大块非晶合金玻璃形成能力与液体脆性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要选择稀土基大块非晶合金为研究对象,系统地研究了它们的玻璃形成能力(GFA)、热膨胀行为及液体脆性,并对相关机理进行了探讨。利用高温X射线衍射仪研究了金属液体中团簇随温度变化的行为,提出了液体结构稳定性参数的概念,并就其与玻璃形成能力的相关性进行了讨论。
     利用X射线衍射(XRD)、差示扫描量热(DSC)以及热力学计算等方法,分析了RE_(55)Al_(25)Co_(20)(RE=Ce,Pr,Nd,Sm,Gd)合金系的玻璃形成能力,发现利用铜模吸铸方法制备成直径为2mm的合金棒时,只有Sm_(55)Al_(25)Co_(20)和Gd_(55)Al_(25)Co_(20)合金能够得到完全的非晶结构,Pr_(55)Al_(25)Co_(20)和Nd_(55)Al_(25)Co_(20)合金得到非晶与晶体共存的结构,而Ce_(55)Al_(25)Co_(20)只能得到晶体结构。因此,在五种合金中,Sm_(55)Al_(25)Co_(20)和Gd_(55)Al_(25)Co_(20)合金的玻璃形成能力最强,而Ce_(55)Al_(25)Co_(20)最差。在此基础上深入研究了Sm_(55)Al_(25)Co_(20)与Gd_(55)Al_(25)Co_(20)合金的玻璃形成能力,利用铜模吸铸方法首次成功制备了直径达4mm的Sm_(55)Al_(25)Co_(20)大块非晶合金棒和直径为2mm的Gd_(55)Al_(25)Co_(20)大块非晶合金棒。并发现,与Gd_(55)Al_(25)Co_(20)合金相比,玻璃形成能力强的Sm_(55)Al_(25)Co_(20)合金具有更小的过冷液体脆性参数和更小的玻璃转变温度处的吉布斯自由能差(△G~(1-x)(T_g))。
     采用热扫描方法计算了一系列Gd基大块非晶合金的过冷液体脆性参数(m),从小到大依次为:Gd_(55)Al_(25)Cu_(10)Co_5Ni_5(m=37)     利用回转振动式高温熔体黏度仪测量了一系列La基和Sm基大块非晶合金的过热液体黏度,发现用Cu替代La_(55)Al_(25)Ni_(20)合金中的部分Ni以后,合金的黏度降低,黏度值从小到大依次为:La_(55)Al_(25)Ni_5Cu_(15)     利用液态X射线衍射技术研究了Au-Si合金系的液体微观结构特征,发现在Au-Si合金系液体双体分布函数上主峰的右侧存在次峰,它是局域原子有序结构的反映。在Au_(85)Si_(15),Au_(81)Si_(19)和Au_(75)Si_(25)三种合金中,随着Si含量的提高次峰越来越明显,次峰强度最高的Au_(75)Si_(25)合金玻璃形成能力最强。根据经典形核理论和热力学理论提出了液体结构稳定性参数B的概念,定义如下,B=dr_c/dT其中,r_c是液体中团簇的相关半径,T为绝对温度。参数B反映了液体中团簇尺寸随温度变化的快慢。|B|越小表明液体结构越稳定,越有利于非晶的形成。因此,可以用|B|来预测不同液体的玻璃形成能力,即|B|越小玻璃形成能力越强。对Al-Cu合金系的液体结构稳定性与过热液体脆性进行了研究,发现随着Cu元素含量的提高,|B|增大,表明Cu元素的加入使液体中团簇尺寸随温度的变化增快,在宏观上表现为液相线温度附近黏度随温度的变化增快,即M值的增大。在Al-Cu合金中,|B|和M具体表现为正的线性关系,这种相关性将液体的宏观动力学性质与微观动力学性质联系起来。
In the present thesis, the rare earth-based bulk metallic glasses were mainly chosen for the study of glass-forming ability (GFA), behaviors of thermal expansion and fragility of liquids. The cluster behaviors of liquid metals with temperature were investigated by means of X-ray diffraction measurement. A concept of the structural stabilization factor of liquids has been proposed, and its correlation with the glass-forming ability has also been discussed.
     The GFA of RE_(55)Al_(25)Co_(20) (RE = Ce, Pr, Nd, Sm, Gd) alloys was studied by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). When the alloys are cast into rods up to 2 mm in diameter, only the Sm_(55)Al_(25)Co_(20) and Gd_(55)Al_(25)Co_(20) alloys show entirely amorphous structures; the Pr_(55)Al_(25)Co_(20) and Nd_(55)Al_(25)Co_(20) alloys are mixtures of amorphous and crystal structures; and the Ce_(55)Al_(25)Co_(20) alloy shows mostly crystal structure. As a result, among the five alloys, the Sm_(55)Al_(25)Co_(20) and Gd_(55)Al_(25)Co_(20) alloys exhibit the highest GFA and the Ce_(55)Al_(25)Co_(20) alloy shows the lowest GFA. Based on the results, the GFA of the Sm_(55)Al_(25)Co_(20) and Gd_(55)Al_(25)Co_(20) alloys was further investigated. By sucking-cast into a Cu-mold, the Sm_(55)Al_(25)Co_(20) glassy rod with a diameter of 4mm and the Gd_(55)Al_(25)Co_(20) glassy rod with a diameter of 2mm have been prepared for the first time. Compared with the Gd_(55)Al_(25)Co_(20) alloy, the Sm_(55)Al_(25)Co_(20) alloy with a higher GFA shows a smaller fragility parameter of supercooled liquids and a smaller Gibbs free energy difference at glass transition temperature (ΔG~(1-x)(T_g)).
     The fragility parameters of supercooled liquids, m, of Gd-based glass-forming alloys were calculated by thermal scanning method and the values of m rank as follows: Gd_(55)Al_(25)Cu_(10)Co_5Ni_5(m=37) < Gd_(55)Al_(25)Co_(10)Cu_(10)(m=45) < Gd_(55)Al_(25)Co_(10)Ni_(10) (m=58) < Gd_(55)Al_(25)Co_(20)(w=74). Among the Gd-based alloys, the alloy with a larger m exhibits a higher GFA. Based on the dilatometric measurements, a positive linear correlation is found between the fragility parameter of supercooled liquids and the average thermal expansion coefficient of glassy solids. Negative linear correlations are obtained between m and the nearest-neighbor atom distances (r_l)as well as the depths of the effective pair potentials (V_0) in the Gd-based bulk metallic glasses (BMGs). These relationships help to study GFA and understand the essence of glass formation from the view of supercooled liquid fragility. In addition, an abnormal thermal expansion phenomenon can be observed in the Gd-based BMGs. There is no increase of thermal expansion coefficient derived from glassy state to supercooled liquid state. This behavior has a close correlation with the viscous flow ability of the sample in the supercooled liquid region.
     The viscosities of superheated liquids for a series of La- and Sm-based BMGs were measured by an oscillating vessel method. After Cu element is substituted partly by Ni element in the La_(55)Al_(25)Ni_(20) alloy, the viscosities of the liquid alloys decrease, from low to high as follows: La_(55)Al_(25)Ni_5Cu_(15)< La_(55)Al_(25)Ni_(15)Cu_5< La_(55)Al_(25)Ni_(20). According to the fragility concept of superheated liquids, the fragility parameters of superheated liquids, M, for the La-based alloys were calculated as follows: La_(55)Al_(25)Ni_5Cu_(15)(M=1.4509)     The microstructure characteristics of the Au-Si alloys were studied by X-ray diffraction measurement. A sub-peak reflecting the local atomic structural ordering is observed on the right side of the main peak in the pair correlation function curves. In the Au-Si alloys, the height of the sub-peak increases with the Si content increasing and the Au_(75)Si_(25) alloy with the most obvious sub-peak has the highest GFA. In addition, a concept of structural stabilization factor of liquids, B, has been proposed based on the theories of classical homogeneous nucleation and thermodynamics. It is defined as,B=dr_c/dTwhere r_c is the correlation radius of clusters in liquids and T is the absolute temperature. The structural stabilization factor of liquids reflects the change in cluster size with temperature in different liquids. A liquid with a low absolute value of B should more likely keep its liquid structure, which favors the formation of glass, so it can be used to predict GFA. A liquid with a low absolute value of B tends to have a high GFA. The structural stabilization of liquids and the fragility of superheated liquids in the Al-Cu alloys were also studied. It is found that |B| increases with the increase of Cu content, indicating that the change in cluster size with temperature in liquids accelerates with the addition of Cu element. From a macroscopical point of view, the increase of |B| can be reflected by the fast change in the viscosity with temperature around liquidus temperature (the increase of M). Among the Al-Cu alloys, there is a positive linear correlation between |B| and M, which correlates macrokinetics properties with microkinetics properties of liquids.
引文
[1] J. Kramer, The preparation of amorphous Sb by vapor deposition in vacuum, Ann. Phys. 19(1934)37-41
    
    [2] A. Brenner, D. E. Couch, E. K. Williams, Electro deposition of alloys of phosphorus and nickelor cobalt, J. Res Nat. Bur. Stand. 44 (1950) 109-112
    
    [3] M. H. Cohen, D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 31 (1959)1164-1169
    
    [4] W. Klement, R. Willens, P. Duwez, Non-crystalline structure in solidified gold silicon alloys, Nature 187(1960)869-870
    
    [5]张荣生,刘海洪,快速凝固技术,北京:冶金工业出版社,1994,1-11
    
    [6] H. S. Chen, Metallic glasses, Mater. Sci. Eng., A 25 (1976) 59-69
    
    [7] H. S. Chen, The influence of structural relaxation on the density and Young's modulus of metallicglasses, J. Appl. Phys. 49 (1978) 3289-3291
    
    [8] A. Inoue, Bulk amorphous alloys with soft and hard magnetic properties, Mater. Sci. Eng., A226-228(1997)357-363
    
    [9] A. L. Drehman, A. L. Greer, D. Turnbull, Bulk formation of a metallic glass: Pd_(40)Ni_(40)P_(20), Appl.Phys. Lett. 41 (1982)716-718
    
    [10] A. Inoue, T. Zhang, T. Masumoto, Production of amorphous cylinder and sheet ofLa_(55)Al_(25)Ni_(20) alloy by a metallic mold casting method, Mater. Trans., JIM 31 (1990) 425-428
    
    [11] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans.,JIM36 (1995) 866-875
    
    [12] A. Peker, W. L. Johnson, Highly processable metallic glass Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5), Appl.Phys. Lett. 63 (1993) 2342-2344
    
    [13] W. L. Johnson, Bulk metallic glasses - A new engineering material, Curr. Opin. Solid StateMater. Sci. 1 (1996)383-386
    
    [14] A. Inoue, Stabilization and high strain-rate superplasticity of metallic supercooled liquid, Mater.Sci. Eng., A 267 (1999) 171-183
    
    [15] H. S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metall. 22 (1974) 1505-1511
    [16] H. S. Chen, J. T. Krause, E. Coleman, Elastic constants, hardness and their implications to flow properties of metallic glasses, J. Non-Cryst. Solids 18 (1975) 157-171
    [17] A. L. Drehman, A. L. Greer, D. Turnbull, Bulk formation of a metallic glass: Pd_(40)Ni_(40)P_(20), Appl. Phys. Lett. 41 (1982)716-717
    [18] E. Matsubara, T. Tamura, Y. Waseda, Structural study of amorphous Mg_(50)Ni_(30)La_(20) alloy by the anomalous X-ray scattering (AXS) method, Mater. Trans., JIM 31 (1990) 228-231
    [19] X. H. Lin, W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, J. Appl. Phys. 78 (1995)6514-6519
    [20] Y. He, C. E. Price, S. J. Poon, Formation of bulk metallic glasses in neodymium-based alloys, Phil. Mag. Lett. 70 (1994) 371-377
    [21] W. L. Johnson, Bulk glass-forming metallic alloys: science and technology, MRS Bull. 24 (1999) 42-56
    [22] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306
    [23] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans., JIM 36 (1995) 866-875
    [24] A. Inoue, N. Nishiyama, Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys, Mater. Sci. Eng., A 226-228 (1997) 401-405
    [25] M. Leonhardt, W. Lser, H. G. Lindenkreuz, Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts, Acta Mater. 47 (1999) 2961-2968
    [26] H. Choi-Yim, R. Busch, U. Kuster, W. L. Johnson, Synthesis and characterization of particulate reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass composites, Acta Mater. 47 (1999) 2452-2460
    
    [27] S. J. Poon, G. J. Shiflet, V. Ponnambalam, Mater. Res. Soc. Symp. Proc. 754 (2003) 167-172
    [28] H. Choi-Yim, D. Xu, W. L. Johnson, Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-X (X = B, Fe, Cu) alloy systems, Appl. Phys. Lett. 82 (2003) 1030-1032
    [29] Z. F. Zhao, Z. Zhang, P. Wen, A highly glass-forming alloy with low glass transition temperature, Appl. Phys. Lett. 82 (2003) 469-471
    [30] E. S. Park, D. H. Kim, Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold, J. Mater. Res. 19 (2004) 685-688
    
    
    [31] B. Zhang, M. X. Pan, D. Q. Zhao, W. H. Wang, "Soft" bulk metallic glasses based on cerium,Appl. Phys. Lett. 85 (2004) 61-63
    
    [32] D. Xu, B. Lohwongwatana, G Duan, W. L. Johnson, C. Garland, Bulk metallic glass formation in binary Cu-rich alloy series-Cu_(100-x)Zr_x (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu_(64)Zr_(36) glass, Acta Mater. 52 (2004) 2621-2624
    
    [33] S. Li, R. J. Wang, M. X. Pan, D. Q. Zhao, W. H. Wang, Bulk metallic glasses based on heavyrare earth dysprosium, Scripta Mater. 53 (2005) 1489-1492
    
    [34] Y. X. Wei, B. Zhang, R. J. Wang, M. X. Pan, D. Q. Zhao, W. H. Wang, Erbium- andcerium-based bulk metallic glasses, Scripta Mater. 54 (2006) 599-602
    
    [35] A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari, Cobalt-based bulk glassy alloy withultrahigh strength and soft magnetic properties, Nat. Mater. 2 (2003) 661-663
    
    [36] Z. P. Lu, C. T. Liu, Bulk glass formation in a Fe-based Fe-Y-Zr-M (M= Cr, Co, Al)-Mo-Bsystem, J. Mater. Res. 19 (2004) 921-929
    
    [37] J. Shen, Q. J. Chen, J. F. Sun, H. B. Fan, G. Wang, Exceptionally high glass-forming ability ofan FeCoCrMoCBY alloy, Appl. Phys. Lett. 86 (2005) 151907-1-151907-3
    
    [38] J. Schroers, W. L. Johnson, Ductile bulk metallic glass, Phys. Rev. Lett. 93 (2004) 255506-1-255506-4
    
    [39] J. Schroers, B. Lohwongwatana, W. L. Johnson, A. Peker, Gold based bulk metallic glass,Appl. Phys. Lett. 87 (2005) 061912-1-061912-3
    
    [40] B. Zhang, D. Q. Zhao, M. X. Pan, Amorphous metallic plastic, Phys. Rev. Lett. 27 (2005)205502-1-205502-4
    
    [41] Y. H. Liu, G Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, Super plastic bulk metallicglasses at room temperature, Science 315 (2007) 1385-1386
    
    [42] D. B. Miracle, A structural model for metallic glasses, Nat. Mater. 3 (2004) 679-702
    
    [43] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Atomic packing andshort-to-medium-range order in metallic glasses, Nature 439 (2006) 419-425
    
    [44] C. T. Chang, B. L. Shen, FeNi-based bulk glassy alloys with superhigh mechanical strengthand excellent soft-magnetic properties, Appl. Phys. Lett. 89 (2006) 051912-1-051912-3
    
    [45] Y. H. Liu, G Wang, M. X. Pan, P. Yu, D. Q. Zhao, W. H. Wang, Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity, J. Mater.??Res. 22 (2007) 869-875
    
    [46] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater.48 (2000) 279-306
    
    [47] H. Ma, J. Xu, E. Ma, Mg-based bulk metallic glass composites with plasticity and highstrength, Appl. Phys. Lett. 83 (2003) 2793-2795
    
    [48] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, J. J. Lewandowski, Fracture of brittlemetallic glasses: brittleness or plasticity, Phys. Rev. Lett. 94 (2005) 125510-125514
    
    [49] J. Eckert, G. He, Z. F. Zhang, W. Loser, Relationships governing the grain size of nanocrystalline metals and alloys, J. Metastable and Nanocrystalline Mater. 20-21 (2004) 357-365
    
    [50] http://www.liquidmetal.com
    
    [51] R. D. Conner, R. B. Dandilker, V. Struggs, W. L. Johnson, Dynamic deformation behavior oftungsten-fiber/metallic-glass matrix composites, Int. J. Impact. Eng. 24 (2000) 435-444
    
    [52] T. G Nieh, J. Wadsworth, Homogeneous deformation of bulk metallic glasses, Scripta Mater.54 (2006) 387-392
    
    [53] J. Schroers, The superplastic forming of bulk metallic glasses (Overview), JOM 5 (2005)34-39
    
    [54] D. Turnbull, M. H. Cohen, Reconstructive transformation and formation of glass, J. Chem.Phys. 29 (1958)1049-1054
    
    [55] D. R. Uhlmann, Glass formation, J. Non-Cryst. Solids 25 (1977) 42-85
    
    [56] Z. P. Lu, C. T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev.Lett. 91 (2003) 115505-1-115505-3
    
    [57] X. H. Lin, W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, J. Appl. Phys. 78(1995)6514-6519
    
    [58] Z. P. Lu, H. Tan, Y. Li, S. C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, Scripta Mater. 42 (2000)667-673
    
    [59] A. Inoue, T. Zhang, Thermal stability and glass-forming ability of amorphous Nd-Al-TM(TM = Fe, Co, Ni or Cu) alloys, Mater. Sci. Eng., A 226-228 (1997) 393-396
    
    [60] A. Inoue, Bulk amorphous alloys with soft and hard magnetic properties, Mater. Sci. Eng., A??226-228(1997)357-363
    
    [61] T. A. Waniuk, J. Schroers, W. L. Johnson, Critical cooling rate and thermal stability ofZr-Ti-Cu-Ni-Be alloys, Appl. Phys. Lett. 78 (2001)1213-1215
    
    [62] T. D. Shen, Y. He, R. B. Schwarz, Bulk amorphous Pd-Ni-Fe-P alloys: preparation andcharacterization, J. Mater. Res. 14 (1999) 2107-2115
    
    [63] B. S. Murty, K. Hono, Formation of nanocrystalline particles in glassy matrix in melt-spunMg-Cu-Y based alloys, Mater. Trans., JIM 41 (2000) 1538-1544
    
    [64] Z. P. Lu, C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater.50(2005)3501-3512
    
    [65] W. L. Johnson, Bulk glass-forming metallic alloys: science and technology, MRS. Bull 24(1999)42-56
    
    [66] A. L. Greer, Confusion by design, Nature 366 (1993) 303-304
    
    [67] A. Inoue, Stabilization of supercooled liquid and opening-up of bulk glassy alloys, Proc. Jpn.Acad.B 73 (1997)19-24
    
    [68] M. X. Xia, S. G. Zhang, C. L. Ma, Evaluation of glass-forming ability for metallic glassesbased on order-disorder competition, Appl. Phys. Lett. 89 (2006) 091917-1-091917-3
    
    [69] E. S. Park, D. H. Kim, W. T. Kim, Parameter for glass forming ability of ternary alloysystems, Appl. Phys. Lett. 86 (2005) 061907-1-061907-3
    
    [70] E. S. Park, D. H. Kim, Effect of atomic configuration and liquid stability on the glass-formingability of Ca-based metallic glasses, Appl. Phys. Lett. 86 (2005) 201912-1-201912-3
    
    [71] C. A. Angell, Spectroscopy simulation and scattering, and the medium range order problem inglass, J. Non-Cryst. Solids 73 (1985) 1-17
    
    [72] R. Busch, A. Masuhr, W. L. Johnson, Thermodynamics and kinetics of Zr-Ti-Cu-Ni-Be bulkmetallic glass forming liquid, Mater. Sci. Eng., A 304-306 (2001) 97-102
    
    [73] R. Bohmer, K. L. Ngai, C. A. Angell, Nonexponential relaxations in strong and fragile glassforming liquids, J. Chem. Phys. 99 (1993) 4201-4209
    
    [74] R. Bohmer, C. A. Angell, Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids, Phys. Rev. B 45 (1992)10091-10094
    
    [75] R. Bohmer, K. L. Ngai, C. A. Angell, D. J. Plazek, Nonexponential relaxations in strong and??fragile glass formers, J. Chem. Phys. 99 (1993) 4201-4209
    
    [76] C. A. Angell, Charles Austen Angell Biography, J. Phys. Chem. B 103 (1999) 3977-3978
    
    [77] D. H. Huang, B. Gregory, New insights into the fragility dilemma in liquids, J. Chem. Phys.114(2001)5621-5629
    
    [78] K. Moriya, T. Matsuo, H. Suga, Intrinsic mobility of molecular glasses, Chem. Lett. (Jpn)58(1977) 1427-1430
    
    [79] L. M. Martinez, C. A. Angell, A thermodynamic connection to the fragility of glass-formingliquids, Nature 410 (2001) 663-667
    
    [80] K. Ito, C. T. Moynihan, C. A. Angell, Thermodynamic determination of fragility in liquidsand a fragile-to-strong liquid transition in water, Nature 398 (1999) 492-495
    
    [81]胡丽娜,边秀房,液体的脆性---一把深入了解玻璃态物质的钥匙,科学通报48(2003) 2393-2401
    
    [82] R. Bush, E. Bakke, W. L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr_(46.75)Ti_(8.25)Cu_(7.5)Ni_(10.0)Be_(27.5) bulk metallic glass forming alloy, Acta Mater. 46(1998)4725-4732
    
    [83] N. Nishiyama, A. Inoue, Glass transition behavior and viscous flow working ofPd_(40)Cu_(30)Ni_(10)P_(20) amorphous alloy, Mater. Trans., JIM 40 (1999) 64-71
    
    [84] Y. Kawamura, T. Nakamura, A. Inoue, T. Masumoto, High-strain-rate superplasticity due toNewtonian viscous flow in La_(55)Al_(25)Ni_(20) metallic glass, Mater. Trans., JIM 40 (1999) 794-803
    
    [85] R. Bush, W. Liu, W. L. Johnson, Thermodynamics and kinetics of the Mg_(65)Cu_(25)Y_(10) bulkmetallic glass forming liquid, J. Appl. Phys. 83 (1998) 4134-4141
    
    [86] D. N. Perera, Compilation of fragility parameters for metallic glasses, J. Phys.: Condens.Matter 11 (1999)3807-3812
    
    [87] V. N. Novikov, A. P. Sokolov, Poisson's ratio and liquid's fragility, Nature 431(2004)961-963
    
    [88] A. L. Greer, Metallic glasses, Science 267 (1995) 1947-1953
    
    [89] R. Busch, A. Masuhr, E. Bakke, Nanoscale heterogeneity of glass forming liquids:Experimental advances, Mater. Res. Soc. Symp. Proc. 455 (1997) 369-374
    
    [90] W. Gerhard, Thermodynamics, viscous flow and relaxation dynamics of bulk glass-formingPd alloys, Ann. Chim. Sci. Mat. 27 (2002) 49-54
    [91] X. F. Bian, B. A. Sun, L. N. Hu, Jia Y. B, Fragility of superheated melts and glass-forming ability in Al-based alloys, Phys. Lett. A 335 (2005) 61-67
    
    
    [1]神户博太郎,刘振海译,热分析,北京,化学出版社,1985
    
    [2]王一禾,杨赝善,非晶态合金,北京,冶金工业出版社,1989
    
    [3]王伯龄,姜胶东,实用热分析,北京,纺织工业出版社,1990
    
    [4] E. G. Schvidkovskii, Gostekhteorizdat, USSR, Science Press, 1955
    
    [5] J. Enderby, Direct method for the determination of atomic-scale structure of amorphous solids (X-ray, Electron and Neutron Scattering), J. Non-Cryst. Solids 31 (1978) 1-40
    
    [6]黄胜涛,非晶态材料的结构和结构分析,北京,科学出版社,1987
    
    [7] Y. Waseda, The Structure of Non-Crystalline Materials, New York, McGraw-Gill, 1980
    
    [8] J. Teixeira, Structure of liquid metals determined by scatterin, Mater. Sci. Eng., A 9 (1994)178-182
    
    [9] Birmingham, International Tables for X-Ray Crystallography, Kynoch, 1974
    
    [10] D. T. Cromer, J. B. Mann, Compton scattering factors for spherically symmetric free atoms,J. Chem. Phys. 47 (1967) 1892-1893
    
    [11]王伟民,Al-Si合金熔体的微观结构及Si原子集团的演变行为,博士学位论文,济南, 山东大学,1998
    
    [1] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater.48(2000)279-306
    
    [2] W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, Mater. Sci. Eng., R 44 (2004) 45-89
    
    [3] L. Xia, W. H. Li, S. S. Fang, B. C. Wei, Y. D. Dong, Binary Ni-Nb bulk metallic glasses, J.Appl. Phys. Lett. 99 (2006) 026103-1-026103-3
    
    [4] D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, E. Ma, Bulk metallic glass formation in thebinary Cu-Zr system, Appl. Phys. Lett. 84 (2004) 4029-4031
    
    [5] B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, Amorphous metallic plastic, Phys. Rev. Lett.94(2005)205502-1-205502-4
    
    [6]赵作峰,张志,李正,闻平,赵德乾,潘明祥,王万录,汪卫华,新型Pr基大块非晶及 其特性研究,物理学报53(2004)851-853
    
    [7] B. C. Wei, W. Loser, L. Xia, S. Roth, M. X. Pan, W. H. Wang, J. Eckert, Anomalous thermalstability of Nd-Fe-Co-Al bulk metal glass, Acta Mater. 50 (2002) 4357-4367
    
    [8] B. C. Wei, W. H. Wang, M. X. Pan, B. S. Han, Domain structure of a Nd_(60)Al_(10)Fe_(20)Co_(10) bulkmetallic glass, Phys. Rev. B 64 (2001) 012406-1-012406-5
    
    [9] H. Tan, Y. Zhang, D. Ma, Y. P. Feng, Y. Li, Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system, Acta Mater. 51 (2003) 4551-4561
    
    [10]郑子樵,李洪英,稀土功能材料,北京,化学工业出版社,2003,231-261
    
    [11] H. Z. Kong, Y. Li, J. Ding, Magnetic hardening in amorphous alloy Sm_(60)Fe_(30)Al_(10), Scnpta Mater. 44 (2001) 829-834
    [12] S. H. Lim, S. H. Han, H. J. Kim, Formation of induced anisotropy in amorphous Sm-Fe based thin films by field sputtering, J. Appl. Phys. 87 (2000) 5801-5803
    [13] X. Y. Liu, J. A. Barclay, T. K. Bose, J. Combe, Thermomagnetic properties of amorphous rare-earth alloys with Fe, Ni, or Co, J. Appl. Phys. 79 (1996) 1630-1641
    [14] P. Liu, Q. Q. Yang, Y. S. Yang, Electrodeposition of Gd-Co film in organic bath, Electrochim. Acta 45 (2000) 2147-2152
    [15] T. Egami, The atomic structure of aluminum based metallic glasses and universal criterion for glass formation, J. Non-Cryst. Solids 205-207 (1996) 575-582
    [16] S. R. Nagel, J. Tauc, Nearly-free-electron approach to the theory of metallic glass alloys, Phys. Rev. Lett. 35 (1975)380-383
    
    [17] D. Turnbull, Under what conditions can glass be formed? Contemp. Phys. 10 (1969) 473-488
    [18] X. F. Bian, B. A. Sun, L. N. Hu, Y. B. Jia, Fragility of superheated melts and glass-forming ability in Al-based alloys, Phys. Lett. A 335 (2005) 61-67
    [19] A. Inoue, T. Zhang, T. Masumoto, Production of amorphous cylinder and sheet of La_(55)Al_(25)Ni_(20) alloy by a metallic mold casting method, Mater. Trans., JIM 31 (1990) 425-428
    [20] F. Q. Guo, S. Joseph Poon, G. J. Shiflet, Metallic glass ingots based on yttrium, Appl. Phys. Lett. 83 (2003)2575-2577
    [21] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000)279-306
    [22] A. Inoue, N. Nishiyama, Extremely low critical cooling rates of new Pd-Cu-P based amorphous alloys, Mater. Sci. Eng., A 226-228 (1997) 401-405
    [23] L. J. Gallego, J. A. Somoza, J. A. Alonso, Glass formation in ternary transition metal alloys, J. Phys.: Condens. Matter. 2 (1990) 6245-6250
    [24] O. N. Senkov, D. B. Miracle, H. M. Mullens, Topological criterion for amorphization based on a thermodynamic approach, J. Appl. Phys. 97 (2005)103502-1-103502-7
    [25] F. R. Boer, D. G. Perrifor, Cohesion in Metals, B. V. Netherlands, Elsevier Science Publishers, 1988
    [26] A. Takeuchi, A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng., A 304-306 (2001) 446-451
    
    [27] I. H. Umar, I. Yokoyama, W. H. Young, Entropies of mixing of liquid metals: a hard sphere
    ??description, Phil. Mag. 34 (1976) 535-548
    
    [28] A. J. C.Wilson, Ineternational tables for crystallography, London, Kluwer AcademicPublishers, 1995
    
    [29] X. H. Lin, W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, J. Appl. Phys. 78(1995)6514-6519
    
    [30] G. J. Fan, W. Loser, S. Roth, J. Eckert, Glass-forming ability of RE-Al-TM alloys (RE=Sm,Y; TM=Fe, Co, Cu), Acta Mater. 48 (2000) 3823-3831
    
    [31] A. Inoue, A. Takeuchi, T. Zhang, Ferromagnetic bulk amorphous alloys, J. Metall. Mater.Trans. A 29 (1998) 1779-1793
    
    [32] E. Bakke, Viscosity measurement of bulk metallic glass forming alloys, Ph. D. Dissertation,California Institute of Technology Pasadena, California, 1997
    
    [33] S. C. Glade, R. Busch, D. S. Lee, W. L. Johnson, Thermodynamics of Cu_(47)Zr_(11)Ni_8, Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_5 and Zr_(57)Cu_(15.4)Ni_(12.6)Al_(10)Nb_5 bulk metallic glass forming alloys, J. Appl. Phys. 87 (2000) 7242-7248
    
    [34] Z. P. Lu, X. Hu, Y. Li, Thermodynamics of La based La-Al-Cu-Ni-Co alloys studied bytemperature modulated DSC, Intermetallics 8 (2000) 477-480
    
    [35] C. V. Thompson, F. Spaepen, On the approximation of the free energy change oncrystallization, Acta Metall. 27 (1979) 1855-1859
    
    [36] H. J. Fecht, Free energy functions of undercooled liquid glass-forming Au-Pb-Sb alloys,Mater. Sci. Eng., A 133 (1991) 443-447
    
    [37] Y. Zhang, H. Tan, H. Z. Kong, B. Yao, Y. Li, Glass-forming ability of Pr-(Cu,Ni)-Al alloys in eutectic, J. Mater. Res. 18 (2003) 664-671
    
    [1] D. N. Perera, Compilation of fragility parameters for metallic glasses, J. Phys.: Condens.Matter. 11(1999)5807-5812
    
    [2] X. F. Bian, B. A. Sun, L. N. Hu, Y. B. Jia, Fragility of superheated melts and glass-formingability in Al-based alloys, Phys. Lett. A 335 (2005) 61-67
    
    [3] L. M. Martinez, C. A. Angell, A thermodynamic connection to the fragility of glass-formingliquids, Nature 410 (2001) 663-667
    
    [4] S. Sastry, The relationship between fragility, configurational entropy and the potential energylandscape of glass-forming liquids, Nature 409 (2001) 164-167
    
    [5] P. G. Debenedetti, F. H. Stillinger, Supercooled liquids and the glass transition, Nature 410(2001)259-267
    
    [6] T. Komatsu, Application of fragility concept to metallic glass formers, J. Non-Cryst. Solids185(1995)199-202
    
    [7] Z P. Lu, Y. Li, S. C. Ng, Y. P. Feng, K. Lu, Glass transition of rare-earth based metallic glasses: temperature modulated differential scanning calorimetry, J. Non-Cryst. Solids 250/252 (1998)689-693
    
    [8] R. Busch, Y. J. Kim, W. L. Johnson, Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5) alloy, J. Appl. Phys. 77 (1995)4039-4043
    
    [9] R. Busch, A. Masuhr, W. L. Johnson, Thermodynamics and kinetics of Zr-Ti-Cu-Ni-Be bulk metallic glass forming liquids, Mater. Sci. Eng., A 304-306 (2001) 97-101
    [10] R. Busch, W. Liu, W. L. Johnson, Thermodynamics and kinetics of the Mg_(65)Cu_(25)Y_(10) bulk metallic glass forming liquid, J. Appl. Phys. 83 (1998) 4134-4141
    
    [11] Y. Kawamura, T. Nakamura, A. Inoue, T. Masumoto, High-strain-rate superplasticitydue to Newtonian viscous flow in La_(55)Al_(25)Ni_(20) metallic glass, Mater. Trans., JIM 40 (1999) 794-803
    
    [12] Y. Kawamura, A. Inoue, Newtonian viscosity of supercooled liquid in a Pd_(40)Ni_(40)P_(20) metallic glass, Appl. Phys. Lett. 77 (2000) 1114-1116
    
    [13] R. Busch, E. Bakke, W. L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr_(46.75)Ti_(8.25)Cu_(7.5)Ni_(10)Be_(27.5) bulk metallic glass forming alloy, Acta mater. 46(1998)4725-4732
    
    [14] R. Bohmer, C. A. Angell, Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids, Phys. Rev. B45 (1992) 10091-10094
    [15] K. J. Crowley, G. Zografi, The use of thermal methods for predicting glass-former fragility, Thermochim. Acta 380 (2001) 79-93
    [16] R. Bruning, S. Mark, Fragility of glass-forming systems and the width of the glass transition, J. Non-Cryst. Solids 205-207 (1996) 480-484
    [17] C. T. Moynihan, Nonexponential relaxation in strong and fragile glass formers, J. Am. Ceram. Soc. 76(1993)1081-1087
    [18] S. O. Kasap, S. Yannacopoulos, Kinetics of structural relaxations in the glassy semiconductor a-Se, J. Mater. Res. 4 (1989) 893-905
    [19] C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267 (1995) 1924-1926
    [20] B. Zhang, R. J. Wang, W. H. Wang, Properties of Ce-based bulk metallic glass-forming alloys, Phys. Rev. B 70 (2004) 224208-1-224208-7
    [21] Z. F. Zhao, D. Q. Zhao, W. H. Wang, A highly glass-forming alloy with low glass transition temperature, Appl. Phys. Lett. 82 (2003) 4699-4701
    [22] K. Ito, C. T. Moynihan, C. A. Angell, Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water, Nature (London) 398 (1999) 492-495
    [23] R. Bruning, K. Samwer, Glass transition on long time scales, Phys. Rev. B 46(1992) 11318 -11322
    [24] R. Busch, E. Bakke, W. L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr_(46.75)Ti_(8.25)Cu_(7.5)Ni_(10)Be_(27.5) bulk metallic glass forming alloy, Acta Mater. 46 (1998) 4725-4732
    [25] W. H. Wang, Correlations between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys. 99 (2006) 093506-1-093506-7
    [26] L. Shadowspeaker, R. Busch, On the fragility of Nb-Ni-based and Zr-based bulk metallic glass, Appl. Phys. Lett. 85 (2004) 2508-2510
    [27] J. M. Borrego, A. Conde, S. Roth, J. Eckert, Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys, J. Appl. Phys. 92 (2002) 2073-2078
    [28] D. N. Perera, Compilation of fragility parameters for metallic glasses, J. Phys.: Condens. Matter. 11(1999)3807-3812
    [29] P. Yu, H. Y. Bai, Excellent glass-forming ability in simple Cu_(50)Zr_(50)-based alloys, J. Non-Cryst. Solids 351 (2005) 1328-1332
    [30] P. G. Debenedetti, F. H. Stillinger, T. M. Truskett, The equation of state of an energy landscape, J. Phys. Chem. B 103 (1999) 7390-7397
    [31] Q. Jing, R. P. Liu, G. Lia, W. K. Wang, Thermal expansion behavior and structure relaxation of ZrTiCuNiBe bulk amorphous alloy, Scripta Mater. 49 (2003) 111-115
    
    [32] G. Wilde, S. G. Klose, W. Soellner, G. P. Gorier, K. Jeropoulos, R. Willnecker, On the stability limits of the undercooled liquid state of Pd-Ni-P, Mater. Sci. Eng., A 226 (1997) 434-438
    
    [33] C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, Positron annihilation studies of free volume changes in the bulk metallic glass Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5) during structural relaxation and at the glass transition, Phys. Rev. B 60 (1999) 9212-9215
    [34] X. Hu, S. C. Ng, Y. P. Feng, Y. Li, Cooling-rate dependence of the density of Pd_(40)Ni_(10)Cu_(30)P_(20) bulk metallic glass, Phys. Rev. B 64 (2001)172201-1-172201-4
    [35] B. Porscha, H. Neuhauser, Combined measurements of length and modulus change, Phys. Status Solidi B 186 (1994) 119-126
    
    [36] Y. X. Wei, B. Zhang, R. J. Wang, M. X. Pan, D. Q. Zhao, W. H. Wang, Erbium- and cerium- based bulk metallic glasses, Scripta Mater.54 (2006) 599-602
    [37] http://www.webelements.com
    [38] C. H. Shek, G. M. Lin, Dilatometric measurements and calculation of effective pair potentials for Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass, Mater. Lett. 57 (2003) 1229-1232
    [39] Q. G. Meng, S. G. Zhang, J. G. Li, X. F. Bian, Dilatometric measurements and glass-forming ability in Pr-based bulk metallic glasses, Scripta Mater. 55 (2006) 517-520
    [40] T. Lin, X. F. Bian, J. Jiang, Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses, Phys. Lett. A 353 (2006) 497-499
    [41] N. Mattern, U. Kuhn, H. Hermann, S. Roth, H. Vinzelberg, J. Eckert, Thermal behavior and glass transition of Zr-based bulk metallic glasses, Mater. Sci. Eng., A 375-377 (2004) 351-354
    [42] D. Schermeyer, H. Neuhauser, Dilatometric measurements on metallic glass ribbons with a wide glass transition range, Mater. Sci. Eng., A 226-228 (1997) 846-850
    [43] C. H. Shek, G. M. Lin, Dilatometric measurements and calculation of effective pair potentials for Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass, Mater. Lett. 57 (2003) 1229-1232
    
    
    [1] C. A. Angell, Charles Austen Angell Biography, J. Phys. Chem. B 103 (1999) 3977-3978
    
    [2] V. N. Novikov, Y. Ding, A. P. Sokolov, Correlation of fragility of supercooled liquids withelastic properties of glasses, Phys. Rev. E 71 (2005) 061501-1-061501-12
    
    [3] T. Iida, Physical properties of liquid metals, Oxford, Clarendon Press, 1993,147-189
    
    [4] A. Griesche, M. P. Macht, J. P. Garandet, G. Frohberg, Diffusion and viscosity in moltenPd_(40)Ni_(40)P_(20) and Pd_(40)Cu_(30)Ni_(10)P_(20) alloys, J. Non-Cryst. Solids 336 (2004) 172-178
    
    [5] T. A. Waniuk, R. Busch, A. Masuhr, W. L. Johnson, Equilibrium viscosity of Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass-forming liquid and viscous flow during relaxation, phaseseparation, and primary crystallization, Acta Mater. 46 (1998) 5229-5236
    
    [6] E. Bakke, Viscosity measurements of bulk metallic glass-forming alloys, philosophydissertation, Pasadena, California Institute of Technology, 1997
    [7] X. F. Bian, B. A. Sun, L. N. Hu, Fragility of superheated melts and glass-forming ability in Al-based alloys, Phys. Lett. A 335 (2005) 61-67
    [8] Y. Zhao, X. F. Bian, X. X. Hou, Viscosity and fragility of the supercooled and superheated liquids of the Ni_(60)Zr_(30)Al_(10) metallic glass-forming alloy, Physica A 367 (2006) 42-54
    [9] X. F. Bian, M. H. Sun, L. Wu, S. J. Cheng, Variation of activation energy in Al-Ni-based alloy melts, Mater. Res. Bull. 37 (2002) 1451-1458
    [10] M. H. Sun, G. R. Liu, X. F. Bian, Effect of Cu on viscosity of AlCuCe Alloys, Mater. Chem. Phys. 82(2003)961-964
    [11] Z. P. Lu, C. T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev. Lett. 91 (2003)115505-1-115505-4
    [12] M. C. Weiberg, D. R. Uhlmann, E. D. Zanotto, 'Nose method' of calculating critical cooling rates for glass formation, J. Am. Ceram. Soc. 72 (1989) 2054-2058
    
    [13] D. Turnbull, Under what conditions can glass be formed? Contemp. Phys. 10 (1969) 473-488
    [14] Z. P. Lu, H. Tan, Y. Li, S. C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, Scripta Mater. 42 (2000) 667-673
    [15] Z. P. Lu, T. T. Goh, Y. Li, S. C. Ng, Glass formation in La-based La-Al-Ni-Cu-(Co) alloys by Bridgman solidification and their glass forming ability, Acta Mater. 47 (1999) 2215-2224
    [16] Z. P. Lu, X. Hua, Y. Lia, S. C. Ng, Glass forming ability of La-Al-Ni-Cu and Pd-Si-Cu bulk metallic glasses, Mater. Sci. Eng., A 304-306 (2001) 679-682
    [17] Q. G. Meng, S. G. Zhang, J. G. Li, X. F. Bian, Strong liquid behavior of Pr_(55)Ni_(25)Al_(20) bulk metallic glass, J. Alloys Comp. 431 (2007)191-196
    
    
    [1] D. Turnbull, M. H. Cohen, Concerning reconstructive transformation and formation of glasses,J. Chem. Phys. 29 (1958) 1049-1054
    
    [2] H. A. Davies, The formation of metallic glass, Phys. Chem. Glasses 17 (1976) 159-173
    
    [3] Z. P. Lu, H. Tan, Y. Li, S. C. Ng, The correlation between reduced glass transition temperatureand glass forming ability of bulk metallic glasses, Scripta Mater. 42 (2000) 667-673
    
    [4] Z. P. Lu, C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater.50(2005)3501-3512
    
    [5] Z. P. Lu, C. T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev.Lett. 91 (2003)115505-1-115505-3
    
    [6] W. L. Johnson, Bulk glass-forming metallic alloys: science and technology, MRS Bull. 24(1999)42-56
    
    [7] A. L. Greer, Confusion by design, Nature 366 (1993) 303-304
    
    [8] A. Inoue, Bulk amorphous alloys with soft and hard magnetic properties, Mater. Sci. Eng., A226-228(1997)357-363
    
    [9] M. X. Xia, S. G. Zhang, C. L. Ma, J. G. Li, Evaluation of glass-forming ability for metallicglasses based on order-disorder competition, Appl. Phys. Lett. 89 (2006) 091917-1-091917-3
    
    [10] E. S. Park, D. H. Kim, W. T. Kim, Parameter for glass forming ability of ternary alloysystems, Appl. Phys. Lett. 86 (2005) 061907-1-061907-3
    
    [11] P. W. Anderson, Through the glass lightly, Science 267 (1995) 1615-1616
    [12] H. Li, F. Pederiva, Local clusters and defects in one-dimensional gold wires, J. Chem. Phys. 119(2003)9771-9776
    [13] H. S. Ko, J. Y. Chang, Effect of short-range order in liquid on the glass forming ability of Fe-Si-B alloy wires, Mater. Lett. 58 (2004) 1012-1016
    [14] H. Tanaka, Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers, J. Phys.: Condens. Matter 15 (2003) 491-498
    [15] W. Klement, R. H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature 187 (1960) 869-870
    [16] I. Kaban, T. Halm, W. Hoyer, Structure of molten copper-germanium alloys, J. Non-Cryst. Solids 288 (2001) 96-102
    
    [17] C. J. Zhang, Y. S. Wu, X. L. Cai, G. R. Zhou, Y. C. Shi, H. Yang, S. Wu, Precipitation of an icosahedral phase in amorphous Al_(90)Fe_5Ce_5 alloy, J. Phys.: Condens. Matter 13 (2001) 647-653
    
    [18] B. Zhang, X. Bian, C. Fu, N. Han, J. Zhou, W. Wang, An important factor powerfully influencing the Al-Ni-based alloys' glass-forming ability, J. Phys.: Condens. Matter 17 (2005) 7885-7893
    [19] L. Granasy, Diffuse interface approach to crystal nucleation, Key Eng. Mater. 215-216 (1996) 451-458
    
    [20] C. K. Bagdassarian, D. W. Oxtoby, Crystal nucleation and growth from the undercooled liquid: A nonclassical piecewise parabolic free-energy model, J. Chem. Phys. 100 (1994) 2139-2148
    [21] H. Assadi, J. Schroers, Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems, Acta Mater. 50 (2002) 89-100
    [22] D. Turnbull, J. C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17 (1949) 71-73
    [23] Q. G. Meng, S. G. Zhang, J. G. Li, X. F. Bian, Strong liquid behavior of Pr_(55)Ni_(25)Al_(20) bulk metallic glass, J. Alloys Compd. 431 (2007) 191-196
    [24] O. Kubaschewski, C. B. Alcock, P. J. Spencer, Materials Thermochemistry, 6th ed., Pergamon Press, Nek, 1993
    [25] G. J. Fan, H. J. Fecht, E. J. Lavernia, Viscous flow of the Pd_(43)Ni_(10)Cu_(27)P_(20) bulk metallic glass-forming liquid, Appl. Phys. Lett. 84 (2004) 487-489
    [26] L. N. Hu, X. F. Bian, X. B. Qin, Y. Z. Yue, Y. Zhao, C. D. Wang, J. Phys. Chem. B 110 (2006)21950-21957
    [27] J. Y. Qin, X. F. Bian, S. I. Sliousarenko, Pre-peak in the structure factor of liquid Al -Fe alloy, J. Phys.: Condens. Matter 10 (1998) 1211-1218
    [28] M Matsushita, Y. Hirotsua, T. Ohkubo, T. Oikawab, A. Makino, Structure analysis of amorphous Pd_(75)Si_(25) alloy by electron diffraction and high-resolution electron microscopy, Mater. Sci. Eng., A217-218 (1996) 392-396
    [29] C. A. Angell, Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non-Cryst. Solids 102 (1988) 205-221
    [30] Q. X. Lv, X. F. Bian, T. Mao, Z. K. Li, J. Guo, Y. Zhao, Fragility and structure of Al-Cu alloy melts, Physica B 392 (2007) 34-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700