离子热法构筑多金属氧酸盐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,多酸化合物已引起了广泛的吸引力,由于他们组成的多样性及在催化、光化学、磁性及电化学的潜在应用。多酸结构的发展是多酸化学进展的基础。而多酸合成的发展的挑战则主要集中于其用不同的合成方法合成新的化学结构。本文分别以离子热合成法及水热法构筑了六种新的多酸化合物,通过元素分析、热重分析、红外、紫外、固体漫反射和X-射线单晶衍射方法对晶体结构进行了表征,对一些化合物的热稳定性及溶液中的稳定性、磁性、电化学、和光催化性质进行了初步研究。并且研究了这些化合物的性质,适宜的合成方法,反应过程中的影响因素及反应规律。
     用离子热方法构筑合成多金属氧酸盐(POM),在离子液体[EMIM]Br合成得到了三个新的化合物: [EMIM]8Na9[WFe9(μ_3-O)_3(μ2-OH)_6O_4H_2O(SiW_9O_34)_3]·7H_2O (1) [EMIM]4[SiW_(12)O_(40)](2) and [EMIM]6[P2W18O62]·4H_2O(3).化合物1是高核过渡金属取代的多金属氧酸盐,及阴离子是由三个[α-SiW9O_34]10-Keggin阴离子通过{WFe9}簇连接而成。化合物2-_3则分别是由Keggin型阴离子及Dowson型阴离子构成。
     在不同的pH值下通过水热合成得到了三个含铜-咪唑的多酸化合物(HIm)_2{[Cu(Im)_2(PMo_(12)O_(40))]}(Im)_2·_3H_2O (4) (Im = imidazole), {[Cu(Im)_2](PMo_(12)O_(40))}[Cu(Im)_2]_2(Im)·4H_2O (5) and {[Cu(Im)_2]_3(PMoⅤ2MoⅥ10O40)}[Cu(Im)_3]_2 (6).化合物4是由一个Keggin型阴离子[PMo_(12)O_(40)]_3-,与一个[Cu(Im)_2]+单元相连;化合物5是由一个Keggin型阴离子[PMo_(12)O_(40)]_3-,三个[Cu(Im)_2] +单元相连;将该溶液的pH调为5时得到化合物6,由一个Keggin型阴离子[PMo_(12)O_(40)]_3-,三个[Cu(Im)_2]+单元,两个[Cu(Im)_3]_2+单元相连,三个化合物都是从相同的反应体系在不同的pH值中得到。
Over the past decades, polyoxometalates (POMs) have attracted large interest because of their impressive compositional diversity and series of potential applications in catalysis, photochemistry, magnetism and electrochemistry. The evolution of POMs chemistry is dependent upon exploring suitable methods to synthesize novel POMs. The evolution of POMs chemistry is dependent upon exploring suitable methods to synthesize novel POMs. In this paper, five new polyoxometalates have been synthesized employing ionothermal and hydrothermal synthesis, and also structurally characterized by elemental analyses, TG-DTA, IR, UV-Vis, , diffuse reflectance UV-vis spectra and single crystal X-ray diffractions. The thermal stabilities and the stabilities in solutions, magnetic properties, electrochemical and electrochemical activities of these compounds have been investigated.
     Using ionothermal synthetic method with ionic liquid EmimBr (Emim = 1-ethyl-_3-methylimidazolium) as solvent has resulted in three novel polyoxometalates (POMs) [Emim]8Na9[WFe9(μ_3-O)_3(μ2-OH)_6O_4H_2O(SiW_9O_34)_3]·7H_2O (1) [EMIM]4[SiW_(12)O_(40)] (2) and [EMIM]6[P2W18O62]·4H_2O (_3).
     Three copper-imidazole-containing polyoxometalates (POMs), (HIm)_2{[Cu(Im)_2(PMo_(12)O_(40))]}(Im)_2·_3H_2O (4) (Im = imidazole), {[Cu(Im)_2](PMo_(12)O_(40))}[Cu(Im)_2]_2(Im)·4H_2O (5) and {[Cu(Im)_2]_3(PMo~Ⅴ2Mo~Ⅵ_(10)O_(40)}[Cu(Im)_3]_2 (6), have been hydrothermally synthesized at different pH values. Compound 4, consisting of a Keggin-type polyoxoanion [PMo_(12)O_(40)] decorated by one [Cu(Im)_2] complex; Compound 5 is composed of a Keggin-type polyoxoanion [PMo_(12)O_(40)] and three [Cu(Im)_2] complexes; compound 6, composed of a Keggin-type polyoxoanion [PMo_(12)O_(40)], three [Cu(Im)_2]+ and two [Cu(Im)_3]_2+ units, was synthesized from the similar reaction system.
引文
[1] Pope M T.杂多金属氧酸盐和同多金属氧酸盐金属氧酸盐[M].王恩波等译.长春:吉林大学出版社,1991.
    [2] Rhule J T, Hill C, Judd D A, Polyoxometalates in medicine[J]. Chem. Rev.,1998, 98: 327-358.
    [3] Ritter S K, Chemical & Engineering News, 2004, 82: 29-32.
    [4] Kuznicki S M, Bell V A, Hillhouse H W M, et al. A titanosilieate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412: 720-723
    [5] Wang E B, Hu C W, Xu L, Concise of Polyoxometalate Chemi Chemical Industrial Publishing Company[M]. Beijing, 1998, 4
    [6] Jahr K F, Fuchs, Zur Hydrolyse amphoterer Metallalkoxide, I. Allgemeine Grundlagen und Ergebnisse[J]. J Chem Ber, 1963, 96: 2457-2459.
    [7] Liu P D, PEI X K, LIN B Z, Hydrothermal Synthesis and Structure of a Novel Binuclear Molybdenum Complex with Oxalate Ligand, (enH2){NH4[Co(en)3][Mo2O7(C2O4)] }2?2H2O[J].Chinese J Struct Chem, 2004. 1: 57-61
    [8] Hou H, Ye X, Xin X, Tetrabutylammonium Di-μ-iodo-bis(iodoargentate) Hexatungstate, [nBu4N]4[Ag2I4][W6O19][J]. Acta Cyst.,1995, C51: 2013-2015 .
    [9] Wei H H, Quan X X, Bei Y K, Solid state synthesis and structure of two novel polyoxometalates [(n-Bu)4N]4[M6O19][Ag2I4](M=Mo, W) [J]. Chin J. Chem.,1996, 14: 123-130.
    [10] Willians I D, Wu M M, Sung H H, et al. An organo-templated vanadium(VI) borate polymer from boric acid "flux" synthesis, [H2en]4[Hen]2[V6B22O53H8]}·5H2O[J]. Chem Commum, 1998, 2463-2464.
    [11] Naruke H, Yamase T, Structure of Novel R2Mo5O18 and R6Mo12O45 (R=Eu,Gd) Prepard by Thermal Decomposition of Polyoxomolybdate Precursor [R2(H2O)12Mo8O27]·nH2O[J]. Inorg Chem, 2002, 41: 6514-6520.
    [12] Kortz U, Savelieff M G, Bassil B S, et al. A Large, Novel Polyoxotungstate: [AsIII6 W65O217(H2O)7]26-[J]. Angew Chem Int Ed, 2001, 40(18): 3384-3386.
    [13] Hussain F, Conrad F, Patzke G R, et al. A Gadolinium-Bridged Polytungstoarsenate(III) Nanocluster: [Gd8As12W124O432(H2O)22]60-[J]. Angew Chem Int Ed, 2009, 48(48): 9088-9091.
    [14] Bassil B S, Dickman M H, R?mer I, et al. The Tungstogermanate [Ce20Ge10W100O376(OH)4(H2O)30]56-: A Polyoxometalate Containing 20 Cerium(III) Atoms [J]. Angew Chem Int Ed, 2007, 46(32): 6192 -6195.
    [15] Kortz U, Hussain F, Reicke M, et al. The Ball-Shaped Heteropolytungstates [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-XW9O34)12]36- [J]. Angew Chem Int Ed, 2005, 44(24): 3773-3777.
    [16]Mal S S, Kortz U, The Wheel-Shaped Cu20 Tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- Ion [J]. Angew Chem Int Ed, 2005, 44(20): 3777-3780.
    [17] Godin B, Chen Y G, Vaissermann J, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H2P2W12O48]12- with FeIII Ions: Towards Original Structures of Increasing Size and Complexity [J]. Angew Chem Int Ed, 2005, 44(20): 3072-3075.
    [18] Zhang H M, Li Y G, Lu Y, et al. A New Ni12 Cluster Based on Polyoxometalate Ligands [J]. Inorg Chem, 2009, 48(23): 10889–10891.
    [19] Zhao J W, Zhang J, Zheng S T, et al. Combination of Lacunary Polyoxometalates and High-Nuclear Transition-Metal Clusters under Hydrothermal Conditions. 5. A Novel Tetrameric Cluster of[{FeIIFeIII12(μ3-OH)12(μ4-PO4)4}(B-α-PW9O34)4]22-[J]. Inorg Chem, 2007, 46(26): 10944-10946.
    [20] Wu Q, Li Y G, Wang Y H, et al. Mixed-Valent {Mn14} Aggregate Encapsulated by the Inorganic Polyoxometalate Shell: [MnIII13MnIIO12(PO4)4(PW9O34)4]31-[J]. Inorg Chem, 2009, 48(4): 1606-1612.
    [21] Walcarius A, Electrochemical applications of silica-based organic-inorganic hybrid materials[J]. Chem Mater, 2001, 13(10): 3351-3372.
    [22] Müller A, Krickemeyer E, Meyer J, et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)-: A water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000[J]. Angew Chem Int Ed, 1995, 34(19): 2122-2124.
    [23] Müller A, Polarz S, Das S K, et al.“Open and shut”for guests in molybdenum-oxide-based giant spheres, baskets, and rings containing the pentagon as a common structural element[J]. Angew Chem Int Ed, 1999, 38(21): 3241-3245.
    [24] Müller A, Shah S Q N, B?gge H, et al. Molecular growth from a Mo176 to a Mo248 cluster[J]. Nature, 1999, 397: 48.
    [25] Müller A, Beckmann E, B?gge H, Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking[J]. Angew Chem Int Ed Engl, 2002, 41: 1162-1167.
    [26] Müller A, Rohlfing R, D?ring J, et al. Formation of a Cluster Sheath around a Central Cluster by a“Self-Organization Process”: the Mixed Valence Polyoxovanadate [V34O82]10- [J]. Angew Chem Int Ed Engl, 1991, 30: 588-590.
    [27] Khan M I, Meger LM, Haushalter R C, et al. Giant voids in the Hydrothermally Synthesized Microporous Square Pyramidal-Tetrahedral Framework Vanadium phosphates [HN(CH2CH2)3NH]K1.35[V5O9(PO4)2]·H2O and Cs3[V5O9(PO4)2]·xH2O[J]. Chem Mater, 1996, 8: 43-53.
    [28] Zhao X Y, Liang D D, Liu S X, et al. Two Dawson-Templated Three-Dimensional Metal-Organic Frameworks Based on Oxalate-Bridged Binuclear Cobalt(II)/Nickel(II) SBUs and Bpy Linkers[J]. Inorg Chem, 47(16): 7133-7138.
    [29] Xu Y, Zhu H G, Cai H, et al. [MoV2MoVI6VIV8O40(PO4)]52: the first polyanion with a tetra-capped Keggin structure [J]. Chem Commun, 1999, 787-788.
    [30] Sha J Q, Peng J, Liu H S, et al. Asymmetrical Polar Modification of a Bivanadium-Capped Keggin POM by Multiple Cu-N Coordination Polymeric Chains [J]. Inorg Chem, 2007, 46(26): 11183-11189.
    [31] Xu Y, Xu J Q, Zhang K L, et al. Keggin unit supported transition metal complexes: hydrothermal synthesis and characterization of [Ni(2,2’-bipy)3]1.5[PW12O40Ni(2,2’-bipy)2(H2O)]·0.5H2O and [Co(1,10’-phen)3]1.5[PMo12O40Co(1,10’-phen)2(H2O)]·0.5H2O [J]. Chem Commun, 2000, 153-154
    [32] Reinoso S, Vitoria P, Gutie′rrez-Zorrilla J M, et al. Inorganic-Metalorganic Hybrids Based on Copper(II)-Monosubstituted Keggin Polyanions and Dinuclear Copper(II)-Oxalate Complexes Synthesis, X-ray Structural Characterization, and Magnetic Properties [J]. Inorg Chem, 44(26): 9731-9742
    [33] Bareyt S, Piligkos S, Hasenknopf B, et al. Efficient preparation of functionalized hybrid organic-inorganic Wells-Dowson-type polyoxotungstates[J]. J Am Chem Soc, 2005, 127(18): 6788-6794.
    [34] Micoine K, Hasenknopf B, Thorimbert S, et al. A general strategy for ligation of organic and biological molecules to Dawson and Keggin polyoxotungstates[J]. Org Lett, 2007, 9: 3981-3984
    [35] Boglic C, Micoine K, Thouvenot R, et al. Regioselective activation of oxo ligands in functionalized Dowson polyoxotungstates[J]. J Am Chem Soc, 2007, 46: 798-5804
    [36] Sakai Y, Shinohara A, Hayashi K, et al. Synthesis and Characterization of Two Novel, Mono-Lacunary Dawson Polyoxometalate-Based, Water-Soluble Organometallic Ruthenium(II) Complexes: Molecular Structure of [{(C6H6)Ru(H2O)}(α2-P2W17O61)]8- [J]. Eur J Inorg Chem, 2006, 163-171
    [37] Belai N, Pope M T, Chelated heeroatoms in polyoxometalates and the topological equivalence of{CoⅢ(en)} to type II cis-dioxometal centers. Synthesis and stnzcture of [{Co(en)(μ-OH)2Co(en)} {PW10}O37}Co(en)}2]12- and [K{Co(en)WO4} {WO(H2O)}(PW9O34)2] 12- [J]. Chem Commun, 2005, 5760-5762.
    [38] Fang X K, Anderson T M, Hill C L, Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters [J]. Angew Chem Int Ed, 2005, 44: 3540-3544.
    [39] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes [J]. Angew Chem Int Ed, 2006, 45: 904-908.
    [40] An H Y, Han Z B, Xu T Q, et al. Self-assembly of polyoxometalate clusters and metal–organic coordination fragments into 1D homochiral chains[J]. Inorg Chem Commun, 2008, 11: 914-917
    [41] Tan H Q, Li Y G, Zhang Z M, et al. Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures: A New Route for Synthesis of High-Dimensional Chiral Compounds[J]. J Am Chem Soc, 2007, 129: 10066-10067
    [42] Zhang Z M, Li Y G, Yao S, et al. Rodolphe Clerac Enantiomerically Pure Chiral {Fe28} Wheels [J]. Angew Chem Int Ed, 2009, 48: 1581 -1584
    [43] Soghomonian V, Chen Q, Haushalter R C, et al. An inorganic double helix: hydrothermal synthesis, tructure, and magnetism of chiral (Me2NH2)K[V10O10 (H2O)2 (OH)4(P04)]·4H2O[J]. Science, 1993, 259: 1596-1599.
    [44] Shi Z, Feng S H, Gao S, et al. Inorganic-organic hybrid materials constructed from [(VO2)2(HPO4)]helical chains and [M(4,4'-bipy)]2+ (M=Co, Ni) fragments[J]. Angew Chem Int Ed, 2000, 39: 2325-2327.
    [45] Lu C Z, Wu C D, Lu S F, et al. A three-dimensional zeolite-like organic–inorganic hybrid material constructed from {CuMo2O8N}n double helical chains linked via [Cu(4,4’-bpy)]n fragments[J]. Chem Commun, 2002, 152-153.
    [46] Liu C, Luo F, Liu N, et al. One-Dimensional Helical Chain Based on Decatungstate and Cerium Organic-Inorganic Hybrid Material[J]. Crystal Growth & Design, 6: 2658-2660.
    [47] Rajkumar T, Rao G R, Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid[J]. Mater Chem Phys, 2008, 112: 853-857.
    [48] Rajkumar T, Rao G R,Chracterization of hybrid molecular material prdpared by 1-butyl 3-methyl imidazolium bromide and phosphotungstic acid[J]. Mater Lett, 2008, 62: 4134-4136.
    [49] (a)Zou N, Chen W L, Li YG, et al. Two new polyoxometalates-based hybrids firstly synthesized in the ionic liquids[J]. Inorg Chem Commun, 2008, 11: 1367-1370. (b) S.M. Wang, Y.W. Li, E.B. Wang, et al. New synthetic route of polyoxometalate-based hybrids in choline chloride/urea eutectic media[J]. Inorg Chimi Acta, 2010, 363: 1556-1560. (c) S.M. Wang, W.L. Chen, E.B. Wang, et al. Three new polyoxometalate-based hybrids prepared from choline chloride/urea deep eutectic mixture at room temperature[J]. Inorg Chem Commun, 2010,13: 972-975. (d) S.M. Wang, W.L. Chen, E.B. Wang, Two Chain Like B-Type-Anderson-Based Hybrids Synthesized in Choline Chloride/Urea Eutectic Mixture[J]. J Clust Sci, 2010, 21:133-145.
    [50] (a) Pope M T, Heteropoly and Isopoly Oxometalate, Springer-Verlag, Berlin, Germany, 1983. (b) Muller A, Pope M T, Peters F, et al. Polyoxometalates: Very Large Clusters-Nanoscale Magnets[J]. Chem Rev, 1998, 98: 239-272; (c) Hill C L, Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems[J]. Chem Rev, 1998, 98: 1-2. (d) Cooper G J T, and Cronin L, Real-Time Direction Control of Self Fabricating Polyoxometalate-Based Microtubes [J]. J Am Chem Soc, 2009, 131: 8368-8369.
    [51] (a) Pope M T, Kortz U, Jameson G B, Polyoxometalate Diphosphate Complexes. Folded MacrocyclicDodecatungstates, [(O3PXPO3)4W12O36]16- (X = O, CH2) [J]. J Am Chem Soc, 1994, 116: 2659-2660. (b) Muller A, Krickemeyer E, Bogge H B, et al.“Nanoobjects”by Self-Assembly Concomitant with Modifications under Alterable Boundary Conditions: Incorporation of Paramagnetic Metal Centers (Cu2+) in Ring-Shaped Molybdenum-Oxide Based Clusters [J]. Angew Chem Int Ed, 2001, 40: 4034-4037.
    [52] (a) Z Shi, Feng S H, Zhang L, et al. Hydrothermal Syntheses and X-ray Crystal Structures of Three Inorganic?Organic Hybrid Materials in a Copper Vanadium Phosphate Family: CuL(VO2)(PO4) (L = 4,4’-bipy, 1,10-phen, 2,2’-bipy) [J]. Chem Mater, 2000, 12: 2930-2935. (b) Forster P M, Thomas P M and Cheetham A K, Biphasic Solvothermal Synthesis: A New Approach for Hybrid Inorganic?Organic Materials [J].Chem Mater, 2002, 14: 17-20. (c) Zhao J W, Zhang J, Zheng S T, et al. Combination of Lacunary Polyoxometalates and High-Nuclear Transition-Metal Clusters under Hydrothermal Conditions. A Novel Tetrameric Cluster of [{FeIIFeIII12(μ3-OH)12(μ4-PO4)4}(B-α-PW9O34)4]22-[J]. Inorg Chem, 2007, 46: 10944-10946.
    [53] Cundy C S, and Cox P A, The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time [J]. Chem Rev, 2003, 103: 663-702.
    [54] Copper E R, Andrew C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues [J]. Nature, 2004, 430: 1012-1015.
    [55] (a) Wasserscheid P and Keim W, Ionic Liquids—New“Solutions”for Transition Metal Catalysis [J]. Angew Chem Int Ed, 2000, 39: 3772-3789; (b) Zhu Y, Wang W, Qi R, et al. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids[J]. Angew Chem Int Ed, 2004, 43: 1410-1414; (c) Dupont J, Souza R F, and Suarez P A Z, Ionic Liquid (Molten Salt) Phase Organometallic Catalysis[J]. Chem Rev, 2002, 102: 3667-3692. (d) Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A, Are Ionic Liquids Really a Boon for the Synthesis of Inorganic Materials? A General Method for the Fabrication of Nanosized Metal Fluorides [J]. Chem Mater, 2006, 18: 3162-3168.
    [56] (a) Welton T, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J].Chem Rev, 1999, 99: 2071-2084. (b) Ding K L, Miao Z J, Liu Z M, et al. Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process[J]. J Am Chem Soc, 2007, 129: 6362-6363. (c) Chen S M, Zhang J, and Bu X H, Ionothermal Synthesis of Homochiral Framework with Acetate-Pillared Cobalt?Camphorate Architecture [J]. Inorg Chem, 2008, 47: 5567-5569. (d) Lin Z J, Slawin A M Z, and Morris R E, Chiral Induction in the Ionothermal Synthesis of a 3-D Coordination Polymer[J]. J Am Chem Soc, 2007, 129: 4880-4881. (e) Parnham E R, Morris R E, The Ionothermal Synthesis of Cobalt Aluminophosphate Zeolite Frameworks [J]. J Am Chem Soc, 2006, 128: 2204-2205. (f) Ma H J, Tian Z J, Xu R S, et al. Effect of Water on the Ionothermal Synthesis of Molecular Sieves[J]. J Am Chem Soc, 2008, 130: 8120-8121. (g) Xu L, Choi E Y and Kwon Y U, Combination Effects of Cation and Anion of Ionic Liquids on the Cadmium Metal?Organic Frameworks in Ionothermal Systems[J]. Inorg Chem, 2008, 47(6): 1907-1909.
    [57] Whaley L, Bune R O, Emge T, Greenblatt M, Polyoxometalate syntheses from a“Room temperature ionic liquid”[J]. 36th Middle Atlantic Regional Meeting of the American Chemical Society, Princeton, NJ, United States, 2003, 8: 295.
    [58] Rogers R D and Seddon K R, Ionic Liquids--Solvents of the Future? [J]. Science, 2003, 302: 792-793.
    [59] (a) Xu W, and Angeli C A, A Hybridization Model for the Plasmon Response of Complex Nanostructures Science, 2003, 302: 419-422. (b) Bonhote P, Dias A P, Papageorgiou N, Kalyanasundaram K and GrPtzel M, Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg Chem, 1996, 35:1168-1178; (c) Krossing I and Raabe I, Noncoordinating Anions-Factor Fiction? A Survey of Likely Candidates[J]. Angew Chem Int Ed, 2004, 43: 2066-2090.
    [60] (a) Lee J S, Wang X, Luo H, et al. Facile Ionothermal Synthesis of Microporous and Mesoporous Carbons from Task Specific Ionic Liquids [J]. J Am Chem Soc, 2009, 131: 4596-4597; (b) Liu L, Li Y, Wei H, et al. Ionothermal Synthesis of Zirconium Phosphates and Their Catalytic Behavior in the Selective Oxidation of Cyclohexane [J]. Angew Chem Int Ed, 2009, 48: 2206-2209. (c) Cai R, Sun M, Chen Z W, et al. A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry [J]. Angew Chem Int Ed, 2008, 47: 525.
    [61] Artero V, Proust A, Herson P, et al. Synthesis and Characterization of the First Carbene Derivative of a Polyoxometalate[J]. J Am Chem Soc, 2003, 125: 11156-11157.
    [62] (a) Pope M T, Müller A, Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines[J]. Angew Chem Int Ed, 1991, 30: 34-48. (b) Lisnard L, Mialane P, Dolbecq A, et al. Effect of Cyanato, Azido, Carboxylato, and Carbonato Ligands on the Formation of Cobalt(II) Polyoxometalates: Characterization, Magnetic, and Electrochemical Studies of Multinuclear Cobalt Clusters [J]. Chem Eur J, 2007, 13: 3525-3536.
    [63] Anderson J S, Constitution of the Poly-acids [J]. Nature, 1937, 140: 850-850.
    [64] Coronado E, Galán-Mascarós J R, Giménez-Saiz C, et al. Metallic Conductivity in a Polyoxovanadate Radical Salt of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): Synthesis, Structure, and Physical Characterization ofβ″-(BEDT-TTF)5[H3V10O28]·4H2O[J]. Adv Mater, 2004, 16: 324-327.
    [65] (a) Xu B B, Peng Z H, Wei Y G, et al. Polyoxometalates covalently bonded with terpyridine ligands [J]. Chem Commun, 2003, 2562-3563. (b) Baker L C, Glick D C, Present General Status of Understanding of Heteropoly Electrolytes and a Tracing of Some Major Highlights in the History of Their Elucidation [J]. Chem Rev, 1998, 98: 3-49.
    [66] (a) Zhang X, Yi Z H , Zhao L Y, et al. pH-dependent assembly of a series of inorganic–organic hybrid molybdenum(V) [J]. C Cryst Eng Comm, 2010, 12: 595–603 (b) Honma N, Kusaka K, Ozeki T, Self-assembly of a lacunaryα-Keggin undecatungstophosphate into a three-dimensional network linked by s-block cations[J]. Chem Commun, 2002, 2896-2897. (c)Sadakane M, Dickman M H, Pope M T, Controlled Assembly of Polyoxometalate Chains from Lacunary Building Blocks and Lanthanide-Cation Linkers [J]. Angew Chem Int Ed 2000, 39: 2914–2916. (d) Zheng P Q, Ren Y P, Long L S, et al. pH-Dependent Assembly of Keggin-Based Supramolecular Architecture[J]. Inorg Chem, 2005, 44: 1190–1192. (e) Zheng S L, Yang J H, Yu X L, et al. Syntheses, Structures, Photoluminescence, and Theoretical Studies of d10 Metal Complexes of 2,2’-Dihydroxy-[1,1']binaphthalenyl-3,3‘-dicarboxylate[J]. Inorg Chem, 2004, 43: 830–838. (f) Yi Z H, Cui X B, Zhang X, et al. Hydrothermal syntheses and structural characterizations of organic–inorganic
    hybrid materials of the M(II)–ligand/vanadium oxide system (M(II) = Mn(II), Cu(II) and Zn(II); ligand = 2,2′-bipyridine and 1,10-phenanthroline)[J]. Dalton Trans, 2007, 2115–2120. (g) Zhao J W, Li B, Zheng S T, et al. Two-Dimensional Extended (4, 4)-Topological Network Constructed from Tetra-NiII-Substituted Sandwich-Type Keggin Polyoxometalate Building Blocks and NiII-Organic Cation Bridges[J]. Cryst Growth Des, 2007, 7: 2658–2664. (h) Gopalakrishnan J, Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials [J]. Chem Mater, 1995, 7: 1265–1275.
    [67] Yang H X, Gao S Y, LüJ, et al. pH-Dependent Syntheses and Crystal Structures of a Series of Organic?Inorganic Hybrids Constructed from Keggin or Wells?Dawson Polyoxometalates and Silver Coordination Compounds [J]. Inorg Chem, 2010, 49: 736-744.
    [68] Zheng P Q, Ren Y P, Long L S, et al. pH-Dependent Assembly of Keggin-Based Supramolecular Architecture [J]. Inorg Chem, 2005, 44: 1190-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700