富锂正极材料的合成与表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2的合成与改性,并系统研究了其改性机理。
     通过溶胶凝胶法、共沉淀法、Pechini法、醋酸盐共融法、喷雾干燥法5种方法制备了Li1.2Mn0.54Ni0.13Co0.13O2,利用XRD,ICP,SEM,XPS,恒流充放电等测试手段对制备的样品物相、化学组成、形貌、元素化合价、电化学性能进行了表征。测试结果表明,样品元素组成都接近预期组分,结构都具有R-3m六方层状结构,XRD数据显示,衍射峰在20°-25°之间具有超晶格结构。XPS测试结果表明,制备的样品中Mn、Co、Ni三种过渡金属元素主要化合价分别为+4、+3和+2价。电化学性能测试表明,Pechini制备的材料首周可逆容量,库仑效率,前30周容量保持率均优于其它方法合成的样品。
     利用ex-situ XANES (X-ray absorption near edge)初步探究了富锂正极材料的充放电机理。结果显示,充放电过程中Mn近边吸收谱变化规律不明显,Mn元素的价态几乎不变。Ni与Co的近边吸收谱变化规律较明显,Ni与Co的近边吸收谱随着充电过程的进行向高能量方向移动。放电过程中的变化与充电过程中变化相反。初步判断,富锂正极材料中Co3+氧化过程发生在Ni2+之前。
     采用原位聚合法将导电聚合物聚吡咯(PPy)包覆在富锂正极材料颗粒表面。XRD分析结果表明,PPy包覆层对富锂正极材料结构没有影响。通过SEM,TEM,TG-DSC表征了PPy在颗粒表面存在的形态与含量。电化学性能测试结果表明,电极材料首周库仑效率从包覆前78.3%提高到包覆后88.9%,前30周容量保持率从包覆前69.3%提高到包覆后86.1%。利用循环伏安测试(CV),高分辨透射电镜(HRTEM),红外光谱(FT-IR),电化学阻抗谱(EIS)等测试手段研究PPy改性机理表明,PPy包覆层有效抑制了富锂正极材料首周的析氧过程,减缓了Mn4+的活化并且降低了材料的电荷转移阻抗,从而有效改善了富锂正极材料的电化学性能。除此之外,通过TEM与FT-IR测试,表明原样品充到高压时不会生成SEI膜,而经过PPy包覆的样品表面会有主要成分为Li2CO3和ROCO2Li的SEI膜生成。
This synthesis and surface modification of a lithium-rich cathode materialLi1.2Mn0.54Ni0.13Co0.13O2were studied in this thesis. The mechanism for itselectrochemical performance improvement by PPy surface coating was alsoinvestigated.
     Li1.2Mn0.54Ni0.13Co0.13O2was prepared by various methods, including sol-gel,co-precipitation, Pechini, quaternary eutectic Li-Ni-Mn-Co acetate process and sprydrying methods. The prepared cathode materials were investigated by X-raydiffraction (XRD), inductively coupled plasma-atomic emission spectrometry(ICP-AES), scanning electron microscope (SEM), X-ray photoelectron spectroscopy(XPS), and galvanostatic testing. It was shown that most of the XRD diffractions canbe indexed to the R-3m structure. Traces of a superstructure were observed between20°and25°. The main valence of Mn, Co and Ni were determined to be+4,+3,+2,respectively. It was found that the sample prepared by the Pechini method had betterelectrochemical properties (reversible capacity, initial coulomb efficiency andcapacity retention) than that by the other methods. The mechanism ofcharge-discharge cycling of Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2was studied by ex-situ X-rayabsorption near edge structure (XANES). The results displayed that the valance stateof Mn hardly changed while that of Ni and Co changed drastically in the initial cycle.It was also found that the oxidation of Co3+to Co4+took place before the Ni2+to Ni4+oxidation.
     A composite is prepared by coating Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2with polypyrrole(PPy). No significant structural differences were observed between the pristinesample and PPy-coated sample. SEM, TEM, and TG-DSC were employed tocharacterize the morphology and content of PPy of the Li_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2.Galvanostatic test revealed that the initial coulomb efficiency increases from78.3%(pristine) to88.9%(PPy-coated) while the capacity retention in30cycles increasesfrom69.3%(pristine) to86.1%(PPy-coated). The mechanism of the PPy-coatedmaterial was investigated by CV, HRTEM, FT-IR, EIS, etc.. It was found that the PPy coating improves the initial coulombic efficiency and the cycling stability of thematerial by suppressing the electrolyte decomposition and oxygen vacancyelimination at high potentials. Furthermore, the presence of the solid electrolyteinterphase (SEI) is confirmed on the PPy-coated sample. Li2CO3and ROCO2Li weresupposed to be the main components of the SEI layer on the PPy-coatedLi_(1.2)Mn_(0.54)Co_(0.13)Ni_(0.13)O_2.
引文
[1]雷永泉,新能源材料.天津:天津大学出版社,2000.
    [2] Megahed S, Scrosati B. LITHIUM-ION RECHARGEABLE BATTERIES. Journal of PowerSources,1994,51:79-104.
    [3] Vincent C A. Lithium batteries: a50-year perspective,1959-2009. Solid State Ionics,2000,134:159-167.
    [4] Whittingham M S. CHEMISTRY OF INTERCALATION COMPOUNDS-METAL GUESTSIN CHALCOGENIDE HOSTS. Progress in Solid State Chemistry,1978,12:41-99.
    [5] Whittingham M S, Huggins R. Mechanism of fast ion transport in solid. Electrochimica Acta,1975,8:575-583.
    [6] Steele B C H. Diffusion of silver in silver vanadium bronzes. Materials Research Bulletin,1976,12:1533-1538.
    [7] Armand M. Fouletier P. Lithium intercalation in polyacetylene. Solid State Ionics,1973,8:165-168.
    [8] Armand M. Intercalation electrodes. Materials for Advanced Batteries. Proceedings of aNATO Symposium on Materials for Advanced Batteries,1980,145-161.
    [9] Murphy D W, Christian P A, Disalvo F J, et al. LITHIUM INCORPORATION BY V6O13AND RELATED VANADIUM (+4,+5) OXIDE CATHODE MATERIALS. Journal of theElectrochemical Society,1981,128:2053-2060.
    [10] Bonino F, Lazzari M, Vincent C A. A study of electrointercalation and diffusion of silver intantalum disulphide using solid state cells. Materials for Advanced Batteries. Proceedings ofa NATO Symposium on Materials for Advanced Batteries,1980,301-305305.
    [11] YAMAHIRA TAKAYUKI; KATO HISAYUKI; ANZAI MASANORI; Non-aqueouselectrolyte secondary cell. Sony, EP391281,1990-10-10.
    [12] Song M K, Park S, Alamgir F M, et al. Nanostructured electrodes for lithium-ion andlithium-air batteries: the latest developments, challenges, and perspectives. Materials Science&Engineering R-Reports,2011,72:203-252.
    [13] Zu C X, Li H. Thermodynamic analysis on energy densities of batteries. Energy&Environmental Science,2011,4:2614-2624.
    [14] Kezuka K, Hatazawa T, Nakajima K. The status of Sony Li-ion polymer battery. Journal ofPower Sources,2001,97-8:755-757.
    [15] Mizushima K, Jones P C, Wiseman P J, et al. LIXCOO2"(OLESS-THANXLESS-THAN-OR-EQUAL-TO1)-A NEW CATHODE MATERIAL FORBATTERIES OF HIGH-ENERGY DENSITY. Materials Research Bulletin,1980,15:783-789.
    [16]孙玉城.锂离子电池镍锰基正极材料合成与电化学性能研究:[博士学位论文].北京:中国科学院物理研究所,2003.
    [17] Whittingham M S. Lithium Batteries and Cathode Materials. Chem. Rev.,2004,104:4271-4301.
    [18] Orman H J, Wiseman P J. COBALT(III) LITHIUM-OXIDE, COLIO2-STRUCTUREREFINEMENT BY POWDER NEUTRON-DIFFRACTION. Acta Crystallographica SectionC-Crystal Structure Communications,1984,40:12-14.
    [19] Reimers J N, Dahn J R. ELECTROCHEMICAL AND INSITU X-RAY-DIFFRACTIONSTUDIES OF LITHIUM INTERCALATION IN LIXCOO2. Journal of the ElectrochemicalSociety,1992,139:2091-2097.
    [20] Reimers J N, Dahn J R, Vonsacken U. EFFECTS OF IMPURITIES ON THEELECTROCHEMICAL PROPERTIES OF LICOO2. Journal of the Electrochemical Society,1993,140:2752-2754.
    [21] Goodenough J B, Mizushima K, Takeda T. SOLID-SOLUTION OXIDES FORSTORAGE-BATTERY ELECTRODES. Japanese Journal of Applied Physics,1980,19:305-313.
    [22] Mendiboure A, Delmas C, Hagenmuller P. NEW LAYERED STRUCTURE OBTAINED BYELECTROCHEMICAL DEINTERCALATION OF THE METASTABLE LICO02(02)VARIETY. Materials Research Bulletin,1984,19:1383-1392.
    [23] Mizushima K, Jones P C, Wiseman P J, et al. LIXCOO2(O LESS-THAN XLESS-THAN-OR-EQUAL-TO1)-A NEW CATHODE MATERIAL FOR BATTERIES OFHIGH-ENERGY DENSITY. Solid State Ionics,1981,3-4:171-174.
    [24] Molenda J. ELECTRONIC PROCESSES IN ELECTRODE MATERIALS OFAXMX2-TYPE. Physica Status Solidi B-Basic Research,1984,122:591-598.
    [25] Thomas M, Bruce P G, Goodenough J B. AC IMPEDANCE OF THE LI(1-X)COO2ELECTRODE. Solid State Ionics,1986,18-9:794-798.
    [26] Molenda J, Stoklosa A, Bak T. MODIFICATION IN THE ELECTRONIC-STRUCTURE OFCOBALT BRONZE LIXCOO2AND THE RESULTING ELECTROCHEMICALPROPERTIES. Solid State Ionics,1989,36:53-58.
    [27] Klapste B, Vondrak J, Velicka J. MnOx/C composites as electrode materials II. Reduction ofoxygen on bifunctional catalysts based on manganese oxides. Electrochimica Acta,2002,47:2365-2369.
    [28] Madhavi S, Rao G V S, Chowdari B V R, et al. Effect of Cr dopant on the cathodic behaviorof LiCoO2. Electrochimica Acta,2002,48:219-226.
    [29] Waki S, Dokko K, Ito A, et al. High-Speed voltammetry of Mn-doped LiCoO2using amicroelectrode technique. Journal of Solid State Electrochemistry,2000,4:205-209.
    [30] Holzapfel M, Schreiner R, Ott A. Lithium-ion conductors of the system LiCo1-xFexO2: afirst electrochemical investigation. Electrochimica Acta,2001,46:1063-1070.
    [31] Saadoune I, Delmas C. LiNi1-yCoyO2positive electrode materials: Relationships betweenthe structure, physical properties and electrochemical behaviour. Journal of MaterialsChemistry,1996,6:193-199.
    [32] Levasseur S, Menetrier M, Delmas C. On the dual effect of Mg doping in LiCoO2andLi1+delta CoO2: Structural, electronic properties, and Li-7MAS NMR studies. Chemistry ofMaterials,2002,14:3584-3590.
    [33] Myung S T, Kumagai N, Komaba S, et al. Effects of Al doping on the microstructure ofLiCoO2cathode materials. Solid State Ionics,2001,139:47-56.
    [34] Alcantara R, Lavela P, Tirado J L, et al. Structure and electrochemical properties ofboron-doped LiCoO2. Journal of Solid State Chemistry,1997,134:265-273.
    [35]Cho J, Kim Y J, Park B. Novel LiCoO2cathode material with Al2O3coating for a Li ion cell.Chemistry of Materials,2000,12:3788-3791.
    [36] Cho J, Kim Y J, Park B. LiCoO2cathode material that does not show a phase transition fromhexagonal to monoclinic phase. Journal of the Electrochemical Society,2001,148:A1110-A1115.
    [37] Wang Z X, Wu C A, Liu L J, et al. Electrochemical evaluation and structural characterizationof commercial LiCoO2surfaces modified with MgO for lithium-ion batteries. Journal of theElectrochemical Society,2002,149: A466-A471.
    [38] Chen Z H, Dahn J R. Effect of a ZrO2coating on the structure and electrochemistry ofLixCoO2when cycled to4.5V. Electrochemical and Solid State Letters,2002,5:A213-A216.
    [39] Cho J, Kim Y J, Kim T J, et al. Zero-strain intercalation cathode for rechargeable Li-ion cell.Angewandte Chemie-International Edition,2001,40:3367-+.
    [40] Cho J, Kim C S, Yoo S I. Improvement of structural stability of LiCoO2cathode duringelectrochemical cycling by sol-gel coating of SnO2. Electrochemical and Solid State Letters,2000,3:362-365.
    [41] Cho J. Correlation between AlPO4nanoparticle coating thickness on LiCoO2cathode andthermal stability. Electrochimica Acta,2003,48:2807-2811.
    [42] Lee J G, Kim B, Cho J, et al. Effect of AlPO4-nanoparticle coating concentration onhigh-cutoff-voltage electrochemical performances in LiCoO2. Journal of the ElectrochemicalSociety,2004,151: A801-A805.
    [43] Fang T, Duh J G, Sheen S R. Improving the electrochemical performance of LiCoO2cathodeby nanocrystalline ZnO coating. Journal of the Electrochemical Society,2005,152:A1701-A1706.
    [44] Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layered LiNi1/3Co1/3Mn1/3O-2cathode materials by ultrasonic spray pyrolysis method.Electrochimica Acta,2004,49:557-563.
    [45] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2forlithium-ion batteries. Chemistry Letters,2001,642-643.
    [46] Thackeray M M, David W I F, Bruce P G, et al. LITHIUM INSERTION INTOMANGANESE SPINELS. Materials Research Bulletin,1983,18:461-472.
    [47] Chen L Q, Huang X J, Kelder E, et al. DIFFUSION ENHANCEMENT IN LIXMN2O4.Solid State Ionics,1995,76:91-96.
    [48] David W I F, Thackeray M M, Depicciotto L A, et al. STRUCTURE REFINEMENT OFTHE SPINEL-RELATED PHASES LI2MN2O4AND LI0.2MN2O4. Journal of Solid StateChemistry,1987,67:316-323.
    [49] Eriksson T, Gustafsson T, Thomas J O. Surface structure of LiMn2O4electrodes.Electrochemical and Solid State Letters,2002,5: A35-A38.
    [50] Tarascon J M, McKinnon W R, Coowar F, et al. SYNTHESIS CONDITIONS ANDOXYGEN STOICHIOMETRY EFFECTS ON LI INSERTION INTO THE SPINELLIMN2O4. Journal of the Electrochemical Society,1994,141:1421-1431.
    [51] Xia Y Y, Kumada N, Yoshio M. Enhancing the elevated temperature performance ofLi/LiMn2O4cells by reducing LiMn2O4surface area. Journal of Power Sources,2000,90:135-138.
    [52] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrodematerials for rechargeable lithium batteries. Journal of the Electrochemical Society,1997,144:1188-1194.
    [53] Yuan L-X, Wang Z-H, Zhang W-X, et al. Development and challenges of LiFePO(4) cathodematerial for lithium-ion batteries. Energy&Environmental Science,2011,4:269-284.
    [54] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4at roomtemperature at high rates. Electrochemical and Solid State Letters,2001,4: A170-A172.
    [55] Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite.Journal of Power Sources,2001,97-8:503-507.
    [56] Ravet N, Abouimrane A, Armand M. From our readers-On the electronic conductivity ofphosphoolivines as lithium storage electrodes. Nature Materials,2003,2:702-702.
    [57] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithiumstorage electrodes. Nature Materials,2002,1:123-128.
    [58] Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practical lithium batterymaterials. Journal of Materials Chemistry,2011,21:9938-9954.
    [59] Strobel P, Lambertandron B. CRYSTALLOGRAPHIC AND MAGNETIC-STRUCTURE OFLI2MNO3. Journal of Solid State Chemistry,1988,75:90-98.
    [60] Rossouw M H, Liles D C, Thackeray M M. SYNTHESIS AND STRUCTURALCHARACTERIZATION OF A NOVEL LAYERED LITHIUM MANGANESE OXIDE,LI0.36MN0.91O2, AND ITS LITHIATED DERIVATIVE, LI1.09MN0.91O2. Journal ofSolid State Chemistry,1993,104:464-466.
    [61] Johnson C S, Korte S D, Vaughey J T, et al. Structural and electrochemical analysis oflayered compounds from Li2MnO3. Journal of Power Sources,1999,81:491-495.
    [62] Vaughey J T, Kepler K, Johnson C S, et al., Intermetallic insertion electrodes for lithiumbatteries.2000,99:280-289.
    [63] Thackeray M M, Johnson C S,Amine K, et al. LITHIUM METAL OXIDE ELECTRODESFOR LITHIUM CELLS AND BATTERIES.6677082,2004.
    [64] Rossouw M H; Thackeray M M; MANGANESE OXIDE COMPOUNDS.5166012,1992.
    [65] Thackeray M M, Rossouw M H, Dekock A, et al. THE VERSATILITY OF MNO2FORLITHIUM BATTERY APPLICATIONS. Journal of Power Sources,1993,43:289-300.
    [66] Johnson C S, Dees D W, Mansuetto M F, et al. Structural and electrochemical studies ofalpha-manganese dioxide (alpha-MnO2). Journal of Power Sources,1997,68:570-577.
    [67] Kim J S, Johnson C S, Thackeray M M. Layered xLiMO(2) center dot (1-x)Li2M ' O-3electrodes for lithium batteries: a study of0.95LiMn(0.5)Ni(0.5)O(2) center dot0.05Li(2)TiO(3). Electrochemistry Communications,2002,4:205-209.
    [68] Yoon W S, Iannopollo S, Grey C P, et al. Local structure and cation ordering in O3lithiumnickel manganese oxides with stoichiometry Li NixMn(2-x)/3Li(1-2x)/3O-2-NMR studiesand first principles calculations. Electrochemical and Solid State Letters,2004,7:A167-A171.
    [69] Lu Z H, Chen Z H, Dahn J R. Lack of cation clustering in Li NixLi1/3-2x/3Mn2/3-x/3O-2(0    [70] Pan C J, Lee Y J, Ammundsen B, et al. Li-6MAS NMR studies of the local structure andelectrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathodematerials for lithium-ion batteries. Chemistry of Materials,2002,14:2289-2299.
    [71] Lei C H, Bareno J, Wen J G, et al. Local structure and composition studies ofLi1.2Ni0.2Mn0.6O2by analytical electron microscopy. Journal of Power Sources,2008,178:422-433.
    [72] Breger J, Meng Y S, Hinuma Y, et al. Effect of high voltage on the structure andelectrochemistry of LiNi0.5Mn0.5O2: A joint experimental and theoretical study. Chemistryof Materials,2006,18:4768-4781.
    [73] Thackeray M M, Kang S-H, Johnson C S, et al. Li(2)MnO(3)-stabilized LiMO(2)(M=Mn,Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry,2007,17:3112-3125.
    [74] Kang S H, Kempgens P, Greenbaum S, et al. Interpreting the structural and electrochemicalcomplexity of0.5Li(2)MnO(3)center dot0.5LiMO(2) electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x,0<=x <=0.5). Journal of Materials Chemistry,2007,17:2069-2077.
    [75] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associatedstructural reorganization in the lithium battery cathode Li Ni0.2Li0.2Mn0.6O-2. Journal ofthe American Chemical Society,2006,128:8694-8698.
    [76] Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes(1-z) Li Li(1/3)Mn(2/3) O(2)-(z) Li Mn(0.5-y)Ni(0.5-y)Co(2y) O(2). Solid State Ionics,2009,180:50-56.
    [77] Yabuuchi N, Yoshii K, Myung S-T, et al. Detailed Studies of a High-Capacity ElectrodeMaterial for Rechargeable Batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. Journal of theAmerican Chemical Society,2011,133:4404-4419.
    [78] Wu Y, Murugan A V, Manthiram A. Surface modification of high capacity layered LiLi(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) cathodes by AlPO(4). Journal of the ElectrochemicalSociety,2008,155: A635-A641.
    [79] Wu Y, Manthiram A. High capacity, surface-modified layered LiLi(1-x)/3Mn(2-x)/3Nix/3Cox/3O-2cathodes with low irreversible capacity loss.Electrochemical and Solid State Letters,2006,9: A221-A224.
    [80] Liu J, Wang Q, Reeja-Jayan B, et al. Carbon-coated high capacity layered LiLi(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) cathodes. Electrochemistry Communications,2010,12:750-753.
    [81] Liu J, Reeja-Jayan B, Manthiram A. Conductive Surface Modification with Aluminum ofHigh Capacity Layered Li Li(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) Cathodes. Journal ofPhysical Chemistry C,2010,114:9528-9533.
    [82] Liu J, Manthiram A. Functional surface modifications of a high capacity layered LiLi(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) cathode. Journal of Materials Chemistry,2010,20:3961-3967.
    [83] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2coating on the electrochemicalperformance of Li Li0.2Mn0.54Ni0.13CO0.13O-2cathode material for lithium-ion battery.Solid State Ionics,2008,179:1794-1799.
    [84] Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF(3) coating on the performance of LiLi(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) positive electrode material for lithium-ion battery.Journal of the Electrochemical Society,2008,155: A775-A782.
    [85] Wang Q Y, Liu J, Murugan A V, et al. High capacity double-layer surface modified LiLi(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) cathode with improved rate capability. Journal ofMaterials Chemistry,2009,19:4965-4972.
    [86] Morita M, Fujisaki T, Yoshimoto N, et al. Ionic conductance behavior of polymericcomposite solid electrolytes containing lithium aluminate. Electrochimica Acta,2001,46:1565-1569.
    [87] Ulihin A S, Slobodyuk A B, Uvarov N F, et al. Conductivity and NMR study of compositesolid electrolytes based on lithium perchlorate. Solid State Ionics,2008,179:1740-1744.
    [88]冯国星.锂离子电池高容量正极材料研究:[博士学位论文].北京:中国科学院物理研究所,2010.
    [89] Armand M, Dalard F, Deroo D, et al. MODELING THE VOLTAMMETRIC STUDY OFINTERCALATION IN A HOST STRUCTURE-APPLICATION TO LITHIUMINTERCALATION IN RUO2. Solid State Ionics,1985,15:205-210.
    [90] Ohzuku T, Sawai K, Hirai T. TOPOTACTIC2-PHASE REACTION OF RUTHENIUMDIOXIDE (RUTILE) IN LITHIUM NONAQUEOUS CELL. Journal of the ElectrochemicalSociety,1990,137:3004-3010.
    [91] Appapillai A T, Mansour A N, Cho J, et al. Microstructure of LiCoO2with and without"AIPO(4)" nanoparticle coating: Combined STEM and XPS studies. Chemistry of Materials,2007,19:5748-5757.
    [92] Kim J S, Johnson C S, Vaughey J T, et al. Pre-conditioned layered electrodes for lithiumbatteries. Journal of Power Sources,2006,153:258-264.
    [93] Kang S H, Johnson C S, Vaughey J T, et al. The effects of acid treatment on theelectrochemical properties of0.5Li2MnO3center dot0.5LiNi0.44Co0.25Mn0.31O2electrodes in lithium cells. Journal of the Electrochemical Society,2006,153: A1186-A1192.
    [94] Paik Y, Grey C P, Johnson C S, et al. Lithium and deuterium NMR studies of acid-leachedlayered lithium manganese oxides. Chemistry of Materials,2002,14:5109-5115.
    [95] Tang W P, Kanoh H F, Yang X J, et al. Preparation of plate-form manganese oxide byselective lithium extraction from monoclinic Li2MnO3under hydrothermal conditions.Chemistry of Materials,2000,12:3271-3279.
    [96] Benedek R, Thackeray M M. Reaction energy for LiMn2O4spinel dissolution in acid.Electrochemical and Solid State Letters,2006,9: A265-A267.
    [97] Kubo K, Arai S, Yamada S, et al. Synthesis and charge-discharge properties ofLi1+xNi1-x-yCoyO2-zFz. Journal of Power Sources,1999,81:599-603.
    [98] Naghash A R, Lee J Y. Lithium nickel oxyfluoride (Li1-zNi1+zFyO2-y) and lithiummagnesium nickel oxide (Li1-z(MgxN1-x)(1+z)O-2) cathodes for lithium rechargeablebatteries II. Electrochemical investigations. Electrochimica Acta,2001,46:2293-2304.
    [99] Kang S H, Thackeray M M. Stabilization of xLi(2)MnO(3)center dot(1-x)LiMO2electrodesurfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions. Journal of theElectrochemical Society,2008,155: A269-A275.
    [100] Kang S H, Amine K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55-0.5z)O-2-F-z(z) cathodematerials for Li-ion secondary batteries. Journal of Power Sources,2005,146:654-657.
    [101] Kubo K, Fujiwara M, Yamada S, et al. Synthesis and electrochemical properties for LiNiO2substituted by other elements. Journal of Power Sources,1997,68:553-557.
    [102] Kumagai N, Kim J-M, Tsuruta S, et al. Structural modification of Li Li0.27Co0.20Mn0.53O-2by lithium extraction and its electrochemical property as the positive electrode forLi-ion batteries. Electrochimica Acta,2008,53:5287-5293.
    [103] Ito A, Li D, Ohsawa Y, et al. A new approach to improve the high-voltage cyclicperformance of Li-rich layered cathode material by electrochemical pre-treatment. Journalof Power Sources,2008,183:344-346.
    [104] Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layeredcathode material Li Ni(0.17)Li(0.2)Co(0.07)Mn(0.56) O(2). Journal of Power Sources,2010,195:567-573.
    [105] Gao J, Kim J, Manthiram A. High capacity Li Li(0.2)Mn(0.54)Ni(0.13)Co(0.13)O(2)-V(2)O(5) composite cathodes with low irreversible capacity loss for lithium ionbatteries. Electrochemistry Communications,2009,11:84-86.
    [106] Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered LiLi(0.2)Mn(0.54)Ni(0.13)Co(0.13) O(2) cathode by blending with other lithium insertionhosts. Journal of Power Sources,2009,191:644-647.
    [107] Wei G-Z, Lu X, Ke F-S, et al. Crystal Habit-Tuned Nanoplate Material of LiLi(1/3-2x/3)Ni(x)Mn(2/3-x/3) O(2) for High-Rate Performance Lithium-Ion Batteries.Advanced Materials,2010,22:4364-+.
    [108] Kim J S, Johnson C S, Vaughey J T, et al. Electrochemical and structural properties ofxLi(2)M'O-3center dot(1-x)LiMn0.5Ni0.5O2eIectrodes for lithium batteries (M'=Ti, Mn,Zr;0<=x <=0.3). Chemistry of Materials,2004,16:1996-2006.
    [109] Johnson C S, Li N, Lefief C, et al. Synthesis, Characterization and Electrochemistry ofLithium Battery Electrodes: xLi(2)MnO(3)center dot(1-x)LiMn0.333Ni0.333Co0.333O2(0<=x <=0.7). Chemistry of Materials,2008,20:6095-6106.
    [110] Meng Y S, Ceder G, Grey C P, et al. Cation ordering in layered O3Li Ni(x)Li(1/3-2x/3)Mn(2/3-x/3) O(2)(0<=x <=1/2) compounds. Chemistry of Materials,2005,17:2386-2394.
    [111]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术.北京:北京工业出版社,2008.
    [112] Lu Z H, Dahn J R. Structure and electrochemistry of layered Li CrxLi(1/3-x3)Mn(2/3-2x/3)O-2. Journal of the Electrochemical Society,2002,149: A1454-A1459.
    [113] Wu H M, Tu J P, Chen X T, et al. Electrochemical study on LiMn2O4as cathode materialfor lithium ion batteries. Journal of Electroanalytical Chemistry,2006,586:180-183.
    [114] Zhang L Q, Muta T, Noguchi H, et al. Peculiar electrochemical behaviors of (1-x)LiNiO2center dot xLi(2)TiO(3) cathode materials prepared by spray drying. Journal of PowerSources,2003,117:137-142.
    [115]苏继桃,苏玉长,赖智广.et al.共沉淀法制备镍、钴、锰复合碳酸盐的热力学分析.硅酸盐学报,2006,34:695-698.
    [116] Hai G, Yanmin Q. Preparation, structural and photoluminescent properties of CeO2:Eu3+films derived by Pechini sol-gel process. Applied Surface Science,2008,254.
    [117]刘洪波,张宝庆,张红波. et al.三元FeCl3-AlCl3-GIC的制备及其插层反应过程的研究.新碳型材料,2002,17:22-25.
    [118] Delmas C, Menetrier M, Croguennec L, et al. Lithium batteries: a new tool in solid statechemistry. International Journal of Inorganic Materials,1999,1:11-19.
    [119]王建棋,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论.北京:国防工业出版社,1992.
    [120] Madhavi S, Rao G V S, Chowdari B V R, et al. Synthesis and cathodic properties ofLiCo1-yRhyO2(0<=y <=0.2.) and LiRhO2. Journal of the Electrochemical Society,2001,148: A1279-A1286.
    [121] Carlier D, Menetrier M, Delmas C. Li-7MAS NMR study of electrochemicallydeintercalated LixNi0.30Co0.70O2phases: evidence of electronic and ionic mobility, andredox processes. Journal of Materials Chemistry,2001,11:594-603.
    [122] Carley A F, Jackson S D, O'Shea J N, et al. The formation and characterisation of Ni3+-anX-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O. SurfaceScience,1999,440: L868-L874.
    [123] Amine K, Tukamoto H, Yasuda H, et al. A new three-volt spinel Li1+xMn1.5Ni0.5O4forsecondary lithium batteries. Journal of the Electrochemical Society,1996,143:1607-1613.
    [124] Mansour A N, Melendres C A, Poon S J, et al. An x-ray absorption near-edge spectroscopicstudy of the structure of passive films on amorphous Al-Fe-Ce alloys. Journal of theElectrochemical Society,1996,143:614-619.
    [125] Shaju K M, Rao G V S, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O-2as cathode for Li-ion batteries. Electrochimica Acta,2002,48:145-151.
    [126] Spahr M E, Novak P, Schnyder B, et al. Characterization of layered lithium nickelmanganese oxides synthesized by a novel oxidative coprecipitation method and theirelectrochemical performance as lithium insertion electrode materials. Journal of theElectrochemical Society,1998,145:1113-1121.
    [127] Lu Z H, Dahn J R. Understanding the anomalous capacity ofLi/LiNixLi(1/3-2x/3)Mn(2/3-x/3O-2cells using in situ X-ray diffraction andelectrochemical studies. Journal of the Electrochemical Society,2002,149: A815-A822.
    [128] Tsai Y W, Hwang B J, Ceder G, et al. In-situ X-ray absorption spectroscopic study onvariation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2cathodematerial during electrochemical cycling. Chemistry of Materials,2005,17:3191-3199.
    [129] Treuil N, Labrugere C, Menetrier M, et al. Relationship between chemical bonding natureand electrochemical property of LiMn2O4spinel oxides with various particle sizes:"Electrochemical grafting" concept. Journal of Physical Chemistry B,1999,103:2100-2106.
    [130]钟开富.高容量锂离子电池材料研究:[博士学位论文].北京:中国科学院物理研究所,2011.
    [131] Chew S Y, Guo Z P, Wang J Z, et al. Novel nano-silicon/polypyrrole composites for lithiumstorage. Electrochemistry Communications,2007,9:941-946.
    [132] Guo B, Kong Q, Zhu Y, et al. Electrochemically Fabricated Polypyrrole-Cobalt-OxygenCoordination Complex as High-Performance Lithium-Storage Materials. Chemistry-aEuropean Journal,2011,17:14878-14884.
    [133] Wang G X, Yang L, Chen Y, et al. An investigation of polypyrrole-LiFePO4compositecathode materials for lithium-ion batteries. Electrochimica Acta,2005,50:4649-4654.
    [134] Feng C Q, Chew S Y, Guo Z P, et al. An investigation of polypyrrole-LiV3O8compositecathode materials for lithium-ion batteries. Journal of Power Sources,2007,174:1095-1099.
    [135] Wang H, Zeng Y, Huang K, et al. Improvement of cycle performance of lithium ion cellLiMn2O4/LixV(2)O(5) with aqueous solution electrolyte by polypyrrole coating on anode.Electrochimica Acta,2007,52:5102-5107.
    [136] Zhang P, Zhang L, Ren X, et al. Preparation and electrochemical properties ofLiNi1/3Co1/3Mn1/3O2–PPy composites cathode materials for lithium-ion battery. SyntheticMetals,2011,161:1092-1097.
    [137] Li Y F. Effect of anion concentration on the kinetics of electrochemical polymerization ofpyrrole. Journal of Electroanalytical Chemistry,1997,433:181-186.
    [138]查全性.电极过程动力学导论.北京:科学出版社,2002.
    [139] Lin-Vien D, Colthup N B, Fateley W G, et al., Academic Press: Boston, U.S.,1991.
    [140] Nakanishi K, Solomon P H, Holden-Day Press: San Francisco,U.S.,1977.
    [141]史美伦.交流阻抗谱原理与应用.北京:国防工业出版社,2001.
    [142]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [143] Zaban A, Zinigrad E, Aurbach D. Impedance spectroscopy of Li electrodes.4. A generalsimple model of the Li-solution interphase in polar aprotic systems. Journal of PhysicalChemistry,1996,100:3089-3101.
    [144] Aurbach D, Eineli Y, Markovsky B, et al. THE STUDY OF ELECTROLYTE-SOLUTIONSBASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LIBATTERIES.2. GRAPHITE-ELECTRODES. Journal of the Electrochemical Society,1995,142:2882-2890.
    [145] Aurbach D, Zaban A, Schechter A, et al. THE STUDY OF ELECTROLYTE-SOLUTIONSBASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LIBATTERIES.1. LI METAL ANODES. Journal of the Electrochemical Society,1995,142:2873-2882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700