高精度五自由度机械臂的轨迹控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用机器取代工人从而实现“无人”的自动化生产工厂一直是人类的研究目标,在工业生产中人们制造出种类繁多的工业机器人来代替工人进行加工、搬运等工作。本课题以高精度五自由度机械臂为研究核心,基于SCARA机械臂模型开发出一种针对某工厂特定生产工序的自动搬运机械臂,该机械臂可取代大量的现场工人,实现工厂生产的局部自动化。
     在实际生产中机械臂必须具备安全、稳定和高精度运行这三个指标,为了实现这三个指标,本文在多方面进行了研究:
     (1)对机械臂的机械结构进行探讨,分析各种机械结构的可行性并最终选定SCARA模型;
     (2)为了描述机械臂的姿态及末端抓手的空间位置,分别从关节坐标系和笛卡儿坐标系对机械臂的各个位置姿态进行了数学描述;
     (3)设计两种位置确定方式,分别为低精度示教模式和高精度探针探测计算模式,可以根据生产中精度要求不同而选择其中一种;
     (4)在机械臂搬运货物时,根据生产实际定义了实际抓放货物位、安全工作位等位置,并对机械臂在各个位置之间的运动进行分析,为各种运动轨迹分别设计插补算法。本文分别对直线、圆弧插补算法进行了深入的研究,通过设计特殊的算法将控制命令脉冲精度控制在0.5个脉冲之内;
     (5)调试实验用机械臂,根据实验所得各项数据对机械臂设计方案和控制算法进行进一步的优化。
     本文中研发的机械臂在后续的实验中证明了其快速、高精度的工作性能,可以很好的满足生产需要。
Human beings have been working on unmanned auto manufacturing factory in which machines substute us to work, and we have developped various kinds of industrial robots to do machining and transiting jobs. This study mainly focuses on the development of a high precision 5-DOF robotic arm, which is based on SCARA robotic arm model and used for transiting in special industrial process. The robotic arm works instead of normal operators, and achieves partly auto producing in factory.
     In the real manufacturing environment, the robotic arm must be safe, stable and high precision. This study focuses on many aspects to achieve those three requirements.
     At first, the mechanical structure of the robotic arm is deeply dicussed, and finally a 5-DOF SCARA model robotic arm and the end-effector grasper are designed according to the actual demands in the factory.
     Secondly, both joints coordinate and Cartesian coordinate are built to describe the pose of the robotic arm and the space position of the end-effector grasper.
     Thirdly, two types of position determination methods are designed, which are low precision teaching mode and high precision detecting mode, respectively. One of the two can be chosen according to the precision demands in real production.
     Fourthly, some special positions, such as actual grasping position and safe transiting position, are defined. They are very important in both designing and implementing the trajectories between those positions. Line interpolation and arc interpolation algorithms are deeply discussed in the study, which ensures the precision of command pulse to be limited to be less than 0.5 pulse.
     At last, some improvments are made to the robotic arm according to the data feedback from the testing robotic arm.
     The robotic arm designed in the study shows qualities of fastness and high precision in the later experiments, and would satisfy the real factory requirements.
引文
1 F. E. Talke. On Tribological Problems in Magnetic Disk Recording Technology. WEAR. 1995, 190:232~238
    2 R. M. Murray, Z. Li and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1993:7~265
    3蒋新松.机器人与工业自动化.河北教育出版社, 2003:29~42
    4白井良明.机器人工程.科学出版社, 2001:2~13
    5熊有伦,唐立新,丁汉等.机器人技术基础.华中理工大学出版社, 1996:1~13
    6王灏,毛宗源.机器人的智能控制方法.国防工业出版社, 2002:1~7
    7林尚扬,陈善本,李成桐.焊接机器人及其应用.机械工业出版社, 2000:22~25
    8 S. B. Niku. Introduction to Robotics: Analysis, Systems, Applications. Prentice Hall, 2001:16~29
    9张福学.机器人技术及其应用.电子工业出版社, 2000:1~5
    10 F. C. Park. Distance Metrics on the Rigid Body Motions with Applications to Mechanism Design. ASME Journal of Mechanical Design.1995, 117(3):48~54
    11 H. Asada, J. J. Slotine. Robot Analysis and Control. John Wiley, 1986
    12 M. A. Gonzalez-Palacios, J. Angeles and F. Ranjbaran. The Kinematic Synthesis of Serial Manipulators with a Prescribed Jacobian. IEEE International Conference on Robotics and Automation. 1993:450~455
    13 R. Volpe, P. Khosla. Manipulator Control with Superquadric Artificial Potential Function. IEEE Transactions on Systems Man and Cybernetics. 1990, 20(6): 379~386
    14 K. Kim, M. K. Kim. Volumetric Accuracy Analysis Based on Generalized Geometric Error Model in Multiaxis Machine Tools. Mechanisms and Machine Theory, 1991(3):207~219
    15 R. Dubey, J. A. Euler and S. M. Babcock. An Efficient Projection Optimization Scheme for a Seven Degree-of-freedom Redundant Robot with Spherical Wrist. IEEE Computer Society Press, 1988:28~36
    16熊有伦.机器人学.机械工业出版社, 1993
    17孙桓,陈作模.机械原理.高等教育出版社, 1996:379~482
    18李国厚.伺服驱动技术及其发展.电工技术, 2000,(12):4~5
    19 H. R. Mohammadi-Daniali, P. J. Zsombor-Murray and J. Angeles. Singularity Analysis of a General Class Planar Manipulators. IEEE International Conference on Robotics and Automation. 1995:1547~1552
    20 M. Z, Huang, H. Varma. Optimal Rate Allocation in Kinematically Redundant Manipulators the Dual Projection Method. IEEE International Conference on Robotics and Automation. 1991:702~707
    21 M. Zefran, V. Kumar and C. B. Croke. On the Generation of Smooth Three-dimensional Rigid Body Motions. IEEE Transactions on Robotics and Automation. 1998, 14(4):576~589
    22 C. Chevallereau, W. Khalil. Efficient Method for Calculation of the Pseudo Inverse Kinematic Problem. IEEE International Conference on Robotics and Automation. 1987:1842~1848
    23 A. Klein, C. H. Huang. Review of Pseudo Inverse Control for Use with Kinematically Redundant Manipulators. IEEE Transactions on SMC. 1983, 13(3): 245~250
    24 T. Shamir. Remark on Dynamical Problems of Controlling Redundant Manipulators. IEEE Transactions on Automatic Control. 1990, 3(33):341~344
    25 J. Baillieul. Kinematic Programming Alternatives for Redundant Manipulators. IEEE International Conference on Robotics and Automation. 1985, 2:722~728
    26 W. A. Wolovich. A Computational Technique for Inverse Kinematics. IEEE International Conference on Decision and Control. 1998, 2:1359~1363
    27 Y. W. Sung. Constrained Optimization Approach to Resolving Manipulator Redundancy. Robotic Systems. 1996, 13(5):275~288
    28 N. Yoshihiko, H. Hideo. Optimal Redundancy Control of Robot Manipulators. Robots Research. 1987, 6(1):32~41
    29 A. Klein, K. B. Kee. The Nature of Drift in Pseudoinverse Control of Kinematically Redundant Manipulators. IEEE Transactions on Robotics and Automation. 1989, 5(2):231~234
    30 C. Gosselin. Determination of the Workspace of 6-DOF Parallel Manipulators. ASMEJ of Mechanical Design. 1990, 112(33):331~336
    31 T. Fungchen, R. V. Dubey. A Weighted Least Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Manipulators. IEEE International Conference on Robotics and Automation. 1993:395~402
    32 P. T. Lozano. Spatial Planning: a Configuration Space Approach. IEEE Transactions on Computer. 1983, c-32(2):162~169
    33 T. Shamir, Y. Yomdin. Repeatability of Redundant Manipulators: Mathematical Solution of the Problem. IEEE Transactions on Automatic Control. 1998, 33(11): 1004~1009
    34秦开怀,金建新,宾鸿赞. CNC系统中任意三维椭圆弧的高速插补新方法.华中理工大学学报. 1992, 20(6):7-11
    35 A. Mohri, S. Marushima and M. Yamamoto. Collision Free Trajectory Planning for Manipulator Using Potential Function. IEEE International Conference on Robotics and Automation. 1995:3069~3074
    36 R. T. Chein. Planning Collision-free Paths for Robotic Arm among Obstacles. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986, 6(1):229~238
    37 O. Khatib. Real-time Obstacle Avoidance for Manipulator and Mobile Robots. Robots Research. 1986, 5(1):90~98
    38张登材,李立.平面3R冗余度机器人进行避障规划时的混沌.机械设计. 2004, 21(3):29~32
    39 J. Rokne, Y. Rao. Double-Step Incremental Linear Interpolation. ACM Transactions on Graphics, 1992, 11(2):27~28
    40 J. Y. S. Luh, M. W. Walker and R. P. C. Paul. Resolved Acceleration Control of Mechanical Manipulators. IEEE Transactions on Automatic Control. 1980, 25(3):468~474
    41侯俊杰.深入浅出MFC程序设计.华中理工大学出版社. 1998
    42 S. B. Lippman, J. Lajoie. C++ Primer. Addison Wesley, 1998
    43 S. B. Lippman. Essential C++. Addison Wesley, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700