锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用基于密度泛函理论(GGA+U)的第一性原理计算系统研究了LiMn_2O_4的磁性和原子结构。我们计算得出LiMn_2O_4的基态磁性构型为沿[110]方向的反铁磁性。另外,计算模拟得到发生J-T效应的LiMn_2O_4模型,该体系中Mn~(3+)和Mn~(4+)混合存在,且Mn~(3+): Mn~(4+)=1:1,与实验结果相符。
     应用第一性原理计算系统研究了LiNi_(0.5)Mn_(1.5)O_4的磁性和原子结构。结果显示,Fd-3m和P4332空间群的LiNi_(0.5)Mn_(1.5)O_4都具有亚铁磁性。此外,我们还得出化学计量比LiNi_(0.5)Mn_(1.5)O_4为P4332空间群结构,非化学计量比LiNi_(0.5)Mn_(1.5)O_4-δ为Fd-3m空间群结构。同时,我们发现Fd-3m空间群LiNi_(0.5)Mn_(1.5)O_4-δ的导电性比P4332空间群LiNi_(0.5)Mn_(1.5)O_4的好主要是由氧空位造成的,而不是本身原子排列造成的。
     应用第一性原理计算系统研究了极化子在LiMn_2O_4和LiNi_(0.5)Mn_(1.5)O_4(Fd-3m和P4332)中的迁移。我们计算模拟得到了极化子在LiMn_2O_4和LiNi_(0.5)Mn_(1.5)O_4中迁移的初末态结构,并计算了其迁移势垒。结果表明,在LiMn_2O_4材料中极化子在Mn~(3+)与Mn4+离子之间迁移,而在LiNi_(0.5)Mn_(1.5)O_4材料中极化子在Ni2+与Ni3+离子之间迁移。
     应用第一性原理计算系统研究了LiMn_2O_4和LiNi_(0.5)Mn_(1.5)O_4(Fd-3m和P4332)的缺陷。结果表示,在LiMn_2O_4材料中,过量Li占据在16c间隙位置以及Mn位的缺陷最易自发形成;在LiNi_(0.5)Mn_(1.5)O_4(Fd-3m和P4_332)材料中,过量Li占据在16c间隙位置和Ni位的缺陷最易自发形成。
Magnetic properties and crystal structures of LiMn_2O_4are investigated using thefirst-principles density functional theory taken into account with the on-site Coulombinteraction within the GGA+U scheme. Results indicate that the magnetic groundstate of LiMn_2O_4corresponds to an antiferromagnetic order with Mn chains along anyone of [110] direction. Jahn-Teller-type local atomic distortion of LiMn_2O_4is found tobe a type of mixed-valent compound containing a1:1mixture of Mn~(3+)and Mn4+,which is in good agreement with the experimental conclusion.
     Magnetic properties and crystal structure of LiNi_(0.5)Mn_(1.5)O_4have beeninvestigated using the first-principles density functional theory within the GGA+Uscheme. Calculations indicate that the magnetic ground state of LiNi_(0.5)Mn_(1.5)O_4(Fd-3m and P4332) corresponds to a ferrimagnetic order. It is also demonstrated thatnonstoichiometric LiNi_(0.5)Mn_(1.5)O_4δhas the space group of Fd-3m and stoichiometricLiNi_(0.5)Mn_(1.5)O_4has the space group of P4332. In addition, we well explain thatLiNi_(0.5)Mn_(1.5)O_4δhaving the space group of Fd-3m shows higher electrochemicalconductivity than LiNi_(0.5)Mn_(1.5)O_4with the space group of P4332due to the existenceof O-vacancy in the former.
     Migration of small polarons in LiMn_2O_4and LiNi_(0.5)Mn_(1.5)O_4(Fd-3m and P4332)have been investigated using the first-principles density functional theory within theGGA+U scheme. Based on the initial and final states of small polarons, we calculatethe respective migration energy barriers of small polaron migration in LiMn_2O_4andLiNi_(0.5)Mn_(1.5)O_4. Results indicate that small polarons in LiMn_2O_4migrate betweenMn~(3+)and Mn4+ions, whereas small polarons in LiNi_(0.5)Mn_(1.5)O_4only migrate betweenNi2+and Ni3+ions.
     Defect behaviors in LiMn_2O_4and LiNi_(0.5)Mn_(1.5)O_4(Fd-3m and P4332) have beeninvestigated using the first-principles density functional theory within the GGA+Uscheme. Results indicate the most energetically favorable defect in LiMn_2O_4is excess Li located in empty16c position and substituting for Mn in16d position, whereas inLiNi_(0.5)Mn_(1.5)O_4that is Li located in empty16c position and substituting for Ni in16dposition.
引文
[1]马玉茹,孙少瑞,张丽娟,夏定国.锂离子电池正极材料的研究进展[J].新材料产业,2009,3:9-14.
    [2]吴宇平,张汉平,吴锋.绿色电源材料[M].化学工业出版社,2008,4.
    [3] Xu B, Fell C R, Chi M F, Meng Y S. Identifying surface structural changes inlayered Li-excess nickel manganese oxides in high voltage lithium ion batteries:A joint experimental and theoretical study[J]. Energy Environ. Sci.,2011,4:2223-2233.
    [4]李敏,李荣华,王文继. Li3PO4包覆LiMn2O4正极材料的结构表征和电化学性能[J].化学研究,2007.
    [5] Robertson A D, Lu S H, Ho ward W F. M3+-modified LiMn2O4spinelintercalation cathodes Ⅱ. Electrochemical stabilization by Cr3+[J]. J. Electrochem.Soc.,1997,144(10):3500-3505.
    [6] Mohri M, Yanagisawa N, Tajima Y, Tanaka H, Mitate T, Nakajima S, Yoshida M,Yoshimoto Y, Suzuki T, Wada H. Rechargeable lithium battery based on pyrolyticcarbon as a negative electrode[J]. J. Power Sourees,1989,26(3-4):545-551.
    [7] Wu C, Wu F, Chen L Q, Huang X J. Fabrications and electrochemical propertiesof fluorine-modified spinel LiMn2O4for lithium ion batteries[J]. Solid StateIonics,2002,152-153:335-339.
    [8] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A.Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries[J].J. Mater. Chem.,2007,17:3112-3125.
    [9] Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. Advances inmanganese-oxide ‘composite’ electrodes for lithium-ion batteries[J]. J. Mater.Chem.,2005,15:2257-2267.
    [10]张文.锂离子电池用碳负极材料[J].电池,1997,27(3):232-135.
    [11]程新群.化学电源[M].化学工业出版社,2008,5.
    [12]Scrosati B. Reeent advances in lithium ion batteries [J]. Electrochim. Acta,2000,45(15-16):2461-2466.
    [13]Koksbang R, Barker J, Shi H. Cathode materials for lithium roeking chairBatteries[J]. Solid State Ionies,1996,84(1-2): l-21.
    [14]Ghosh P, Mahanty S, Basu R N. Lanthanum-doped LiCoO2cathode with highrate capability[J]. Electrochim. Acta,2009,54(5):1654-1661.
    [15]Rao M C, Hussain O M. Synthesis and electrochemical properties of Ti dopedLiCoO2thin film cathodes[J]. J. Alloys Compd.,2010,491(1-2):503-506.
    [16]Lala S M, Montoro L A, Lemos V, Abbate M, Rosolen J M. The negative andpositive structural effects of Ga doping in the electrochemical performance ofLiCoO2[J]. Electrochim. Acta,2005,51(1):7-13.
    [17]Nobili F, Dsoke S, Croce F, Marassi R. An ac impedance spectroscopic study ofMg-doped LiCoO2at different temperatures: electronic and ionic transportproperties[J]. Electrochim. Acta,2005,50(11):2307-2313.
    [18]Mladenov M, Stoyanova R, Zhecheva E, Vassilev S. Effect of Mg doping andMgO-surface modification on the cycling stability of LiCoO2electrodes[J].Electrochem. Commun.,2001,3(8):410-416.
    [19]Nobili F, Croce F, Tossici R, Meschini I, Reale P, Marassi R. Sol-gel synthesisand electrochemical characterization of Mg-/Zr-doped LiCoO2cathodes forLi-ion batteries[J]. J. Power Sources,2012,197(1):276-284.
    [20]Stoyanova R, Zhecheva E, Zarkova L. Effect of Mn-substitution for Co on thecrystal structure and acid delithiation of LiMnyCo1-yO2solid solutions[J]. SolidState Ionics,1994,73(3-4):233-240.
    [21]Waki S, Dokko K, Itoh T, Nishizawa M, Abe T, Uchida I. High-Speedvoltammetry of Mn-doped LiCoO2using a microelectrode technique[J]. J. SolidState Electrochem.,2000,4(4):205-209.
    [22]Valanarasu S, Chandramohan R, Somasundaram R M, Srikumar S R. Structuraland electrochemical properties of Eu-doped LiCoO2[J]. J. Mater. Chem.,2011,22(2):151-157.
    [23]Dou S M, Wang W L, Li H J, Xin X D. Synthesis and electrochemicalperformance of LiNi0.475Mn0.475Al0.05O2as cathode material for lithium-ionbattery from Ni-Mn-Al-O precursor[J]. J. Solid State Electrochem.,2011,15(4):747-751.
    [24]Myung S T, Kumagai N, Komaba S, Chung H T. Effects of Al doping on themicrostructure of LiCoO2cathode materials[J]. Solid State Ionics,2001,139(1-2):47-56.
    [25]Stoyanova R, Barra A L, Yoncheva M, Zhecheva E, Shinova E, Tzvetkova P,Simova S. High-Frequency Electron Paramagnetic Resonance Analysis of theOxidation State and Local Structure of Ni and Mn Ions in Ni, Mn-Co dopedLiCoO2[J]. Inorg. Chem.,2010,49(4):1932-1941.
    [26]Shi Z Q, Huang M, Huai Y J, Lin Z J, Yang K R, Hu X B, Den g Z H. Synthesisof LiFePO4/C cathode material from ferric oxide and organic lithium salts[J].Electrochim. Acta,2011,56(11):4263-4267.
    [27]Lou X M, Zhang Y X. Synthesis of LiFePO4/C cathode materials with bothhigh-rate capability and high tap density for lithium-ion batteries[J]. J. Mater.Chem.,2011,21:4156-4160.
    [28]Ong S P, Chevrier V L, Ceder G. Comparison of small polaron migration andphase separation in olivine LiMnPO4and LiFePO4using hybrid densityfunctional theory[J]. Phys. Rev. B,2011,83(7):075112.
    [29]Sun C S, Zhou Z, Xu Z G, Wang D G, Wei J P, Bian X K, Yan J. Improvedhigh-rate charge/discharge performances of LiFePO4/C via V-doping[J]. J. PowerSources,2009,193(2):841-845.
    [30]Zhou X F, Wang F, Zhu Y M, Liu Z P. Graphene modified LiFePO4cathodematerials for high power lithium ion batteries[J]. J. Mater. Chem.,2011,21:3353-3358.
    [31]Sun C W, Rajasekhara S, Goodenough J B, Zhou F. Monodisperse PorousLiFePO4Microspheres for a High Power Li-Ion Battery Cathode[J]. J. Am. Chem.Soc.,2011,133(7):2132-2135.
    [32]Liu J, Conry T E, Song X Y, Doeff M M, Richardson T J. Nanoporous sphericalLiFePO4for high performance cathodes[J]. Energy Environ. Sci.,2011,4:885-888.
    [33]Dimesso L, Jacke S, Spanheimer C, Jaegermann W. Investigation on3-dimensional carbon foams/LiFePO4composites as function of the annealingtime under inert atmosphere[J]. J. Alloys Compd.,2011,509(9):3777-3782.
    [34]Zane D, Carewska M, Scaccia S, Cardellini F, Prosini P P. Factor affecting rateperformance of undoped LiFePO4[J]. Electrochim. Acta,2004,49(25):4259-4271.
    [35]Nakamura T, Miwa Y, Tabuchi M, Yamada Y. Structural and surface modificationof LiFePO4olivine particles and their electrochemical properties[J]. J.Electrochem. Soc.,2006,153(6): A1108-A1114.
    [36]Bilecka I, Hintennach A, Rossell M D, Xie D, Novák P, Niederberger M.Microwave-assisted solution synthesis of doped LiFePO4with high specificcharge and outstanding cycling performance[J]. J. Mater. Chem.,2011,21:5881-5890.
    [37]Ma J, Li B H, Du H D, Xu C J, Kang F Y. The Effect of Vanadium onPhysicochemical and Electrochemical Performances of LiFePO4Cathode forLithium Battery[J]. J. Electrochem. Soc.,2011,58: A26-A32.
    [38]Wu Y M, Wen Z H, Li J H. Hierarchical Carbon-Coated LiFePO4NanoplateMicrospheres with High Electrochemical Performance for Li-Ion Batteries[J].Adv. Mater.,2011,23(9):1126-1129.
    [39]Zhu C B, Yu Y, Gu L, Weichert K, Maier J. Electrospinning of HighlyElectroactive Carbon-Coated Single-Crystalline LiFePO4Nanowires[J]. Angew.Chem. Int. Ed.,2011,50(28):6278-6282.
    [40]Gupta A, Seo J H, Zhang X C, Du W B, Sastry A M, Shyy W. Effective TransportProperties of LiMn2O4Electrode via Particle-Scale Modeling[J]. J. Electrochem.Soc.,2011,158(5): A487-A497.
    [41]张国昀,姜长印,万春荣,何培炯.以Mn3O4为前驱体的LiMn2O4及电化学性能[J].无机材料学报,2001,16(4):667-671.
    [42]Bai Y, Wu C, Wu F, Wu B R, Chen S. Electrochemical Studies on Al2O3-CoatedSpinel LiMn2O4for Lithium Ion Batteries[J]. Mater. Sci. Forum,2011,37:675-677.
    [43]Cho M Y, Roh K C, Park S M, Lee J W. Effects of CeO2coating uniformity onhigh temperature cycle life performance of LiMn2O4[J]. Mater. Lett.,2011,65(13):2011-2014.
    [44]Wu X M, Chen S, Ma M Y, Liu J B. Synthesis of Co-coated lithium manganeseoxide and its characterization as cathode for lithium ion battery[J]. Chem. Mater.Sci.,2011,17(1):35-39.
    [45]Xu H, Li G, Han E, Wang S, Zhang X B. Influences of Calcination Temperatureon the Crystal Structure and Electrochemical Performance of Co-DopedLiMn2O4[J]. Synth. React. Inorg. Met. Org. Chem.,2011,41(10):1338-1341.
    [46]Banov B, Todorov Y, Trifonova A, Momchilov A, Manev V. LiMn2-xCoxO4cathode with enhanced cycleability[J]. J. Power Sources,1997,68(2):578-581.
    [47]Thirunakaran R, Ramesh Babu B, Kalaiselvi N, Periasamy P, Prem Kumar T,Renganathan N G, Raghavan M, Muniyandi N. Electrochemical behaviour ofLiMyMn2-yO4(M=Cu, Cr;0≤y≤0.4)[J]. Bull. Mater. Sci.,2001,24(1):51-55.
    [48]Xu W M, Yuan A B, Tian L, Wang Y Q. Improved high-rate cyclability of sol-gelderived Cr-doped spinel LiCryMn2-yO4in an aqueous electrolyte[J]. J. Appl.Electrochem.,2011,41(4):453-460.
    [49]Pan W G, Ren J X, Li Y G. Electrochemical Performance Ni Doped SpinelLiMn2O4Cathode for Lithium Ion Batteries[J]. Adv. Mater. Res.,2012,347-353:290-300.
    [50]Park S H, Oh S W, Kang S H, Belharouak I, Amine K, Sun Y K. Comparativestudy of different crystallographic structure of LiNi0.5Mn1.5O4-δcathodes withwide operation voltage(2.0-5.0V)[J]. Electrochim. Acta,2007,52(25):7226-7230.
    [51]Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M. Positive electrodematerials with high operating voltage for lithium batteries: LiCryMn2-yO4(0≤y≤1)[J]. Solid State Ionics,1995,81(3-4):167-170.
    [52]Eli Y E, Howard W F, Lu S H, Mukerjee S, Mcbreen J, Vaughey J T, ThackerayM M. LiMn2-xCuxO4Spinels(0.1≤x≤0.5): A new Class of5V Cathode Materialsfor Li Batteries[J]. J. Electrochem. Soc.,1998,145(4):1238-1244.
    [53]Amine K, Tukamoto H, Yasuda H, Fujita Y. Preparation and electrochemicalinvestigation of LiMn2-xMexO4(Me: Ni, Fe, and x=0.5,1) cathode materials forsecondary lithium batteries[J]. J. Power Sources,1997,68(2):604-608.
    [54]Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4spinel for5V class cathode material of Li-ion secondary battery[J]. Electrochim. Acta,2004,49(2):219-227.
    [55]Wu X L, Kim S B. Improvement of electrochemical properties of LiNi0.5Mn1.5O4spinel[J]. J. Power Sources,2002,109(1):53-57.
    [56]Yi T F, Xie Y, Ye M F, Jiang L J, Zhu R S, Zhu Y R. Recent developments in thedoping of LiNi0.5Mn1.5O4cathode material for5V lithium-ion batteries[J]. Chem.Mater. Sci.,2011,17(5):383-389.
    [57]Shigemura H, Tabuchi M, Kobayashi H, Sakaebe H, Hirano A, Kageyama H.Structural and electrochemical properties of Li(Fe, Co)xMn2-xO4solid solution as5V positive electrode materials for Li secondary batteries [J]. J. Mater. Chem.,2002,12:1882-1891.
    [58]Kim J H, Myung S T, Yoon C S, Kang S G, Sun Y K. Comparative Study ofLiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4Cathodes Having Two CrystallographicStructures: Fd-3m and P4332[J]. Chem. Mater.,2004,16(5):906-914.
    [59]Shi S Q, Ouyang C, Wang D S, Chen L Q, Huang X J. The effect of cation dopingon spinel LiMn2O4: a first-principles investigation[J]. Solid State Commun.,2003,126(9):531-534.
    [60]Arroyo y de Dompablo M E, Morales J. A First-Principles Investigation of theRole Played by Oxygen Deficiency in the Electrochemical Properties ofLiCu0.5Mn1.5O4-δSpinels[J]. J. Electrochem. Soc.,2006,153(11): A2098-A2102.
    [1] Parr R G, Yang W. Density Functional Theory of Atoms and Molecules[M]. NewYork: Oxford University,1989:47-66.
    [2] Speybroeck V V, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, LesthaegheD, Ghysels A, Marin G B, Waroquier M. First Principle Kinetic Studies ofZeolite-Catalyzed Methylation Reactions[J]. J. Am. Chem. Soc.,2011,133(4):888-899.
    [3] Bubin S, Stanke M, Adamowicz L. Vibrational transitions of the7LiH+ioncalculated without the Born-Oppenheimer approximation and with leadingrelativistic corrections[J]. J. Chem. Phys.,2011,134:024103.
    [4] Rahinov I, Cooper R, Matsiev D, Bartels C, Auerbach D J, Wodtke A M.Quantifying the breakdown of the Born-Oppenheimer approximation in surfacechemistry[J]. Phys. Chem. Chem. Phys.,2011,13:12680-12692.
    [5] Khoromskij B N, Khoromskaia V, Flad H J. Numerical Solution of theHartree-Fock Equation in Multilevel Tensor-Structured Format[J]. J. Sci.Comput.,2011,33:45-65.
    [6] Berski S, Gordon A J. Comparative density functional theory andpost-Hartree-Fock(CCSD, CASSCF) studies on the electronic structure ofhalogen nitrites ClONO and BrONO using quantum chemical topology[J]. J.Chem. Phys.,2011,135:094303.
    [7] Thomas H. The calculation of atomic fields[J]. Proc. Camb. Phil. Soc.,1927,23(5):542-548.
    [8] Adelstein N, Simon Mun B, Ray H L, Ross Jr P N, Neaton J B, De Jonghe L C.Structure and electronic properties of cerium orthophosphate: Theory andexperiment[J]. Phys. Rev. B,2011,83:205104.
    [9] Qian T, Xu N, Shi Y B, Nakayama K, Richard P, Kawahara T, Sato T, Takahashi T,Neupane M, Xu Y M, Wang X P, Xu G, Dai X, Fang Z, Cheng P, Wen H-H, DingH. Quasinested Fe orbitals versus Mott-insulating V orbitals in superconductingSr2VFeAsO3as seen from angle-resolved photoemission[J]. Phys. Rev. B,2011,83:140513(R).
    [10]Gou G Y, Bennett J W, Takenaka H, Rappe A M. Post density functionaltheoretical studies of highly polar semiconductive Pb(Ti1-xNix)O3-xsolid solutions:Effects of cation arrangement on band gap[J]. Phys. Rev. B,2011,83:205115.
    [11]Perdew T P, Zunger A. Self-interaction Correction to Density-FunctionalApproximations for Many-Electron Systems[J]. Phys. Rev. B,1981,23(10):5048-5079.
    [12]Ceperley D M, Alder B L. Ground State of the Electron Gas by a StochasticMethod[J]. Phys. Rev. Lett.,1980,45(7):566-569.
    [13]Sadigh B, Erhart P, Aberg D, Trave A, Schwegler E, Bude J. First-PrinciplesCalculations of the Urbach Tail in the Optical Absorption Spectra of SilicaGlass[J]. Phys. Rev. Lett.,2011,106:027401.
    [14]Sun J W, Marsman M, Ruzsinszky A, Kresse G, Perdew J P. Improved latticeconstants, surface energies, and CO desorption energies from a semilocal densityfunctional[J]. Phys. Rev. B,2011,83:121410(R).
    [15]Zhang C, Donadio D, Gygi F, Galli G. First Principles Simulations of the InfraredSpectrum of Liquid Water Using Hybrid Density Functionals[J]. J. Chem. TheoryComput.,2011,7(5):1443-1449.
    [16]Vidossich P, Ortu o M á, Ujaque G, Lledós A. Do Metal Water HydrogenBonds Hold in Solution? Insight from Ab Initio Molecular DynamicsSimulations[J]. Chem. Phys. Chem.,2011,12(9):1666-1668.
    [17]Goerigk L, Grimme S. Efficient and Accurate Double-Hybrid-Meta-GGADensity Functionals-Evaluation with the Extended GMTKN30Database forGeneral Main Group Thermochemistry, Kinetics, and Noncovalent Interactions[J].J. Chem. Theory Comput.,2011,7(2):291-309.
    [18]Peverati R, Truhlar D G. Improving the Accuracy of Hybrid Meta-GGA DensityFunctionals by Range Separation[J]. J. Phys. Chem. Lett.,2011,2(21):2810-2817.
    [19]Jain A, G Hautier, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G.Formation enthalpies by mixing GGA and GGA+U calculations[J]. Phys. Rev. B,2011,84:045115.
    [20]Bl chl P E. Projector augmented-wave method[J]. Phys. Rev. B,1994,50(24):17953-17979.
    [21]Bachelet G B, Hamann D R, Schluter M. Pseudopotentials that work: From Hto Pu[J]. Phys. Rev. B,1982,26(8):4199-4228.
    [1]徐晓光,魏英进,孟醒,王春忠,黄祖飞,陈岗. Mg, Al掺杂对LiCoO2体系电子结构影响的第一原理研究[J].物理学报,2004,53(1):210-213.
    [2]李佳,杨传铮,张熙贵,张建,夏保佳.石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究[J].物理学报,2009,58(9):6573-6581.
    [3] Lin Y, Yang Y, Ma H W, Cui Y, Mao W L. Compressional Behavior of Bulk andNanorod LiMn2O4under Nonhydrostatic Stress[J]. J. Phys. Chem.,2011,115:9844-9849.
    [4] Cheng F Y, Wang H B, Zhu Z Q, Wang Y, Zhang T R, Tao Z L, Chen J. PorousLiMn2O4nanorods with durable high-rate capability for rechargeable Li-ionbatteries[J]. Energy Environ. Sci.,2011,4:3668-3675.
    [5] Du K, Zhang H. Preparation and Performance of Spinel LiMn2O4by A CitrateRoute with Combustion[J]. J. Alloys Compd.,2003,352(1-2):250-254.
    [6] Xu H, Li G, Han E, Wang S, Zhang X B. Influences of Calcination Temperatureon the Crystal Structure and Electrochemical Performance of Co-DopedLiMn2O4[J]. Synth. React. Inorg. Met. Org. Chem.,2011,41(10):1338-1341.
    [7] Thirunakaran R, Ramesh Babu B, Kalaiselvi N, Periasamy P, Prem Kumar T,Renganathan N G, Raghavan M, Muniyandi N. Electrochemical behaviour ofLiMyMn2-yO4(M=Cu, Cr;0≤y≤0.4)[J]. Bull. Mater. Sci.,2001,24(1):51-55.
    [8] Yi T F, Xie Y, Ye M F, Jiang L J, Zhu R S, Zhu Y R. Recent developments in thedoping of LiNi0.5Mn1.5O4cathode material for5V lithium-ion batteries[J]. Chem.Mater. Sci.,2011,17(5):383-389.
    [9] Park S H, Oh S W, Kang S H, Belharouak I, Amine K, Sun Y K. Comparativestudy of different crystallographic structure of LiNi0.5Mn1.5O4-δcathodes withwide operation voltage(2.0-5.0V)[J]. Electrochim. Acta,2007,52(25):7226-7230.
    [10]Pan W G, Ren J X, Li Y G. Electrochemical Performance Ni Doped SpinelLiMn2O4Cathode for Lithium Ion Batteries[J]. Adv. Mater. Res.,2012,347-353:290-300.
    [11]Yang T Y, Zhang N Q, Lang Y, Sun K N. Enhanced rate performance ofcarbon-coated LiNi0.5Mn1.5O4cathode material for lithium ion batteries[J].Electrochim. Acta,2011,56(11):4058-4064.
    [12]Zhong G B, Wang Y Y, Zhang Z C, Chen C H. Effects of Al substitution for Niand Mn on the electrochemical properties of LiNi0.5Mn1.5O4[J]. Electrochim. Acta,2011,56(18):6554-6561.
    [13]Amdouni N, Zaghibc K, Gendrona F, Maugerd A, Juliena C M. Magneticproperties of LiNi0.5Mn1.5O4spinels prepared by wet chemical methods[J]. J.Magn. Magn. Mater.,2007,309(1):100-105.
    [14]Ouyang C Y, Du Y L, Shi S Q, Lei M S. Small polaron migration in LixMn2O4:From first principles calculations[J]. Phys. Lett. A,2009,373(31):2796-2799.
    [15]Ouyang C Y, Deng H D, Ye Z Q, Lei M S, Chen L Q. Pulsed laser depositionprepared LiMn2O4thin film[J]. Thin Solid Films,2006,503(1-2):268-271.
    [16]Kushida K, Kuriyama K. Observation of the crystal-field splitting related to theMn-3d bands in spinel-LiMn2O4films by optical absorption[J]. Appl. Phys. Lett.,2000,77:4154.
    [17]Julien C, Ziolkiewicz S, Lemal M, Massot M. Synthesis, structure andelectrochemistry of LiMn2-yAlyO4prepared by a wet-chemistry method[J]. J.Mater. Chem.,2001,11(7):1837-1842.
    [18]Mandal S, Rojas R M, Amarilla J M, Calle P, Kosova N V, Anufrienko V F,Rojo J M. High temperature Co-doped LiMn2O4-based spinels. Structural,electrical, and electrochemical characterization[J]. Chem. Mater.,2002,14(4):1598-1605.
    [19]Berg H, Goransson K, Nolang B, Thomas J O. Electronic structure and stabilityof the LixMn2O4(0    [20]Koyama Y, Tanaka I, Adachi H, Uchimoto Y, Wakihara M. First PrinciplesCalculations of Formation Energies and Electronic Structures of Defects inOxygen-Deficient LiMn2O4[J]. J. Electrochem. Soc.,2003,150(1): A63-A67.
    [21]Shi S Q, Wang D S, Meng S, Chen L Q, Huang X. First-principles studies ofcation-doped spinel LiMn2O4for lithium ion batteries[J]. J. Phys. Rev. B,2003,67,115130.
    [22]Horne C R, Bergmann U, Grush M M, Perera R C, Ederer D L, Callcott T A,Cairns E J, Cramer S P. Electronic Structure of Chemically-Prepared LixMn2O4Determined by Mn X-ray Absorption and Emission Spectroscopies[J]. J. Phys.Chem. B,2000,104(41):9587-9596.
    [23]Tomeno I, Kasuya Y, Tsunoda Y. Charge and spin ordering in LiMn2O4[J]. Phys.Rev. B,2001,64(9):09442.
    [24]Rodriguez-Carvajal J, Rousse G, Masquelier C, Hervieu M. ElectronicCrystallization in a Lithium Battery Material: Columnar Ordering of Electronsand Holes in the Spinel LiMn2O4[J]. Phys. Rev. Lett.,1998,81:4660-4663.
    [25]Ouyang C Y, Shi S Q, Lei M S. Jahn-Teller distortion and electronic structure ofLiMn2O4[J]. J. Alloy Comp.,2009,474(1-2):370-374.
    [26]Blasse G. Ferromagnetism and ferrimagnetism of oxygen spinels containingtetravalent manganese[J]. J. Phys. Chem. Solids,1966,27(2):383-389.
    [27]Goodenough J B. Magnetism and the Chemical Bond[M]. Wiley, New York,1963.
    [28]Nakamura T, Yamada Y, Tabuchi M. Magnetic and electrochemical studies onNi2+-substituted Li-Mn spinel oxides[J]. J. Appl. Phys.,2005,98:93905.
    [29]Branford W, Green M A. Structure and Ferromagnetism in Mn4+Spinels:AM0.5Mn1.5O4(A=Li, Cu; M=Ni, Mg)[J]. Chem. Mater.,2002,14(4):1649-1656.
    [30]Lee Y J, Eng C, Grey C P.6Li Magic Angle Spinning NMR Study of the CathodeMaterial LiNixMn2-xO4: The Effect of Ni Doping on the Local Structure duringCharging[J]. J. Electrochem. Soc.,2001,148(3): A249-A257.
    [31]Sugiyama J, Hioki T, Noda S, Kontani M. A7Li-NMR Study on Spinel LiMn2O4:the Evidence of an Antiferromagnetic Transition at~40K[J]. J. Phys. Soc. Jpn.,1997,66:1187-1194.
    [32]Kim J H, Myung S T, Yoon C S, Kang S G, Sun Y K. Comparative Study ofLiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4Cathodes Having Two CrystallographicStructures: Fd-3m and P4332[J]. Chem. Mater.,2004,16(5):906-914.
    [33]Kunduraci M, Amatucci G G. Synthesis and Characterization of Nanostructured4.7V LixMn1.5Ni0.5O4Spinels for High-Power Lithium-Ion Batteries[J]. J.Electrochem. Soc.,2006,153(7): A1345-A1352.
    [34]Kunduraci M, Al-Sharab J F, Amatucci G G. High-Power NanostructuredLiMn2-xNixO4High-Voltage Lithium-Ion Battery Electrode Materials:Electrochemical Impact of Electronic Conductivity and Morphology[J]. Chem.Mater.,2006,18(15):3585-3692.
    [35]Bl chl P E. Projector augmented-wave method[J]. Phys. Rev. B,1994,50(24):17953-17979.
    [36]Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186.
    [37]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pedersonm M R, Singh D J,Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992,46(11):6671-6687.
    [38]Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and stronginteractions: Orbital ordering in Mott-Hubbard insulators[J]. Phys. Rev. B,1995,52(8): R5467-R5470.
    [39]Arroyo y de Dompablo M E, Morales J. A First-Principles Investigation of theRole Played by Oxygen Deficiency in the Electrochemical Properties ofLiCu0.5Mn1.5O4-δSpinels[J]. J. Electrochem. Soc.,2006,153(11): A2098-A2102.
    [40]Cococcioni M, de Gironcoli S. Linear response approach to the calculation of theeffective interaction parameters in the LDA+U method[J]. Phys. Rev. B,2005,71(3):035105.
    [41]Methfessel M, Paxton A T. High-precision sampling for Brillouin-zoneintegration in metals[J]. Phys. Rev. B,1989,40(6):3616-3621.
    [42]黄云霞,曹全喜,李智敏,李桂芳,王毓鹏,卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质[J].物理学报,2009,58(11):8002-8007.
    [43]Xia H, Meng Y S, Lu L, Ceder G. Electrochemical Properties ofNonstoichiometric LiNi0.5Mn1.5O4-δThin-Film Electrodes Prepared by PulsedLaser Deposition[J]. J. Electrochem. Soc.,2007,154(8): A737-A743.
    [44]Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K. Electrochemical andStructural Properties of a4.7V-Class LiNi0.5Mn1.5O4Positive Electrode MaterialPrepared with a Self-Reaction Method[J]. J. Electrochem. Soc.,2004,151(1):A173-A177.
    [45]Alcantara R, Jaraba M, Lavela P, Tirado J L, Zhecheva E, Stoyanova R. Changesin the Local Structure of LiMgyNi0.5-yMn1.5O4Electrode Materials during LithiumExtraction[J]. Chem. Mater.,2004,16(8):1573-1579.
    [46]Amarilla J M, Rojas R M, Rojo J M. Understanding the sucrose-assistedcombustion method: Effects of the atmosphere and fuel amount on the synthesisand electrochemical performances of LiNi0.5Mn1.5O4spinel[J]. J. Power Sources,2011,196(14):5951-5959.
    [47]Cui Y L, Bao W J, Yuan Z, Zhuang Q C, Sun Z. Electrochemical Performance NiDoped Spinel LiMn2O4Cathode for Lithium Ion Batteries[J]. Adv. Mater. Res.,2012,347-353:290-300.
    [48]Bi kupa N, Martínez J L, Arroyo y de Dompablo M E, Diaz-Carrasco P, MoralesJ. Relation between the magnetic properties and the crystal and electronicstructures of manganese spinels LiNi0.5Mn1.5O4and LiCu0.5Mn1.5O4-δ(0δ0.125)[J]. J. Appl. Phys.,2006,100(9):093908.
    [49]Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W W, Li H, Lee J S,Chen L Q. First-principles investigation on redox properties of M-doped CeO2(M=Mn, Pr, Sn, Zr)[J]. Phys. Rev. B,2010,82(12):125104.
    [50]Jiang Y, Adams J B, Schilfgaarde M V. Theoretical study of environmentaldependence of oxygen vacancy formation in CeO2[J]. Appl. Phys. Lett.,2005,87(14):141917.
    [1] Lin Y, Yang Y, Ma H W, Cui Y, Mao W L. Compressional Behavior of Bulk andNanorod LiMn2O4under Nonhydrostatic Stress[J]. J. Phys. Chem.,2011,115:9844-9849.
    [2] Du K, Zhang H. Preparation and Performance of Spinel LiMn2O4by A CitrateRoute with Combustion[J]. J. Alloys Compd.,2003,352(1-2):250-254.
    [3] Gao Y, Reimers J N, Dahn J R. Changes in the voltage profile of Li/Li1-xMn2-xO4cells as a function of x[J]. Phys. Rev. B,1996,54(6):3878-3883.
    [4] Yang Z, Li S, Xia S A, Jiang Y, Zhang W X, Huang Y H. Significant ImprovedElectrochemical Performance of Spinel LiMn2O4Promoted by FePO4Incorporation[J]. Electrochem. Solid State Lett.,2011,14(8): A109-A112.
    [5] Julien C, Ziolkiewicz S, Lemal M, Massot M. Synthesis, structure andelectrochemistry of LiMn2-yAlyO4prepared by a wet-chemistry method[J]. J.Mater. Chem.,2001,11(7):1837-1842.
    [6] Kusachi Y, Dong J, Zhang Z C, Amine K. Tri(ethylene glycol)-substitutedtrimethylsilane/lithium bis(oxalate) borate electrolyte for LiMn2O4/graphitesystem[J]. J. Power Sources,2011,196(20):8301-8306.
    [7] Mishra S K, Ceder G. Structural stability of lithium manganese oxides[J]. Phys.Rev. B,1999,59(9):6120-6130.
    [8] Berg H, Goransson K, Nolang B, Thomas J O. Electronic structure and stabilityof the LixMn2O4(0    [9] Koyama Y, Tanaka I, Adachi H, Uchimoto Y, Wakihara M. First PrinciplesCalculations of Formation Energies and Electronic Structures of Defects inOxygen-Deficient LiMn2O4[J]. J. Electrochem. Soc.,2003,150(1): A63-A67.
    [10]Wei Y J, Yan L Y, Wang C Z, Xu X G, Wu F, Chen G. Effects of Ni Doping on
    [MnO6] Octahedron in LiMn2O4[J]. J. Phys. Chem. B,2004,108(48):18547-18551.
    [11]Schmidt R, Basu A, Brinkman A W. Small polaron hopping in spinelmanganates[J]. Phys. Rev. B,2005,72(11):115101.
    [12]Ouyang C Y, Du Y L, Shi S Q, Lei M S. Small polaron migration in LixMn2O4:From first principles calculations[J]. Phys. Lett. A,2009,373(31):2796-2799.
    [13]Goodenough J B, Manthiram A, Wnetrzewski B. Electrodes for lithiumbatteries[J]. J. Power Sources,1993,43(1-3):269-275.
    [14]Kim J H, Myung S T, Yoon C S, Kang S G, Sun Y K. Comparative Study ofLiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4Cathodes Having Two CrystallographicStructures: Fd-3m and P4332[J]. Chem. Mater.,2004,16(5):906-914.
    [15]Kunduraci M, Al-Sharab J F, Amatucci G G. High-Power NanostructuredLiMn2-xNixO4High-Voltage Lithium-Ion Battery Electrode Materials:Electrochemical Impact of Electronic Conductivity and Morphology[J]. Chem.Mater.,2006,18(15):3585-3692.
    [16]Lazarraga M G, Pascual L, Gadjov H, Kovacheva D, Petrov K, Amarilla J M,Rojas R M, Martin-Luengoa M A, Rojo J M. Nanosize LiNiyMn2-yO4(0tion method. Characterization andelectrochemical performance[J]. J. Mater. Chem.,2004,14:1640-1647.
    [17]Yamada A. Lattice Instability in Li(LixMn2-x)O4[J]. J. Solid State Chem.,1996,122(1):160-165.
    [18]Shimakawa Y, Numata T, Tabuchi J. Verwey-Type Transition and MagneticProperties of the LiMn2O4Spinels[J]. J. Solid State Chem.,1997,131(1):138-143.
    [19]Verhoeven V W J, Mulder F M, de Schepper I M. Influence of Mn by Lisubstitution on the Jahn-Teller distortion in LiMn2O4[J]. Physica B,2000,276-278:950-951.
    [20]孙永明,何涌,章鹏. Li类质同象替代对LiMn2O4结构及电化学性能的影响[J].电源技术,2010,34(3):249-252.
    [21]Sugiyama J, Atsumi T, Hioki T, Noda S, Kamegashira N. Nonstoichiometry anddefect structure of spinel LiMn2O4-δ[J]. J. Power Sources,1997,68(2):641-645.
    [22]Thackeray M M, Johnson P J, de Picciotto L A, Bruce P G, Goodenough J B.Electrochemical extraction of lithium from LiMn2O4[J]. Mater. Res. Bull.,1984,19(2):179-187.
    [23]Xia Y, Sakai T, Fujieda T, Yang X Q, Sun X, Ma Z F, McBreen J, Yoshio M.Correlating Capacity Fading and Structural Changes in Li1+yMn2-yO4-δSpinelCathode Materials: A Systematic Study on the Effects of Li/Mn Ratio andOxygen Deficiency[J]. J. Electrochem. Soc.,2001,148(7): A723-A729.
    [24]Tarascon J M, Coowar F, Amatucci G, Shokoohi F K, Buyomard D. TheLi1+xMn2O4/C system Materials and electrochemical aspects[J]. J. Power Sources,1995,54(1):103-108.
    [25]Pistoria G, Antonini A, Rosati R, Bellitto C, Ingo G M. Doped Li-Mn Spinels:Physical/Chemical Characteristics and Electrochemical Performance in LiBatteries[J]. Chem. Mater.,1997,9(6):1443-1450.
    [26]Morales J, Sanchez L, Tirado J L. New doped Li-M-Mn-O(M=Al, Fe, Ni) spinelsas cathodes for rechargeable3V lithium batteries[J]. J. Solid State Electrochem.,1998,2(6):420-426.
    [27]Myung S T, Lee K S, Kim D W, Scrosati B, Sun Y K. Spherical core-shellLi[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4spinels as high performance cathodes forlithium batteries[J]. Energy Environ. Sci.,2011,4:935-939.
    [28]Bi kupa N, Martínez J L, Arroyo y de Dompablo M E, Diaz-Carrasco P, MoralesJ. Relation between the magnetic properties and the crystal and electronicstructures of manganese spinels LiNi0.5Mn1.5O4and LiCu0.5Mn1.5O4-δ(0δ0.125)[J]. J. Appl. Phys.,2006,100(9):093908.
    [29]Bl chl P E. Projector augmented-wave method[J]. Phys. Rev. B,1994,50(24):17953-17979.
    [30]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pedersonm M R, Singh D J,Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992,46(11):6671-6687.
    [31]Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186.
    [32]Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and stronginteractions: Orbital ordering in Mott-Hubbard insulators[J]. Phys. Rev. B,1995,52(8): R5467-R5470.
    [33]Arroyo y de Dompablo M E, Morales J. A First-Principles Investigation of theRole Played by Oxygen Deficiency in the Electrochemical Properties ofLiCu0.5Mn1.5O4-δSpinels[J]. J. Electrochem. Soc.,2006,153(11): A2098-A2102.
    [34]Cococcioni M, de Gironcoli S. Linear response approach to the calculation of theeffective interaction parameters in the LDA+U method[J]. Phys. Rev. B,2005,71(3):035105.
    [35]Methfessel M, Paxton A T. High-precision sampling for Brillouin-zoneintegration in metals[J]. Phys. Rev. B,1989,40(6):3616-3621.
    [36]黄云霞,曹全喜,李智敏,李桂芳,王毓鹏,卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质[J].物理学报,2009,58(11):8002-8007.
    [37]Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T. Solid-State Chemistryand Electrochemistry of LiCo1/3Ni1/3Mn1/3O2for Advanced Lithium-IonBatteries[J]. J. Electrochem. Soc.,2004,151(10): A1545-A1551.
    [38]Arroyo y de Dompablo M E, Van der Ven A, Ceder G. First-principlescalculations of lithium ordering and phase stability on LixNiO2[J]. Phys. Rev. B,2002,66(6):064112.
    [39]Kohan A F, Ceder G. Charge transfer in multicomponent oxides[J]. Phys. Rev. B,1998,57:3838-3843.
    [40]Abou-Ghantoust M, Bates C A, Clark I A, Fletcher J R, Jaussaudt P C, Moore WS. Jahn-Teller effects in orbital triplets. I. Second-order contributions for D(T2)ions in cubic crystals coupled to E-type lattice distortions[J]. J. Phys. C: SolidState Phys.,1974,7:309.
    [41]Ouyang C Y, Shi S Q, Lei M S. Jahn-Teller distortion and electronic structure ofLiMn2O4[J]. J. Alloys Compd.,2009,474(1-2):370-374.
    [42]Fang T T, Chung H Y. Reassessment of the Electronic-Conduction Behaviorabove the Verwey-Like Transition of Ni2+-and Al3+-Doped LiMn2O4[J]. J. Am.Ceram. Soc.,2008,91(1):342-345.
    [43]Kosova N V, Uvarov N F, Devyatkina E T, Avvakumov E G. Mechanochemicalsynthesis of LiMn2O4cathode material for lithium batteries[J]. Solid State Ionics,2000,135(1-4):107-114.
    [44]Kaiya H, Suzuki S, Miyayama M. Effects of Lattice Defects on CathodeProperties of LiMn2O4Synthesized at Low Temperatures for Lithium IonSecondary Battery[J]. Key Eng. Mater.,2009,388:41-44.
    [45]Ammundsen B, Roziere J, Islam M S. Atomistic Simulation Studies of Lithiumand Proton Insertion in Spinel Lithium Manganates[J]. J. Phys. Chem. B,1997,101(41):8156-8163.
    [46]Ammundsen B, Islam M S, Jones D J, Roziere J. Local structure and defectchemistry of substituted lithium manganate spinels: X-ray absorption andcomputer simulation studies[J]. J. Power Sources,1999,81-82:500-504.
    [47]Massarotti V, Capsoni D, Bini M, Chiodelli G. Electric and Magnetic Propertiesof LiMn2O4-and Li2MnO3-Type Oxides[J]. J. Solid State Chem.,1997,131(1):94-100.
    [48]Hernan L, Morales J, Sanchez L, Rodrguez Castellon E, Aranda M A G. Synthesis,characterization and comparative study of the electrochemical properties of dopedlithium manganese spinels as cathodes for high voltage lithium batteries[J]. J.Mater. Chem.,2002,12:734-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700