M].机械工业出版社.1999:38
    [195] S. Kobayashi, C. H. Lee, Y. Saida, et al. Technical Report AFML-TR-70-90[R]. Berkeley. CA. USA: University of Califirnia. 1970
    [196] B. V. Radhankrishna, Y. R. Mahajan, Y. V. R. K. Prasad. Effect of Volume Fraction of SiCρ Reinforcement on the Processing Maps for 2124 Al Matrix Composites[J]. Metall Mater Trans. 2000,31A:629-639
    [197] D. Padmavardhani, Y. V. R. K. Prasad. Characterization of Hot Deformation Behavior of Brasses Using Processing Maps Part I: α Brass[J]. Metallurgical Transactions. 1991,22 A:2985-2992
    [198] D. Padmavardhani, Y. V. R. K. Prasad. Characterization of Hot Deformation Behavior of Brasses Using Processing Maps Part II: β Brass and α-β Brass[J]. Metallurgical Transactions. 1991, 22A: 2993-3001
    [199] O. Sivakesavam. Effect of Processing History and Initial Microstructure on the Hot Working Behavior of Magnesium,Mg-Zn-Mn,Mg-Li-Al and Mg-Li-Al-Zr alloys:Characterization with Processing Maps[D].Bangalore,India:Indian Institute of Science.1994
    [200]S.Venugopal,S.L.Mannan,Y.V.R.K.Prasad.Optimization of Hot Workability in Stainless Steel Type AISI 304L Using Processing Maps[J].Metall Trans.1992,23A:3093-3103
    [201]S.V.S.Narayana Murty and B.Nageswara Rao,Journal of Materials Processing Technology,2000,104:103-109
    [202]P.Wanjara,M.Jahazi,etal.Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834.Material Science and Engineering A,2006,416:300-311
    [203]周军.Ti-17钛合金片状组织球化规律研究[D].西北工业大学硕士论文.2005:34-41
    [204]J.K.Chakravartty,R.Kapoor a,S.Banerjee,Y.V.R.K.Prasad Characterization of hot deformation behavior of Zr-1Nb-1Sn alloy,2007,362:75-86
    [205]Y.Me-Bar,D.Shechtman.On the Adiabatic Shear of Ti-6Al-4V Ballistic.Targets[J].Mater Sci Engi.1983,58:181-188
    [206]胡八一,董庆东,韩长生,张海平.TC4钛合金及40Cr钢破片中绝热剪切带TFM分析[J].Chinese Journal of High pressure Physics.1996,(3):37-42
    [207]谭成文,王富耻,李树奎,苏铁建.绝热剪切带内微孔洞演化规律研究[J].兵工学报.2004,25(2):197-199
    [208]李强,马常祥,赖祖涵.30MnCrBiMoB低合金钢绝热剪切带的形成机制与微结构[J1.金属学报.1995,31(11):505-510
    [209]J.K.Chakravartty,S.Banerjee,Y.V.R.K.Prasad and M.K.Asundi,Hot working characteristics of Zr-2 in the temperature range of 650-950℃,Journal of nuclear Materials:1992,187:260-271
    [210]N.Ravichandran,Y.V.R.K.Prasad.Influence of Oxygen on Dynamic Recrystallization During Hot Working of Polycrystalline Copper[J].Mater Sci Engi.1992,A156:195-204
    [211]Croan L S,Rizzitana F J.WAL report 401/268,watertown Arsend Laboratories,Mass,1958.
    [212]Sheegarev A S,Glyaooev A P.Research on high strength alloys and refined grain,Academy of Science Press,1963,142
    [213]王金友等.航空用钛合金.上海科学技术出版社,1985:208-221
    [214]Genlen,P.C,The Science,Technology and Application of Titanium,Eds.Jaffee,R.L,et aL.,Pergaman Press,London,1970:349.
    [215]张少卿.TC9合金在500℃热暴露期间微观组织的变化.金属学报,1983(19),6:511-514
    [216]段锐,蔡建明,李臻熙等.初生α相含量对近α钛合金TG6拉伸性能和热稳定性的影响.航空材料学报.2007(27),3:17-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700