钴铁氧体的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钴铁氧体在可见光区具有较大的磁光克尔效应,克服了目前市场上商用磁光存储材料非晶态稀土-过渡金属在短波长区的克尔旋转角小、抗氧化能力较差的缺点,再加上其温和的饱和磁化场、较大的矫顽力使其成为极具竞争力的新一代高密度磁光记录材料。但如何在保持钴铁氧体饱和磁化强度适当高的同时进一步提高其矫顽力,以期获得适合高密度信息存储水平的磁光读写特性,是目前的研究热点。
     本研究采用低热固相-溶胶凝胶法、低热固相-自蔓延燃烧法制备出了高磁性能的钴铁氧体磁性材料。本文研究了改进后的耦合制备方法制取钴铁氧体的适宜工艺条件,并探讨了不同工艺条件对产物晶体结构和性能的影响机理。同时借助于TG-DSC、XRD、SEM和VSM等技术手段,对钴铁氧体的制备过程进行了跟踪检测,并对其微观结构、形貌和磁性能进行了表征,初步认识了产物的微观结构与其磁性能间的关系。
     研究结果表明:制备工艺对产物的结构及磁性能影响很大;在本实验条件下,采用低热固相-溶胶凝胶法制备钴铁氧体的适宜工艺条件是钴铁比为1:2,柠檬酸配比为3,煅烧温度为700℃,煅烧时间为2h;采用低热固相-自蔓延燃烧法制备钴铁氧体的适宜工艺条件是钴铁比为1:2,柠檬酸配比为2,煅烧温度为600℃,煅烧时间为1h;在适宜工艺条件下,两种制备方法均可制得粒径均匀约40nm、物相纯净单一、结晶度高的纳米钴铁氧体,并在较大程度上改善其磁性能使其更适合于磁光记录。随着钴含量的增加产物的晶化程度逐渐提高,所以其粒径逐渐减小;随着柠檬酸用量增加,在反应过程中在反应物的液固界面之上的吸附作用越来越强促使所形成的液膜对于超微晶粒之间的相互接触以及积聚过程起到了很大的阻碍作用,并在颗粒间产生排斥力从而能抑制团聚体的形成,减小产物的晶粒尺寸;随着乙二醇的用量增加,它能更持久地固定聚合物中钴、铁离子的位置并且其分解气体产生压力会推动反应聚合,致使产品粒径趋于均匀且超细小化。所得产物的晶体粒度直接影响着其磁性能,相比较而言,柠檬酸适量增大时产物矫顽力提高显著,而乙二醇的加入虽然能有效地减轻颗粒间的软团聚细化颗粒,从而明显增大产物的矩形比在整体上改善其磁性能,却在一定程度上抑制了矫顽力的提高。本研究为制备高性能钴铁氧体磁性材料提供了一些有益的基础数据,具有很好的理论意义和可观的应用前景。
     本文的创新之处主要在于:1、首次采用新的耦合法低热固相-溶胶凝胶法、低热固相-自蔓延燃烧法对钴铁氧体的制备工艺进行了研究并得出了适宜的工艺条件,并初步认识了不同制备工艺条件对产物结构、生成过程以及磁性能的影响机理。2、探索了分散剂乙二醇对产品性能的影响,发现随着乙二醇的用量增加,它能更持久地固定聚合物中钴、铁离子的位置并且其分解气体产生压力会推动反应聚合,并有效地减轻颗粒间的软团聚致使产品粒径趋于均匀且超细小化,从而明显增大产物的矩形比在整体上改善其磁性能。
Cobalt ferrite has a large magneto-optical Kerr effect in the visible region so that it overcomes the shortcomings of small Kerr rotation angle and less antioxidant capacity, which amorphous rare earth-transition metal of commercial magneto-optical storage materials in the current market has in the short wavelength region. In addition, the cobalt ferrite with a moderate saturation magnetization field and the larger coercivity become very competitive next-generation high-density magneto-optical recording materials. However, at present the current research focus is how to enhance its coercivity further while proper saturation magnetization of cobalt ferrite is maintained, in order to obtain magneto-optical read-write characteristics suitable for high density information storage levels.
     In this study, cobalt ferrite as magnetic materials of high magnetic properties is prepared by low-heating solid-state sol-gel method and low-heating solid-state self-propagating combustion method respectively. This paper studies the appropriate process conditions of improved coupled preparation method to prepare cobalt ferrite, and the effect mechanism of different process conditions on the crystal structure and properties of the product is discussed. At the same time by means of TG-DSC, XRD, SEM and VSM technical means, the preparation of cobalt ferrite is tracked and detected, and its microstructure, morphology and magnetic properties are characterized further into preliminarily understanding the relationship between their microstructures and magnetic properties of the products.
     The study results show that: preparation process has a great influence on the structure and magnetic properties of the product. Under the experimental conditions, the optimum conditions of cobalt ferrite prepared by low-heating solid-state sol-gel method are cobalt-iron ratio 1:2, citric acid ratio 3, calcination temperature 700℃, calcination time 2h. The optimum conditions of cobalt ferrite prepared by low-heating solid-state self-propagating combustion method are cobalt-iron ratio 1:2, citric acid ratio 2, calcination temperature 600℃, calcination time 1h. Under optimum conditions, the two preparation methods can obtain uniform size (about 40nm), single-phase pure, nano-crystalline cobalt ferrite of high crystallinity and improve its magnetic properties to a greater extent to make it more suitable for magnetic optical recording.
     With the increase of cobalt content, the degree of crystallization of the product increases gradually, so the particle size decreases. With the increase of citric acid, the film, which is formed due to the adsorption growing on the liquid-solid interface of reactants during the reaction, plays a certain role in impeding ultrafine grains contacting and the accumulation process and generats repulsive force between particles. Therefore, it can inhibit the formation of aggregates and reduce the grain size of the product. With the increase of ethylene glycol, it fixes the position of cobalt and iron ions in the polymer more durably and the pressure of the decomposition gases will promote the polymerization reaction, resulting in the particle size of products ultra small and uniform. Crystal size of the products obtained directly affects their magnetic properties. Comparatively speaking, with the increase of citric acid coercivity of the product is increased significantly. However, the addition of ethylene glycol can effectively reduce soft agglomeration of particles to refine the grain, which significantly increases the squareness ratio of the product and improves its overall magnetic properties but to some extent inhibits the increase of coercivity. This paper provides some useful basic data for the preparation of high-performance cobalt ferrite magnetic materials, which has good theoretical and substantial applications.
     In this paper, the innovation is that the preparations of cobalt ferrite are studied by low-heating solid-state sol-gel method and low-heating solid-state self-propagating combustion method respectively for the first time and that optimum conditions have been found out further into preliminarily understanding the effect mechanisms of different process conditions on the crystal structure, generation process and magnetic properties of the product. The impact of ethylene glycol as the dispersant on performances of the product is explored. And it is found out that with the increase of ethylene glycol, it fixes the position of cobalt and iron ions in the polymer more durably and the pressure of the decomposition gases will promote the polymerization reaction and effectively reduce soft agglomeration of particles, resulting in the particle size of products ultra small and uniform, which significantly increases the squareness ratio of the product and improves its overall magnetic properties.
引文
[1]陈俊明.湿法制备铁氧体磁粉的新途径[M].北京:国防工业出版社,2001:2.
    [2]杨辉,江仲华,葛曼珍.超细粉技术发展动态[J].材料科学与工程,1990,8(4):29.
    [3]杨正.磁记录物理[M].兰州:兰州大学出版社,1986:1-4,239-352.
    [4] Lee H J, Jeong S Y, Cho C R, et al. Study of diluted magnetic semiconductor: Co-doped ZnO [J]. Appl Phys Lett, 2002, 81 (21): 4020-4022.
    [5]姜继森,高濂,杨燮龙等.Zn铁氧体纳米晶的磁性及微结构研究[J].功能材料,2000,31:593.
    [6] Seung W L, Hee J K, Suhk K O. Effect of jump length of electrios on the physical properties of Mn-doped Co0.6Zn0.5Fe2O4 ferrite [J]. Phys Stat So1 (a), 2002, 189(3): 889-892.
    [7]邹路,汪雪,黄靖云等.硅衬底上Zn1-xMgxO薄膜的结构与光学性质[J].物理学报,2003,52(4):935.
    [8]方泽波,龚恒翔,刘雪芹等.退火对多晶ZnO薄膜结构与发光特性的影响[J].物理学报,2003,52(7):1748-1751.
    [9]杨秀健,施朝淑,许小亮.纳米ZnO和ZnO:Eu3+的表面效应及发光特性[J].物理学报,2002,51(12) :2871-2874.
    [10]吕敏峰,崔作林,张志锟.氧化锌薄膜溶胶-凝胶分析[J].功能材料,2003,34(4):433-435.
    [11]奥汉德利.现代磁性材料原理和应用[M].北京:化学化工出版社,1996:l75-l94,2l4-23l.
    [12]张有纲.磁性材料[M].成都:成都电讯工程学院出版社,1988:28-47.
    [13]程福祥,邝峻峰,廖春生等.CoFe2-xRExO4(RE=Tb, Dy)纳米晶薄膜的化学合成及磁性[J].高等化学学报,1999,20(4):503-506.
    [14]余生明.磁性应用技术的新近发展[J].磁性材料及器件,1999,30(2):10-18.
    [15] Isabel G, MLice C M, Silva P M I, et al. Effect of the partial replacement of Fe by Ni and/or Mn on the eletrocatal activity for oxygen evolution of the CoFe2O4 spinel oxide electrode [J]. Electrochimica Acta, 2002, 47(27): 4307-4314.
    [16] Tihay F, Pourroy G, Richard-plouet M, et al. Effect of fischer-tropsch synthesis on the microstructrue of Fe-Co-based metal/spinel composite materials [J]. Applied Catalysis A: General, 2001, 206(1): 29-42.
    [17] Jurca I S, Viart N, Meny C, et al. Structural study of CoFe2/CoFe2O4 multilayers [J]. Surface Science, 2003, 529(1-2): 215–222.
    [18] Pillai V, Shah D O. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil mieroenulsions [J]. J Magnet Magnet Mater, 1996, 163(1-2): 243-248.
    [19] El-Saadawy M, Barakat M M. Effect of jump length of electrios on the physical properties ofMn-doped Co0.6Zn0.4Fe2O4 ferrite [J]. Journal of Magnetism and Magnetic Materials. 2000, 213(3): 309-311.
    [20] Gu B X, Magnetic properties and magneto-optical effect of Co0.5Fe2.5O4 nanostructured film [J]. Applied physics letters, 2003, 82 (21): 3707-3709.
    [21] Xiao S H, Jiang W F, Li L Y, et al. Low temperature auto combustion synthesis and magnetic properties of cobalt ferrite nanopowder [J]. Materials Chemistry and Physics, 2007, 106: 82-287.
    [22] Maaz K, Mumtaz A, Hasanain S K, et al. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route [J]. Journal of Magnetism and Magnetic Materials, 2007, 308: 289-295.
    [23] Zhao D, Wu X, Guan H, et al. Study on super critical hydrothermal synthesis of CoFe2O4 nanoparticles [J]. Journal of Supercritical Fluids, 2007, 42: 226-233.
    [24] Chinnasamy C N, Jeyadevan B, Perales-Perez O, et a1. Growth dominant Co-precipitation process to achieve high coercivity at room temperature in CoFe2 O4 [J].IEEE Trans Magn, 2002, 38: 2640-2642.
    [25] Ammar S, Helfen A, Jouini N, et a1. Magnetic properties of unrefined cobalt ferrite particles synthesized by hydrolysis in a polyol medium [J]. J Mater Chem, 2001, 11: 186-192.
    [26] Giri A K, Kirkpatrick E M, Moongkhamklang P, et a1. Photomagnetism and structure in cobalt ferrite nanoparticles [J]. App1 Phys Lett, 2002, 80(13): 2341-2343.
    [27] Zheng H, Wang J, Lofland S E, et a1. Multiferroic BaTiO3-CoFe2O4 nanostructures [J]. Science, 2004, 303(5658): 661-663.
    [28] Zheng H, Straub F, Zhan Q, et a1. Self-assembled growth of BiFeO3-CoFe2O4 nanostructures [J]. Adv Mater., 2006, 18: 2747-2813.
    [29] Gul I H, Abbasi A Z, Amin F, et a1. Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method [J]. J Magn Magn Mater, 2007, 311: 494-499.
    [30] Suzuki K, Namikawa T, Yamazaki T. Preparation of zinc- and aluminum- substituted cobalt-ferrite thin films and their faraday rotation [J]. Jpn J Appl Phys, 1988, 27: 361-365.
    [31] Bouet L, Tailhades P, Rousset A. Relations between magneto-optical properties and reactivity in cobalt-manganese ferrite thin films and powders [J]. J Magn Magn Mater, 1996, 153(3): 389-396.
    [32]徐志刚,程福祥,周彪,等.CoFe2O4纳米材料的燃烧法合成及磁性研究[J].科学通报,2000,9(17):1837-1842.
    [33] Kumazawa H, Oki K, Choh M, et al. Hydrothermal synthesis of ultrafine ferrite particles [J]. Chem Eng Comm, 1992. 11(5): 25-33.
    [34] Lee J G, Kim C S, Lee H M, et a1. Magnetic properties of CoFe2O4 powers and thin films by a sol-gel method [J]. J Magn Mater, 1998, 177(2): 900-902.
    [35] Kim S J, Jeong K H, Kim C S. Crystallographic and Magnetic Properties of CoAl0.2Fe1.8O4 Thin Films Prepared by a Sol-Gel Method [J]. IEEE Trans Magn, 2002, 38(5): 2628-2630.
    [36] Terzzoli M C, Duhalde S, Jacobo S, et al. High perpendicular coercive field of CoFe2O4 thin films depositded by PLD [J]. Journal of Alloys and Compounds, 2004, 369(1-2): 209-212.properties of Mn-Zn ferrites [J]. Phys Stat Sol (a), 2002, 193(1): 86-93.
    [39]周寿增,董清飞.超强永磁体-稀土铁系永磁材料(第二版)[M].北京:冶金工业出版社,2004:17-32.
    [40]何开元.精密合金材料学(第一版) [M].北京,冶金工业出版社,1991:621.
    [41] Dennis K W, Laabs F C, Cook B A, et al. Observations of multi-phase microstructures in R2(Fe1-xCo)14B where R=Nd or Dy [J]. J Magn Magn Mater, 2001, 231(1): 33-37.
    [42] Sagawa M, Fujimura S, Yamamoto H Y, et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds [J]. IEEE Transactions on Magnetics, 1984, 20(5): 1584-1589.
    [43] Szotek Z, Temmerman W M, K?dderitzsch D, et al. Electronic structures of normal and inverse spinel ferrites from first principles [J]. Phys Rev B, 2006, 74(17): 31-44.
    [44] Liu C, Zou B S, Rondinone A J, et al. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings [J]. J Am Chem Soc, 2000, 122(26): 6263-6267.
    [45] Siegmund Fr?hlich, Dirk Sewing. The batenus process for recycling mixed battery waste [J]. Power Sources, 1995, 57(1-2): 27-30.
    [46] Hanulik J, Equey J F. Process for recycling solids, powders and sludges contaminated with mercury [P]. WO 93-20593, 1993.
    [47] Nakano K, Tomohara, Song J M, et al. Mn-Zn ferrite thin films fabricated on crystalline substrates using laser ablation technique [J]. Joural of Applied Physics, 2000, 87(9): 6217-6219.
    [48] Tenorio J A S, De Oliveira D C, Chaves A P. Carbon-zinc batteries treatment by ore processing methods [J]. Minerals Metals and Materials Society, 1999, 2: 1153-1160.
    [49] Chien Y T, Ko Y C. Dependence of magnetic properties of Mn-Zn ferrites on the degree of calcination [J]. J Materials Science, 1991, 26(21): 5859-5864.
    [50]兰中文,余忠,王京梅等.工艺条件对MnZn功率铁氧体性能的影响[J].功能材料,2000,31(5):486-487.
    [51] Andrei P, Caltun O F, Papusoi C, et al. Losses and magnetic properties of Bi2O3 doped MnZn ferrites [J]. Journal of Magnetism and Magnetic Materials, 1999, 196-197: 362-364.
    [52] Amarendra K, Abhishek K, Singh T C, et al. High performance Ni-substituted Mn-Zn ferrites processed by soft chemical technique [J]. Journal of Magnetism and Magterials, 2004, 281: 276-280.
    [53]谭维,王长振.高磁导率锰锌铁氧体材料研究现状[J].中国锰业,2002,20(1):33-36.
    [54]李伯刚,尹光福.制备软磁锰锌铁氧体粉的共沉淀条件的热力学分析[J].稀有金属,1999,23(6):421-424.
    [55]姚礼华.氧化物法制Mn-Zn铁氧体颗粒料[J].磁性材料及器件,1999,30(2):39-43.
    [56]古映莹,桑商斌.软磁铁氧体纳米超微粉及其热动力学性质的研究进展[J].磁性材料及器件,1999,30(4):51-55.
    [57]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001:194-227.
    [58] Boldyrev V V. Reactivity of solids: past, present and future [J]. Federation of European Biochemical Societies, 1996, 91(1): 111-236.
    [59]傅正义,袁润章.自蔓延高温合成新技术[J].武汉工业大学学报,1991,13(3):28.
    [60]殷声.燃烧合成[M].北京:冶金工业出版社,1999:1-7.
    [61] Avakyan P B, Nersisyan E L, Nersesyan M D, et a1. Self-propagating high-temperature synthesis of manganese-zinc ferrite [J]. Int J Self-Propag High-Temp Synth, 1995, 4(1): 79-83.
    [62] Avakyan P B, Nersisyan E L, Nezsesyan M D, et a1. Properties of manganese-zinc ferrite under the condition of thermal treatment [J]. Int J Self-Propag High-Temp Synth, 1996, 5(3): 241-247.
    [63]赵九蓬,李垚,赫晓东等.自蔓延高温合成Ni-Zn铁氧体反应机制的研究[J].硅酸盐学报,2002,30(1):9-13.
    [64]王秉济,马桂英.溶胶-凝胶法合成PLZT微细粉末[J].硅酸盐学报,1994,22(1):57-63.
    [65]李建,刘存业,姚永尔.用湿化学法制备LaAlO3微粒的研究[J].硅酸盐学报,1994,22(5):504-508.
    [66]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐学报,1993,21(5):443-450.
    [67]李晓娥,王训,邓红等.透明超细二氧化钛的制备[J].无机盐工业,2000,32(5):5-6.
    [68]苏毅,胡亮,杨亚玲.溶胶-凝胶法合成钛酸钡超细粉体工艺研究[J].材料科学与工艺,2000,8(3):84-87.
    [69]杨隽,张启超.胶体化学法制备氧化铁超微粉体[J].无机盐工业,2000,32(1):16-17.
    [70]王长振,谭维,周甘宇等.锰锌铁氧体粉制备技术综述[J].中国锰业,2002,20(3):37-41.
    [71] Fan J W, Sale F R. Analysis of power loss on Mn-Zn ferrites prepared by different processing routes [J]. IEEE Transactions on Magnetics, 1996, 32(5): 4854-4856.
    [72] Fan J W, Sale F R. The microstructures, magnetic properties and impedance analysis of Mn-Zn ferrites doped with B2O3 [J]. J the European Ceramic Society, 2000, 20: 2743-2751.
    [73]杨新科.锰锌铁磁铁氧体粉制备研究进展[J].宝鸡文理学院学报(自然科学版),2001,21(2):125-127.
    [74]何水校.软磁铁氧体材料的应用与市场[J].磁性材料及器件,1998,29(1):44-47.
    [75] Mathur R, Sharma D R, Vadera S R, et al. Room temperature synthesis of nanocomposites of Mn-Zn ferrites in a polymer matrix [J]. Nanostruct Mater, 1999, 11(5): 677-686.
    [76]惠会,王开毅.碳酸铵共沉淀法制备高纯超细钛酸锶粉体[J].功能材料,2000,31(4):408-409.
    [77]李伯刚,尹光福,查忠勇等.并加共沉淀制备软磁锰锌铁氧体粉末的新工艺[J].化工冶金,1999,20(4):381-384.
    [78]李韦华,许锡恩.超微粒子的制备及应用[J].现代化工,1997,17(4):15-18.
    [79]周震,周根陶.Ni(OH)2超微粉的制备及其电化学性能[J].应用化学,1998,15(2):40-43.
    [80]徐明霞,余侃,杨义敏等.分步沉淀法合成单分散超细钛酸锶晶粒[J].应用化学,1998,15(1):37-40.
    [81]李伯刚,尹光福,查忠勇等.软磁MnZn铁氧体粉料可连续化生产新工艺[J].有色金属,1999,51(3):87-92.
    [82]周根陶,刘双怀,郑永水.一种新的制备超微粉末的方法-沉淀转化法[J].科学通报,1996,41(4):321-323.
    [83]李自强,李春,何良惠等.软磁材料锰锌铁氧体共沉粉料的研制[J].四川联合大学学报,1997,1(5):23-29.
    [84]姚志强,王琴,钟炳.超临界流体干燥法制备MnZn铁氧体超细粉末[J].磁性材料及器件,1999,30(1):28-31.
    [85] YaoZ Q, Wang Q, Zhong B. Preparation of the ultrafines powder of Mn-Zn ferrite by the supercritical fluid drying [J]. Magn Mater Devices, 1998, 29(1): 6-9.
    [86] Wng J, Chong P E, Ng S C, et al. Microemulsion processing of manganese zinc ferrites [J]. Materials Letters, 1997, 30: 217-221
    [87] Byun T Y, Hong K S, Yoon C S, et al. Impedance spectroscopic study on the magnetization of polycrystalline MnZn ferrite with very low magnetic anisotropy [J]. Journal of Magnetism and Magnetic Materials, 2002, 253: 72-76.
    [88] Wang J, Ong C L, Gan L M, et al. Crystallization in seeded zirconia precipitates [J]. Materials Letters, 1996, 27: 239-246.
    [89]赵麦群,符长璞,陈宇航等.化学法制备纳米粉的热力学条件[J].西安理工大学学报,1999,15(4):42-43.
    [90]郭景坤,冯楚德.纳米陶瓷的最近进展[J].材料研究学报,1995,9(5):412-418.
    [91]甘树才,洪广言,张军等.镧六方铁氧体LaxBa1-xFe12O19的制备与表征[J].应用化学,2000,17(2):219-221.
    [92]刘锋,杨晨,任天令等.Sol-gel法制备NiZnCu铁氧体性能的研究[J].功能材料,2005,36(12):1849-1851.
    [93]白海林,王晓慧,李龙土等.纳米级NiZnCu铁氧体粉的晶粒尺寸对瓷体性能影响[J].功能材料,2006,37(1):29-32.
    [94] Yuan A Q, Wu J, Huang Z Y, et al. Synthesis of NH4FePO4·H2O nano-plates via solid-state reaction at low temperature and its thermochemistry properties [J]. Mater Res Bull, 2008, 43(6): 1339-1345.
    [95] Liu J J, Qiu W H, Yu L Y, et al. Synthesis and electrochemical characterization of 5V LiNi1/2Mn3/2O4 cathode materials by low-heating solid-state reaction [J]. J Power Sources, 2007, 174: 701-704.
    [96] Zhou T Y, Yuan X, Hong J M, et al. Room-temperature solid-state reaction to nanowires of zinc sulfide [J]. J Mater Lett, 2006, 60(2): 168-172.
    [97] Ramesh B B, Periasamy P, Thirunakaran R. Solid-state synthesis and characterization of LiNiyCo1?yO2(0.0≤y≤0.4) [J]. Int J Inorg Mater, 2001, 3(4-5): 401-407.
    [98] Fey G T K, Lu C Z, Kumar T P. Solid-state synthesis and electrochemical characterization of LiMyCr0.5?y -Mn1.5O4(M=Fe or Al; 0.0    [99] Li F, Yu X H, Pan H J, et al. Syntheses of MO2(M=Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature [J]. Solid State Sci, 2000, 2(8): 767-772.
    [100]庄稼,陈学平,迟燕华等.掺杂Co2+和Sm3+对纳米ZnFe2O4铁氧体的电磁损耗性质的影响[J].化学学报,2006,64(2):151-157.
    [101] Sun Z P, Liu L, Jia D Z, et al. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials [J]. Sens Actuators, B: Chem, 2007, 125(1): 144-148.
    [102]金春飞,景苏,忻新泉.低热固态化学反应与材料合成[J].无机化学学报,2002,18(9):859-870.
    [103]方道来,郑翠红,朱伟长等.NiFe2O4纳米晶的制备及表面效应对其比饱和磁化强度的影响[J].材料科学与工程,2001,19(1):86-89.
    [104]孟祥东,刘梅,陈敬艳等.溶胶-凝胶自燃烧法制备纳米CoYxFe2-xO4铁氧体的特性[J].硅酸盐学报,2007,35(5):550-553.
    [105]齐西伟,周济,岳振星等.溶胶凝胶自燃烧法合成Mn0.6Cu0.2Zn0.2O(Fe2O3)0.98纳米晶铁氧体及其磁性能研究[J].硅酸盐学报,2003,31(2):138-142.
    [106] Gajbhiye N S, Prasad S. Thermal decomposition of hexahydrated nickel iron citrate [J]. Thermochim Acta, 1996, 285(2): 325-336.
    [107] Yue Z X, Gue W Y, Zhou J, et al. Synthesis of nanocrystilline ferrites by sol-gel combustion process: the influence of pH value of solution [J]. J Magn Magn Mater, 2004, 270(1-2): 216-223
    [108] Panda R N, Shih J C, Chin T S. Magnetic properties of nano-crystalline Gd- or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique [J]. J Magn Magn Mater, 2003, 257(1): 79-86.
    [109] Cheng F X, Peng Z Y, Liao C S, et al. Chemical synthesis and magnetic study of na nocrystalline thin films of cobalt spinel ferrites [J]. Solid State Communications, 1998, 107: 471-476.
    [110] Bellad S S, Bhosale C H. Substrate temperature dependent properties of sprayed CoFe2O4 ferrite thin films [J]. Thin Solid Films, 1998, 322: 93-97.
    [111]郭睿倩.(稀土掺杂)磁铅石型铁氧体纳米粉末的制备及其磁性研究[J].上海交通大学博士后研究报告,2003.
    [112]曲远方.功能陶瓷及应用[M].北京:化学工业出版社,2003,588-590.
    [113]张密林,冯守华.水热法合成BaNdxFe12-xO19铁氧体的研究[J].稀土,1996,17(2):14-l7.
    [114]张密林,景晓燕.水热法合成Sr-La铁氧体超微粉末[J].稀土,1994,15(1):3l-33.
    [115] Yue Zhenxing, Zhou Ji, Li Longtu. Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method [J]. Journal of Magnetism and Magentic Materials, 2000, 208(1-2): 55-60.
    [116]席国喜,杨理,路迈西.废旧电池溶胶-凝胶法制备锰锌铁氧体的研究[J].人工晶体学报,2006,35(1):54-57.
    [117]席国喜,焦玉字,路迈西.废旧锂离子电池溶胶凝胶法制备钴铁氧体的研究[J].材料导报,2008,22(10):127-129.
    [118]席国喜,刘玉民,戚世梅等.EDTA络合溶胶-凝胶法制备Mn-Zn铁氧体[J].硅酸盐通报,2009,28(1):194-199.
    [119]席国喜,焦玉字,路迈西.废锂离子电池共沉淀法制备CoFe2O4纳米晶体[J].电子元件与材料,2008,27(5):19-21.
    [120]席国喜,张存芳,路迈西.废旧电池共沉淀法制备锰锌铁氧体,化学世界,2006,47(7):385-387.
    [121]席国喜,邢新艳,范仁秀等.废旧锂离子电池水热法制备纳米晶CoFe2O4的研究[J].硅酸盐通报,2008,27(6):1114-1118.
    [122]席国喜,姚路,路迈西.锰锌铁氧体前驱体自蔓延燃烧机理判定及动力学研究[J].磁性材料及器件,2008,39(3):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700