Ru基高温形状记忆合金的马氏体相变与应变恢复特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用光学显微观察、透射电子显微观察、示差扫描量热分析、X射线衍射和压缩实验等手段,系统研究了Ru基高温形状记忆合金的马氏体相变和应变恢复特性,阐明了马氏体微观组织在压缩变形中的演化规律及其与应变恢复特性之间的内在联系,研究了Fe元素对Ru-Nb合金相变和力学性能的影响规律,揭示了掺Fe改善断裂韧性的微观机制。
     研究结果表明合金成分对Ru基合金的相变有显著影响,Ru_(50)Ta_(50)、Ru_(53)Nb_(47)和Ru_(50)Nb_(50)合金在冷却时发生β→β′→β″两步马氏体相变,室温形成具有单斜结构的β″马氏体;而Ru_(54)Ta_(46)、Ru_(45)Ta_(55)和Ru_(45)Nb_(55)合金马氏体冷却时只发生β→β′一步马氏体相变,室温形成具有正方结构的β′马氏体;在Ru_(50-x)Nb_(50)Fe_x(X=3.5、7、14)合金中观察到了β→β′→β″两步马氏体相变,马氏体相变温度随Fe含量的增加而降低。室温压缩变形使Ru基合金马氏体逆转变温度升高,相变滞后增宽。
     透射电镜观察证实,Ru基高温记忆合金室温β′和β″马氏体变体呈三角状或楔状等自协作组态,变体间界面平直,马氏体亚结构为(101)I型孪晶。室温压缩变形对马氏体组织形态有显著影响。形变量较小时,马氏体变体因择优取向而粗化;随形变量的增大,变体间呈挤碰和交叉形貌,变体间界面共格性遭到破坏,界面变得紊乱,变体内部出现位错;随形变量的进一步增大,马氏体变体失去自协作组态,大都形成单一变体,变体内部位错密度增加且形成缠结组态。
     Ru基记忆合金的马氏体类型不同,应变恢复特性差异很大。β′马氏体在室温压缩变形后加热,伴随β′→β转变呈现一步应变恢复;而β″马氏体变形后加热,伴随β″→β′→β两步逆相变发生两步应变恢复,对应于β′→β转变产生的可逆应变大于对应于β″→β′转变的可逆应变。
     掺Fe改善了Ru-Nb合金的形状记忆效应,Ru_(50)Nb_(50)的最大可完全恢复应变为2%,而Ru_(43)Nb_(50)Fe_7的最大可完全恢复应变达2.5%。
     适量Fe元素的加入降低了Ru-Nb合金的室温压缩强度,提高了室温塑性,掺Fe改变了Ru-Nb合金的室温压缩断裂方式,未掺Fe的Ru-Nb主要呈脆性沿晶断裂,而掺Ru-Nb-Fe合金室温呈穿晶断裂。上述断裂方式的改变是塑性增大的主要原因。
The martensitic transformation and strain recovery characteristics have been systematically investigated by optical microscopy, TEM, DSC, XRD, and compression test. The effect of compression deformation on martensite microstructure and internal relations between martensite microstructure and strain recovery characteristics has been illuminated. The effect of adding Fe to martensitic transformation and mechanical properties has been studied. Micromechanism of adding Fe to improve fracture ductility at room temperature of Ru based alloys has been explained.
     The experimental results show that a two-step phase transformation occurs when cooling Ru_(50)Ta_(50), Ru_(53)Nb_(47), and Ru_(50)Nb_(50) alloys from high temperature to room temperature, formingβ″martensite of monoclinic structure. While one step phase transformation occurs during the cooling procedure of Ru_(54)Ta_(46), Ru_(45)Ta_(55), and Ru_(45)Nb_(55) alloy from high temperature to room temperature,β″martensite of tetragonal structure. For Ru_(50-x)Nb_(50)Fe_x(X=3.5, 7, 14) alloy, two-step phase transformation occurs when cooling these alloys from high temperature to room temperature. Keeping the content of Nb, transformation temperatures drop down with reducing of Fe content. Deformation of Ru based alloys makes that martenstic inverse transformation temperatures increase and phase transformation hysteresises become wider.
     The study of TEM research shows that thermalβ″andβ′martensite exist at room temperature in Ru based high temperature shape memory alloys. The martensite variants ofβ″andβ′martensites exhibit triangle-like or wedge-like self-accommodating morphology, with alternating regular bands inside; this kind of variants boundary is straight. The twinning relationship between the substructural bands is (101) Type I mode. Compression deformation at room temperature has great influence on martensite microstructure. The main deformation mechanism involved varies as the following sequence: When the specimen deforms, the reorientation and coalescence ofβ′andβ″martensite variants take place. While deformation increases the self-accommodated morphology begins to be broken, injection of the foreign variant into the substructural bands can be found, dislocations can be found in martensite varients. With further deformation, the self-accommodated morphology has been completely broken, uniform variant of martensite is formed, the density of dislocations in martensite variant is increasing and forming winding dislocation.
     Martensite type has great influence on strain recovery characteristics. After compression deformation and heating,β′martensite shows only one step shape recovery withβ′→βinverse martensitic transformation happening. When deforming at room temperature and heatingβ″martensite, two step shape recovery occurs withβ″→β′andβ′→βtwo-step inverse martensitic transformation happening, and recovery strain ofβ′→βinverse martensitic transformation is good than that ofβ″→β′martensitic inverse phase transformation.
     The addition of Fe can improve the shape memory effect, the maximal complete recovery strain of Ru_(50)Nb_(50) is 2%, while the maximal complete recovery strain of Ru_(43)Nb_(50)Fe_7 is 2.5%.
     The addition of Fe decreases the compression strength and improves the ductility at room temperature of Ru-Nb alloy. The addition of Fe changes the failure mode of Ru-Nb alloy, failure mode of Ru-Nb alloys is brittle intergranulal fracture. failure mode of Ru-Nb-Fe alloys is ductile intragranular fracture. The change of failure mode is the main reason of ductility increment.
引文
1 L. C. Chang, T. A. Read. Plastic Deformation and Diffusional Phase Changes in Metals ? The Gold Cadmium Beta Phase. Transactions of American Institute of Mining Engineering. 1951, 191: 47-52
    2 W. J. Buehler, J. V. Gilfrich, R. C. Wiley. Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics. 1963, 34: 1475-1477
    3 K. Otsuka, H.Sakamoto, K. Shimizu. Successive Stress-induced Martensitic Transformations and Associated Transformation Pseudoelasticity in Cu-Al-Ni Alloys. Acta Metallurgica. 1979, 27: 585-601
    4 Yinong Liu, S. P. Galvin. Criteria for Pseudoelasticity in Near-equiatomic NiTi Shape Memory Alloys. Acta Materialia. 1997, 45: 4431-4439
    5 Yinong Liu, P. G. McCormick. Criteria of Transformation Sequences in NiTi Shape Memory Alloys. Materials Transactions. JIM. 1996, 37: 691-696
    6 E. Goo, R. Sinclair. The B2 to R Transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 Alloys. Acta Metallurgica. 1985, 33: 1717-1723
    7 Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura. Crystallography of Martensitic Transformation in Ti-Ni Single Crystals. Acta Metallurgica. 1987, 35: 2137-2144
    8 S. Miyazaki, C. M. Wayman. The R-Phase Transition and Associated Shape Memory Mechanism in Ti-Ni Single Crystals. Acta Metallurgica. 1988, 36: 181-192
    9 S. K. Wu, C. M. Wayman. On the Reciprocal Lattice of the Premartensitic R-Phase in TiNi Shape Memory Alloys. Acta Metallurgica. 1989, 37: 2805-2813
    10 K. Okamoto, S. Ichinose, K. Mori, K. Otsuka, K. Shimizu. Crystallography of β1→γ′1 Stress-Induced Martensitic Transformation in a Cu-Al-Ni Alloy. Acta Metallurgica. 1986, 34: 2065-2073
    11 K. Adachi. J. Perkins, C. M. Wayman. The Crystallography and Boundary Structure of Interplate-group Combinations of 18R Martensite Variants in Cu-Zn-Al Shape Memory Alloy. Acta Metallurgica. 1988, 36: 1343-1364
    12 K. M. Knowles. A High-Resolution Electron Microscope Study ofNickel-Titanium Martensite. Philosophical Magazines A. 1982, 45: 357-370
    13 T. Saburi, Y. Watanabe, S. Nenno. Morphological Characteristics of the Orthorhombic Martensite in a Shape Memory Ti-Ni-Cu Alloy. ISIJ International. 1989, 29: 405-411
    14 H. Y. Peng, Y. D. Yu, D. X. Li. High Resolution Electron Microscopy Studies of Martensite around Xs Precipitates in a Cu-Al-Ni-Mn-Ti Shape Memory Alloy. Acta Materialia. 1997, 45: 5153-5161
    15 K. Bhattacharya, R. D. James, P. J. Swart. Relaxation in Shape Memory Alloys. Part I Mechanical Model. Acta Materialia. 1997, 45: 4547-4560
    16 K. Bhattacharya, R. D. James, P. J. Swart. Relaxation in Shape Memory Alloys. Part II Thermomechanical Model and Proposed Experiments. Acta Materialia. 1997, 45: 4561-4568
    17 K. Madangopal, R. Tiwari, S. Banerjee. Microscopic Self- accommodation in Shape Memory Alloy Martensites. Scripta Metallurgica et Materialia. 1993, 28: 991-996
    18 K. Madangopal. The Self Accommodating Martensitic Microstructure of Ni-Ti Shape Memory Alloys. Acta Materialia. 1997, 45: 5347-5365
    19 T. Fukuda, T. Saburi, K. Doi, S. Nenno. Nucleation, Self-accommodation of the R-Phase in Ti-Ni Alloys. Materials Transactions. JIM. 1992, 33: 271-277
    20 M. Nishida, C. M. Wayman, A. Chiba. Electron Microscopy Studies of the Martensitic Transformation in an Aged Ti-51at.%Ni Shape Memory Alloy. Metallography. 1988, 21: 275-291
    21 S. Miyazaki, K. Otsuka, C. M. Wayman. The Shape Memory Mechanism Associated with the Martensitic Transformation in Ti-Ni Alloy II: Variant Coalescence and Shape Recovery. Acta Metallurgica. 1989, 37: 1885-1890
    22 H. C. Lin, H. M. Liao, J. L. He, K. C. Chen, K.M. Lin. Wear Characteristics of TiNi shape Memory Alloys. Metallurgical and Materials Transactions A. 1997, 28A: 1871-1877
    23 R. Plietsch, K. Ehrlich. Strength Differential Effect in Pseudoelastic NiTi Shape Memory Alloys. Acta Materialia. 1997, 45: 2417-2424
    24 K. Marukawa, K. Tsuchiya. Short-range Ordering as the Cause of the Rubber-like Behavior in Alloy Martensites. Scripta Metallurgica. 1995, 32: 77-82
    25 A. Ishida, K. Ogawa, M. Sato, S. Miyazaki. Microstructure of Ti-48.2 at.% Ni Shape Memory Thin Films. Metallurgical and Materials Transactions A.1997, 28A: 1985-1991
    26 C. M. Friend, A. P. Atkins, N. B. Morgan. The Durability of “Smart” Composites Containing Shape-Memory Alloy Actuators. . J. D. Phys. IV. 1995, C8: 1171-1176
    27 S.A. Shabalovskaya, V. I. Itin, V. E. Gyunter. Porous Ni-Ti: A New Material for Implants and Prostheses. Proceedings of the First International Conference on Shape Memory and Superelastic Technologies. Asilomar Conference Center. Pacific Grove. California. USA. 1994: 7-12
    28 T. Saburi, T. Tatsumi, S. Nenno. Effect of Heat Treatment on Mechanical Behavior of TiNi Alloys. J. de Physique. 1982, C4: 261-266
    29 X.Y. He, J.H. Yang, W. Cai, L.C. Zhao. The application of NiTi Alloy Plates, Fixation rivets in Cranioplasty, Proceedings of the First International Conference on Shape Memory and Superelastic Technologies. 1994, California: 489-494
    30 L. C. Zhao, T. W. Duerig, C. M. Wayman. Transformation and Mechanical Behavior of Ni_(47)Ti_(44)Nb_9 Shape Memory Alloy. MRS International Meeting on Advanced Materials. Tokyo 1988. K.Otsuka and K. Shimizu Eds. Materials Research Society. 1989, 9:171-176
    31 S. Miyazaki, Y. Igo, K. Otsuka. Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys. Acta Metallurgica. 1986, 34: 2045-2051
    32 S. Miyazaki, K. Otsuka, C. M. Wayman. The Shape Memory Mechanism Associated with the Martensitic Transformation in Ti-Ni Alloy ⅠSelf-Accommodation. Acta Metallurgica. 1989, 37: 1873-1884
    33 S. K. Wu, C. M. Wayman. Martensitic Transformation and the Shape Memory Effect in Ti_(50)Ni_(10)Au_(40) and Ti_(50)Au_(50) Alloys. Metallography. 1987, 20: 359-376
    34 K. Yamauchi, M. Nishida, I. Itai, K. Kitamura, A. Chiba. Specimen Preparation for Transmission Electron Microscopy of Twins in B19’ Martensite of Ti-Ni Shape Memory Alloys. Materials Transactions. JIM. 1996, 37: 210-217
    35 X.B. Ren, K. Otsuka. Origin of Rubber-like Behavior in Metal Alloys. Nature. 1997, 389: 579-582
    36 P. G. Lindquist, C. M. Wayman. Structure of Ti_(50)Ni_(50-X)Pd_X and Ti_(50)Ni_(50-X)Pt_XAlloys. MRS International Meeting On Advanced Materials. Tokyo, 1988. K.Otsuka, K. Shimizu eds. Materials Research Society. 1989, 9: 123-128
    37 K. Otsuka, K. Shimizu, I. Cornelis, C. M. Wayman. Shape Recovery Temperature Range in Cu-Al-Ni and Cu-Zn Marmem Alloys. Scripta Metallurgica. 1972, 6: 377-382
    38 K. Takezawa, T. Shindo, S. Sato. Shape Memory Effect in β1-CuZnAl Alloys. Scripta Metallurgica. 1976, 10: 13-18
    39 J.X. Zhang, Y.F. Zheng, L.C. Zhao, The Structure, Mobility of Intervariant Boundaries in 18R Martensite in a Cu-Zn-Al Alloy. Acta Materialia. 1999, 47: 2125-2141
    40 J.X. Zhang, Y.F. Zheng, Y.C. Luo, L.C. Zhao. The Substructure, Boundary Structure of the Deformed 18R Martensite in a Cu-Zn-Al Alloy. Acta Materialia. 1999, 47: 3497-3506
    41 J. Pons, R. Portier. Accommodation of γPhase Precipitates in Cu-Zn-Al Shape Memory Alloys Studied by High Resolution Electron Microscopy. Acta Materialia. 1997, 45: 2109-2120
    42 A. Sato, E. Chishima, K. Soma, T.Mori. Shape Memory Effects in γ?ε Transformation in Fe-30Mn-1Si Alloys Single Crystals. Acta Metall. 1982, 30:1177-1183
    43 K. Ogawa, S. Kajiwara. HREM Study of Stress-induced Transformation Structures in an Fe-Mn-Si-Cr-Ni Shape Memory Alloy. Materials Transactions. JIM. 1993, 34: 1169-1176
    44 J.L. Putaux, J.P. Chevalier. HREM Study of Self-accommodated Thermal ε-Martensite in an Fe-Mn-Si-Cr-Ni Shape Memory Alloy. Acta Materialia. 1996, 44: 1701-1716
    45 Zhizhong Dong, Wenxi Liu, Jinming Chen, Guoguang Sun. Properties of FeMnSiCrNi Shape Memory Alloy with (0.1~0.5%) Nb Additions. Proc. SMST-SMM 2001, Materials Science Forum. 2002, 394-395: 407-410
    46 刘庆锁. Fe-17Mn-10Cr-5Si-4Ni 合金中 ε 马氏体的形成及逆相变. 哈尔滨 工业大学博士论文. 1999
    47 李建忱,吕晓霞,蒋青,渠英. 铁基形状记忆合金的研究进展与展望. 功能材料. 2000, 31(1): 9-11
    48 A. B. Greninger, V. G. Mooradin, Development of Shape Memory Alloys. Trans. AIME, 1938, 138: 337-351
    49 G. V. Kurdjumov, L. G. Khandros. Applications of Shape Memory Alloys in the USA. Dokl. Akan. Nauk. SSSR., 1949, 66: 211-217
    50 G. V. Kurdjumov, L. G. Khandros. Behavior of Reversible SMA Coupler of Quick Repllacement. J. Tech. Phys., 1949, 49: 761-769
    51 L. C. Chang, T. A. Read. The Application of Constrained Recorery Shape Memory Devices For Connectors, Sealing and Clampling. Trans. AIME, 1951, 15: 47-57
    52 M. W. Barkart, T. A. Read. Shape Memory Applications in Europe. Trans. Met. Soc. AIME, 1953, 154: 1516-1531
    53 K. Otsuka, C. M. Wayman. Shape Memory Materials. Cambridge University Press. 1994: 220-239
    54 S. Miyazaki, K. Otsuka. Development of Shape Memory Alloys. ISIJ International. 1989, 29: 353-377
    55 A.I. Razov, A.G. Cberniavsky, V. Yu. Shape Memory Actuators for Space Applications. Proceedings of the Second International Conference on Shape memory and Superelastic Technologies. TIPS Technical Publishing, Inc. 1997, California: 310-316
    56 L. Mcd. Schetky. The Current Status of Industrial Applications for Shape Memory. Trans. Mat. Res. Soc, Japan. Vol. 18B, 1994:1131-1141
    57 NPO. Entergiya. TiNi-base Shape Memory Alloys and their Applications. Proceedings of the International Symposium of Shape Memory Materials (Shape Memory Materials’94). Beijing. China. 1994:1313-1317
    58 M. Nishida, T. Hara, Y. Morizono, A. Ikeya, H. Kijima, A. Chiba. Transmission Electron Microscopy of Twins in Martensite in Ti-Pd Shape Memory Alloy. Acta Materialia. 1997, 45: 4847-4853
    59 K. H. Echelmeyer. The Effect of Alloying of the Shape Memory Phenomenon in Nitinol. Scripta Metallurgica. 1976, 10: 667-672
    60 J. Van Humbeeck. Non-medical Applications of Shape Memory Alloys. Materials Science and Engineering A. 1999, 273-275: 134-148
    61 J. Van Humbeeck. High Temperature Shape Memory Alloys. Transactions of the ASME. 1999,121:98-101
    62 D. N. Adnyna, Sunyoto, Srijono. Application of Shape Alloy for Fire/Heat Detection system. Proceedings of Second International Conference on ShapeMemory and Superelastic Technologies. California. USA. 1997: 233-238
    63 Y.Q. Wang, L.C. Zhao. Microstructure in NiAl HTSMA at cast statement. J of Metals, 1992, 12:14-20
    64 C. H. Man, C. Y. Chung. NiAl Shape Memory Alloy by Powder metallurgy Method. Materials Science Forum. 2000, 327-328: 497-500
    65 彭红缨. CuAlNiMnTi 高温形状记忆合金界面及缺陷的高分辨电镜研究. 中国科学院金属研究所博士学位论文. 1997
    66 S. Gong, S. Hu, H. Xu. Recrystallization of Ti51Ni13Pd36 High Temperature Shape Memory Alloys. Materials Science Forum. 2000, 327-328: 283-286
    67 E. Cesari, P. Ochin, R. Portier, V. Kolomytsev, Y. Koval, A. Pasko, V. Soolshenko. Structructure and Properties of Ti-Ni-Zr and Ti-Ni-Hf melt spun ribbons. Materials Science and Engineering A. 1999, 273-275: 738-744
    68 P. L. Potapov, N. A. Polyakova, V. A. Udovenko, E. L. Svistunnova. The martensitic structure and shape memory effect in NiMn alloyed by Ti and Al. Z. Metallkd. 1996, 87: 33-39
    69 Y. N. Koval. High temperature shape memory effect in some alloys and compounds. Materials Science Forum. 2000, 327-328: 271-278
    70 Y. N. Koval, G. S. Firstov, J. Van Humbeeck, L. Delaey, W. Y. Yang. B2 intermetallic compounds of Zr: New class of the shape memory alloys. J. de Physique. 1995, C8: 1103-1109
    71 G. Fleischer. Intermetallic compounds for high-temperature structural use. Platinum Metals Rev.. 1992, 36: 138-145
    72 R. W. Fonda, R. A. Vandermeer. Crystallography and Microstructure of Ru-Ta. Philosophical Magazine A. 1997, 76(1): 119-133
    73 R. W. Fonda, H. N. Jones, R. A. Vandermeer. The Shape Memory Effect in Equiatomic Ru-Ta and Ru-Nb Alloys. Scirpta Materialia. 1998, 39(8): 1031-1037
    74 J.Beyer, J.H.Mulder. Recent Developments in High Temperature Shape Memory Alloy. Trans. Met. 1994. 18B: 1006-1019
    75 P. L. Potapov, S. Y. Song, M. C. Shin. Shape Memory Effect in NiAl and NiMn Based Alloys. Scripta Materialia. 1997, 36(2): 207-212
    76 A. Inoue, H. Tomioka, T. Masumoto Microstructure and Mechanical Properties of Rapidly Quenched L1_2 Alloys in Ni-Al-X Systems. Met Trans.1983,14A: 1367-1377
    77 S. Nourbakhsh, P. Chen. Microstructure and Mechanical Properties of Rapidly Solidified and Annealed Ni-Al Intermetallic Alloys. Acta Metall.. 1989, 37(6): 1573-1583
    78 R. Darolia. NiAl Alloys for High-Temperature Structural Applications. JOM. 1991, 43(3): 44-49
    79 K. Ishida, N. Ueno, T. Nishizama. Ductility Enhancement in NiAl (B2)- Base Alloys by Microstructural Control. Met Trans. 1991, 22A: 441- 446
    80 Y. D. Kim, C. M. Wayman. Shape Memory Effect in Powder Metallurgy NiAl Alloys. Scripta Met. 1990, 24: 245-250
    81 N. Ono, A. Tsukahara, R. Kainuma, K. Ishida. The Properties of two-phase Ni-Al-Fe Shape Memory Alloys in the Virgin and Shape-Memory-Cycled states. Materials Science and Engineering A. 273-275 (1999): 420-424
    82 J. H. Yang, C. M. Wayman. Study on the Ni5Al3 Phase and Related Phenomena in a NiAlFe Alloy. Materials Sci. and Engr.. 1993, A160: 241-249
    83 J. H. Yang, C. M. Wayman. Assessment of NiAl for High Temperature Shape Memory Alloys. Proceedings of the International Conference on Shape Memory and Superelastic Technologies. California, USA, 1994: 97-102
    84 彭红樱,魏中国,杨大智. 高温形状记忆合金的研究进展. 材料科学与工程. 1994. 12(1):5-12
    85 J. Dutkiewicz, T. Czeppe, J. Morgiel. Effect of Titanium on Structure and Martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti Alloys. Materials Science and Engineering A. 1999, 273-275: 703-707
    86 Z. C. Lin, W. Yu, R. H. Zee, B. A. Chin. CuAlPd Alloys for Sensor and Actuator Applicatioins. Intermetallics. 2000, 8: 605-611
    87 Z. C. Lin, R. Lin, B. A. Chin. Enhanced Cu-based Shape Memory Alloys for High Temperature Application. SMST-97. Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies. California, USA, 1997: 107-112
    88 J. Lelatko, H. Morawiec, M. Gigla, Yu. N.Koval, V. I. Kolomystev. Structure of Cu-Al-Nb Shape Memory Alloys. Proceedings of the XVII Conferenceapplied crystallography. Wisla, Poland, 1997: 312-315
    89 H. Morawiec, J. Leltko, Yu Koval, V. Kolomytzev. High-temperature Cu-Al-Nb Shape Memory Alloys. Materials Science Forum. 2000, 327-328: 291-294
    90 S. K. Wu, C. M. Wayman. TEM studies of the martensitic transformation in a Ti50Ni40Au10 alloy. Scripta Met., 1987, 21: 83-88
    91 K. Enami, K. Yamauchi, T. Seto, O. Takahata. Influence of W addition on the martensitic transformation of the TiPd alloy. Trans. Met., 1994, 18B: 1021-1028
    92 W. S. Yang, D. E. Mikkala. Ductilization of Ti-Pd-Ni shape memory alloys with Boron additions. Scripta Metall.. 1993, 28: 161-167
    93 K. Enami, Y. Kitano, K. Horii. Incommensurate phase in the TiPd martensitic alloys. Shape Memory Materials. 1989, 9: 117-122
    94 D. Golberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka. Improvement of a Ti50Pd30Ni20 High Temperature Shape Memory Alloy by Thermomechanical Treatments. Scripta Metallurgical and Materials. 1994, 30(10): 1349-1354
    95 D. Golberg, Ya Xu, Y. Murakami, K. Otsuka, T. Ueki, H. Horikawa. High-temperature Shape Memory Effect in Ti50Pd50-XNiX(X=10, 15, 20) alloys. Materials Letters. 1995, 22: 241-248
    96 Y. Suzuki, Y. Xu, S. Morito, K. Otsuka, K. Mitose. Effects of Boron Addition on Microstructure and Mechanical Properties of Ti-Pd-Ni High temperature Shape Memory Alloys. Materials Letters. 1998, (36): 85-94
    97 K. Otsuka, X. Ren. Mechanism of Martensite Aging Effects and New Aspects. Materials Science and Engineering. 2001, A312: 207-218
    98 K. Otsuka, X. Ren. Recent developments in the research of shape memory alloys. Intermetallics. 1999, 7: 511-528
    99 Y. Xu, Study on shape memory characteristics and recovery recrystallization processes in Ti-Pd-Ni high-temperature shape memory alloys. Ph. D. Thesis. University of Tsukuba. 1997
    100 Y. Xu, K. Otsuka, E. Furubayashi, K. Mitose. TEM Observation of Recrystallization Process in Solution-treated Ti50Pd50 Martensite. Materials Letters. 1998, (34): 14-18
    101 Y. Xu, S. Shimizu, Y. Suzuki, K. Otsuka, T. Ueki, K. Mitose. Recovery andRecrystallization Processes in Ti-Pd-Ni High-temperature Shape Memory Alloys. Acta Materialia. 1997, 45: 1503-1511
    102 K. H. Eckelmeyer. The Effect of Alloying on the Shape Memory Phenomenon in Nitinol. Scripta Metallurgica. 1976, 10: 667-672
    103 P. Pererseim, J. C. Brachet, J. L. Bechade, C. Foucher, G. Guenin. Investigation of Transformation Temperatures. Microstructure and Shape Memory Properties of NiTi. NiTiZr and NiTiHf Alloys. J. de Phys. IV. 1995, C8: 741-746
    104 S. F. Hsieh, S. K. Wu. A Study on Ternary Ti-rich TiNiZr Shape Memory Alloys. Materials Characterization. 1998, 41: 151-162
    105 D. R. Angst, P. E. Toma, M. Y. Kao. The Effect of Hafnium Content on the Transformation Temperatures of Ni_(49)Ti_(51-x)Hf_x Shape Memory Alloys. J. de Phsyique, IV. 1995, 5: 747-750
    106 T.W. Duerig, J. Albrecht, G.H. Bessinger. A shape memory alloy for high temperature applications. JOM. 1982, 12: 14-19
    107 J. H. Mulder, J. Beyer, P. Donner, J. Peterseim. On the High Temperature Shape Memory Capabilities of Ni-(TiZr) and Ni-(TiHf) Alloys. Proceedings of International Symposium on Shape Memory Materials. Beijing. China. 1994: 55-60
    108 A. Shelyakov, A. Gulyaev, P. Potapov, E. Svistunova, D. Hodgson, N. Matveeva, J. Cederstrom. Rapidly quenched high temperature shape memory NiTiHf alloys. Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies. California, USA, 1997: 89-95
    109 Y. Gao, Z. J. Pu, K. H. Wu. TEM studies of NiTi-Hf and NiTiZr high temperature shape memory alloys. Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies. California, USA, 1997: 83-88
    110 S. M. Russell, F. Sczerzenie. Engineering consideration in the application of Ni-Ti-Hf and NiAl as practical high temperature shape memory alloys. Proc. ICSMST. California, USA, 1994: 43-48
    111 X. L. Liang, Y. Chen, H. M. Shen, Z. F. Zhang, W. Li, Y. N. Wang. Thermal Cycling Stability and Two-Way Shape Memory Effect of Ni-Cu-Ti-Hf alloys. Solid State Communications. 2001, 119: 381-385
    112 孟祥龙, 王中, 赵连城, 伊胜宁. NiTiHf 高温形状记忆合金研究进展. 宇航材料与工艺, 1999, 6: 1-10
    113 V.E.Raub, W.Fritzsche. Die Niob-Ruthenium-Legierungen. Z.Metallkde. 1963, 54:317-319
    114 V.E.Raub, H.Beeskow, W.Fritzsche. Die Struktur derfesten Tantal-Ruthenium-Legierungen. Z.Metallkde. 1963, 8: 451-454
    115 M.A.Schmerling, B.K.Das, D.S.Lieberman. Phase Transformations in Near Equiatomic Ru-Ta Alloys. Metall. Trans.A. 1970, 76: 3273-3286
    116 R.L.Fleischer, R.D.Field, C.L.Briant. Mechanical, Elastic and Structural Properties of Alloys of Ru-Ta High-Temperature Intermetallic Compounds. Metall Trans.A, 1991, 22A: 129-133
    117 R.L.Fleischer. Intermetallic Compounds for High-Temperature Structural Use, Platinum Metals Rev. 1992, 36: 138-145
    118 K. Otsuka, D. Goldberg. High Temperature Shape Memory Alloys. in Advances in Science and Technology, 10 Intelligent Materials and Systems. ed P. Vincenzini 1995, 55: 76-79
    119 H. Okamoto. Binary Alloy Phase Diagram Updating Seivice, J. Phase Equilib., 1991, 3:12-19
    120 B.K.Das, D.S.lieberman. Displacive Transformations in Near- Equiatomic Niobium-Ruthenium Alloys-I. Morphology and Grystallography. Acta Metall. 1975, 23: 579-587
    121 B.K.Das, E. A. Stern, D.S.lieberman. Displacive Transformations in Near-Equiatomic Niobium-Ruthenium Alloys-II. Energetics and Mechanism. Acta Metall. 1976, 24: 37-44
    122 B.H.Chen, H.F.Franzen. High temperature X-ray diffraction and Landau theory investigation of phase transitions in Ru-Nb1+x and RhTi. Journal of the Less-Common Metals. 1989, 153:13-19
    123 R.W.Fonda, H.N.Jones. Microstructure, crystallography, and shape memory effect in equiatomic Ru-Nb. Mater. Sci. & Eng. 1999, A273-275: 275-279
    124 Z.R.He, J.E.Zhou, Y.Furuya. Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys. Mater. Sci. & Eng. 2003, A348: 36-40
    125 黄兵民. 冷拔 NiTi 合金的显微组织与超弹性,哈尔滨工业大学博士学位论文,1997, 74-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700