钨和氧化钨准一维微/纳米结构的低温气相合成及其生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪五十年代开始,微米晶须材料,因为具有独特的准一维结构和极其优异的力学性能,而成为材料学界的一个经久不衰的研究热点。目前,晶须已经发展成为各种新型复合材料的主要补强增韧材料之一,而性能优异的晶须材料的合成和生长机理,以及显微结构分析等相关的基础应用研究越来越受到人们的关注。最近十多年间,直径在100 nm以下的纳米晶须材料,如纳米管、纳米线、纳米带和纳米同轴缆等,是纳米科学与技术的研究和发展中最为前沿的材料。它们一方面可以作为纳米科技中制作微/纳器件的基本构件,另一方面还作为人们探究材料在纳米尺度下的一些新特性和新功能提供一个巨大的平台。
     难熔金属W的晶须材料,具有非常优异的物理化学和力学性能,已有近半个世纪的研究历史。但目前人们仍然没有找到一种能进行低成本和大批量合成W晶须的方法。氧化钨准一维微/纳米结构具有非常优异的场电子发射性能和气敏特性,在场电子发射器件和高性能敏感器件等方面具有广泛的应用前景。本文主要研究了难熔金属W及其氧化物的准一维微/纳米结构的气相合成和生长机理,主要的创新结果包括:
     (1)采用一种成本低廉、过程简单的气相沉积方法,大批量地合成出具有各种特殊形貌的氧化钨准一维微/纳米结构,包括具有纳米锥尖的微/纳米针,纳米线,纳米带和微米管等。合成的氧化钨微米针具有非常独特的几何形貌与结构特征(锥尖直径小于10 nm,底部直径大于1μm,长度大于100μm,单晶结构),有望能克服通常的准一维纳米结构(如纳米线和纳米管)径向机械强度较低和单操作性较差的弱点,是用作扫描探针针尖,纳米机械压头和钻头,以及新型的场电子发射针尖的理想材料。
     (2)提出一种新的生长机制—“基于CVD过程的聚合机制”—解释氧化钨微米管的形成过程。这种新的机制能被用来解释其它多种材料的微米管状结构的形成过程,可能是一种形成微米管状结构的普适机制
     (3)分别采用Ni、Fe-Ni和Co-Ni作为催化剂,通过气相方法在相对较低的850℃的温度下(相对于难熔金属W的熔点和W晶须的高温合成方法),成功地合成出难熔金属W的纳米和亚微米晶须。本项研究首次从实验上,将开创于半个世纪以前的金属催化合成方法成功拓展到金属晶须的生长。这不仅为金属W晶须的可控、大批量和低成本合成,及其物性研究打下了良好的基础。同时,也为人们梦寐以求的金属晶须的可控、大批量和低成本合成提供了一条新的思路。
     (4)结合实验结果和理论计算,提出“表面扩散增强的气-固-固(VSS)”模型来解释金属W晶须的催化生长过程。为目前仍然存在争议的VSS机制提供了一系列的新的实验证据,并首次从实验上直接证明,通过VSS机制不仅能合成出直径在50 nm以下的纳米晶须;还能合成出直径远在100 nm以上的亚微米晶须,此外,还从理论上揭示了VSS模型中晶须生长的动力学过程所:具有的某些重要特征。
     (5)采用无催化剂无模板辅助的气相传输方法,在相对较低的900~1000℃下(相对于难熔金属W的熔点和目前的W晶须的高温合成方法)成功地合成出金属W亚微米晶须及其阵列。合成的W晶须具有纳米尺度的锥尖(<50 nm)和高长径比(>100),可能是一种非常理想的补强增韧剂和场电子发射材料。同时,本研究中所开发的这种简单、低成本和大批量合成W晶须方法,不仅有望能延伸到其他金属晶须(如Mo和Ta等)的合成,还可能进一步拓展到金属纳米晶须阵列的合成。
     (6)采用无催化剂无模板辅助的气相传输方法合成出单晶W微米管,并提出了一种新的生长机制—“表面扩散诱导的自模板机制”—解释所合成的单晶W微米管的形成过程。本研究中所采用的方法和提出的生长机理可能同样适用于其它单晶微米管状结构的生长。
Microsized whiskers with the unique quasi-one-dimensional structures and excellent mechanical properties have been an unfailing research hot since the fifties of the twentieth century. At present, whiskers, on the one hand, have been one of most useful strengthening and toughening agents in all kinds of novel composite materials, on the other hand, the related fundamental and applied researches, such as synthesis techniques, growth mechanism, and microstructure analyses of whisker materials with excellent properties have attracted more and more attentions. In the recent teen-years, the nanowhiskers with diameters less than 100 nm, such as nanotubes, nanowires, nanobelts and nanocables, have been the most front materials in field of nano-scale science and technology. They, one the one hand, can be used as the fundamental building blocks for micro-/nano-sized devices, one the other hand, provide a excellent model system for the investigating the novel properties and functions related to the size and/or dimension confinedment.
     The whiskers of refractory metallic W, showing excellent physical, chemical and mechanical properties, have been investigated for nearly half a century. However, a low-cost and large-scale method for the synthesis of W whiskers is still absent. W oxide quasi-one-dimensional nano-/micro- structures have quite excellent field emission and gas sensitivity properties, and show great potential applications in use as field emission materials and high sensitive gas sensor. In this thesis, we will focus on the investigation of the vapor-phase synthesis and growth mechanism of metallic W and W oxides. The innovative results of the thesis are as follows:
     (1) A low-cost and simple vapor phase method was developed to synthesize on a large scale a series of W oxide quasi-one-dimensional micro-/nano- structures, such as micro-/nano- needles with nanotips, nanobelts, nanowires, and microtubes. The synthesized tungsten oxide microneedles with quite unique geometrical and structural characteristics (tip diameters: <10 nm, root diameter: >1μm, length: >100μm, single-crystalline structure) are expected to be able to overcome the weakness of the low lateral strength, and poor individual manipulability of the quasi-one-dimensional nanostructures (such as nanowires and nanotubes) with uniform nanosized diameter along the axial direction, and are ideal materials to use as the probe tips in scanning probe microscopy, nanosized indentors and aiguilles, and the field electron emission tips.
     (2) A novel "aggregation mechanism based on CVD process" was proposed to describe the growth process of the synthesized W oxide microtubes. The proposed mechanism can be used to explain the formation process of some other microtubules synthesized by different methods, and may be a general growth model for the formation of microtubes.
     (3) The nano-/submicro- whiskers of refractory metallic W have been successfully synthesized by Ni, Fe-Ni, and Co-Ni catalyzed vapor phase methods. The study, for the first time, experimentally extended the powerful metal-catalyzed method developed nearly half a century ago to synthesize metallic whiskers. The research provided not only a novel route for the synthesis of metallic whiskers, but also a well base for the future investigation of the controlled and low-cost synthesis, and the properties and applications of metallic whiskers. At the same time, the research, for the first time, experimentally demonstrated that the vapor-solid-solid (VSS) mechanism is valid not only for nanowires with diameter below 50 nm, but also for submicro-whiskers with diameters significantly above 100 nm.
     (4) A "surface-diffusion-enhanced vapor-solid-solid mechanism" was proposed to explain the catalytic growth process of the synthesized W whiskers, based on the experimental and theoretical calculation results. The investigation not only provided a series of new experimental evidences to support the controversial VSS model, but also theoretically discloses some important characteristics of the kinetic process of VSS model.
     (5) Submicro-whiskers of refractory metallic W have been successfully synthesized by a non-catalyst and non-template assisted vapor transport method. The synthesized W whiskers with nanosized tips (< 50 nm) and high aspect ratio (>100) have a great potential applications as strengthening and toughening agents and field emission materials. In addition, the simple, low-cost and large-scale synthesis technique developed here is expected to be also suitable for other metallic whiskers (such as Mo and Ta), and might be further extended to metallic nanowire arrays.
     (6) Single-crystalline microtubes of refractory metallic W have been successfully synthesized by a non-catalyst and non-template assisted vapor transport method. A novel "surface-diffusion induced self-template mechanism" was proposed to explain the synthesized W microtubes. The developed synthesis method and the proposed mechanism may be extended to the formation of other metallic microtubes.
引文
[1]Levitt A P,Whisker technology[M].New York:Wiley-interscience,1970.
    [2]Conyers H,Galt J K.Elastic and Plastic Properties of Very Small Metal Specimens[J].Physical Review,1952,85(6):1060-1061.
    [3]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-8.
    [4]de Heer W A,Chatelain A,Ugarte D.A carbon nanotube field-emission electron source[J].Science,1995,270(5239):1179-80.
    [5]Hongjie D,Hafner J H,Rinzler A G,et al.Nanotubes as nanoprobes in scanning probe microscopy[J].Nature,1996,384(6605):147-50.
    [6]Law M,Goldberger J,Yang P D.Semiconductor nanowires and nanotubes[J].Annual Review of Materials Research,2004,34:83-122.
    [7]Keating C D,Natan M J.Striped metal nanowires as building blocks and optical tags[J].Advanced Materials,2003,15(5):451-454.
    [8]Dai Z R,Pan Z W,Wang Z L.Novel nanostructures of functional oxides synthesized by thermal evaporation[J].Advanced Functional Materials,2003,13(1):9-24.
    [9]Appell D.Nanotechnology:Wired for success[J].Nature,2002,419(6907):553-555.
    [10]Wang Z L,Nanowires and Nanobelts:Materials,Properties and Devices[M].Vol.Ⅰ:Metal and semiconductor nanowires.Peking:Press of Tsinghua University,2004.
    [11]张立德.,解思深.,纳米材料和纳米结构—国家重大基础研究项目新进展[M].北京:化学工业出版社,2004.
    [12]Xia Y N,Yang P D,Sun Y G,et al.One-dimensional nanostructures:Synthesis,characterization,and applications[J].Advanced Materials,2003,15(5):353-389.
    [13]Vaddiraju S,Chandrasekaran H,Sunkara M K.Vapor phase synthesis of tungsten nanowires[J].Journal of the American Chemical Society,2003,125(36):10792-10793.
    [14]Choi H,Park S H.Seedless growth of free-standing copper nanowires by chemical vapor deposition[J].Journal of the American Chemical Society,2004,126(20):6248-6249.
    [15]Zhou J,Deng S Z,Gong L,et al.Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition:Synthesis,growth mechanism,and device application[J].Journal of Physical Chemistry B,2006,110(21):10296-10302.
    [16]Kar S,Ghoshal T,Chaudhuri S.Simple thermal evaporation route to synthesize Zn and Cd metal nanowires[J].Chemical Physics Letters,2006,419(1-3):174-178.
    [17]方晓生,张立德.气相法合成一维无机纳米材料的研究进展[J1.无机化学学报,2006,22(9):1555-1567.
    [18]Lewis B,Crystal Growth[M],ed.Pamplin B P.Oxford:Pergamon,23-63, 1980.
    [19] Wagner R S,Ellis W C. Vapor-liquid-solid mechanism of single-crystal growth [J]. Applied Physics Letters, 1964, 4(5): 89-90.
    [20] Wagner R S, VLS mechanism of crystal growth, in Whisker technology, Levitt A P, Editor. 1970, Wiley-interscience: New York. p. 47-119.
    [21] Givargizov E I. Fundamental aspects of VLS growth [J]. Journal of Crystal Growth, 1975,31:20-30.
    [22] Peng H Y, Wang N, Zhou X T, et al. Control of growth orientation of GaN nanowires [J]. Chemical Physics Letters, 2002, 359(3-4): 241-245.
    [23] Cui Y, Lauhon L J, Gudiksen M S, et al. Diameter-controlled synthesis of single-crystal silicon nanowires [J]. Applied Physics Letters, 2001, 78(15):2214-2216.
    [24] Duan X F,Lieber C M. General synthesis of compound semiconductor nanowires [J]. Advanced Materials, 2000,12(4): 298-302.
    [25] Morales A M,Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279(5348): 208-211.
    [26] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature, 2002, 415(6872):617-620.
    [27] Lauhon L J, Gudiksen M S, Wang D, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420(6911): 57-61.
    [28] Wu Y Y,Yang P D. Direct observation of vapor-liquid-solid nanowire growth [J].Journal of the American Chemical Society, 2001,123(13): 3165-3166.
    [29] Westwater J, Gosain D P, Tomiya S, et al. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction [J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1997, 15(3):554-557.
    [30] Ozaki N, Ohno Y, Takeda S. Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface [J]. Applied Physics Letters, 1998,73(25): 3700-3702.
    [31] Yazawa M, Koguchi M, Muto A, et al. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers [J]. Applied Physics Letters, 1992, 61(17): 2051-2053.
    [32] Yazawa M, Koguchi M, Hiruma K. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates [J]. Appl. Phys. Lett., 1991, 58: 1080-1082.
    [33] Wu Y Y, Yan H Q, Huang M, et al. Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties [J]. Chemistry-a European Journal, 2002, 8(6): 1261-1268.
    [34] Cui Y, Duan X F, Hu J T, et al. Doping and electrical transport in silicon nanowires [J]. Journal of Physical Chemistry B, 2000,104(22): 5213-5216.
    [35] Cui Y,Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science, 2001, 291(5505): 851-853.
    [36] Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(6816): 66-69.
    [37] Gudiksen M S, Wang J F, Lieiber C M. Synthetic control of the diameter and length of single crystal semiconductor nanowires [J]. Journal of Physical Chemistry B, 2001,105(19): 4062-4064.
    [38] Baker R T K. Catalytic growth of carbon filaments [J]. Carbon, 1989, 27(3):315-323.
    [39] Baker R T K, Barber M A, Harris P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene [J]. Journal of Catalysis, 1972,26(1): 51-62.
    [40] Baker R T K, Harris P S, Thomas R B, et al. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene [J].Journal of Catalysis, 1973,30(1): 86-95.
    [41] Kamins T I, Williams R S, Basile D P, et al. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms [J]. Journal of Applied Physics, 2001,89(2): 1008-1016.
    [42] Liu Z W, Bando Y, Tang C C. Synthesis of tungsten oxide nanowires [J].Chemical Physics Letters, 2003,372(1-2): 179-182.
    [43] Wang Y W, Schmidt V, Senz S, et al. Epitatxial growth of silcon nanowires using an aluminium catalyst [J]. Nature Nanotechnology, 2006,1: 186-198.
    [44] Yao Y,Fan S. Si nanowires synthesized with Cu catalyst [J]. Materials Letters,2007,61(1): 177-181.
    [45] Kodambaka S, Tersoff J, Reuter M C, et al. Germanium nanowire growth below the eutectic temperature [J]. Science, 2007,316(5825): 729-732.
    [46] Lensch-Falk J L, Hemesath E R, Lopez F J, et al. Vapor-solid-solid synthesis of ge nanowires from vapor-phase-deposited manganese germanide seeds [J].Journal of the American Chemical Society, 2007,129(35): 10670-10671.
    [47] Dick K A, Deppert K, Martensson T, et al. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires [J]. Nano Letters,2005, 5(4): 761-764.
    [48] Persson A I, Larsson M W, Stenstrom S, et al. Solid-phase diffusion mechanism for GaAs nanowire growth [J]. Nature Materials, 2004, 3(10): 677-681.
    [49] Dick K A, Deppert K, Karlsson L S, et al. A new understanding of au-assisted growth of III-V semiconductor nanowires [J]. Advanced Functional Materials,2005,15(10): 1603-1610.
    [50] Colli A, Hofmann S, Ferrari A C, et al. Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy [J].Applied Physics Letters, 2005, 86(15): 153103.
    [51] Persson A I, Ohlsson B J, Jeppesen S, et al. Growth mechanisms for GaAs nanowires grown in CBE [J]. Journal of Crystal Growth, 2004, 272(1-4 SPEC ISS): 167-174.
    [52] Trentler T J, Hickman K M, Goel S C, et al. Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth [J].Science, 1995,270(5243): 1791-1794.
    [53] Trentler T J, Goel S C, Hickman K M, et al. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway [J]. Journal of the American Chemical Society, 1997,119(9): 2172-2181.
    [54] Dingman S D, Rath N P, Markowitz P D, et al. Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors [J]. Angewandte Chemie-International Edition, 2000,39(8): 1470-1472.
    [55] Grebinski J W, Hull K L, Zhang J, et al. Solution-based straight and branched CdSe nanowires [J]. Chemistry of Materials, 2004,16(25): 5260-5272.
    [56] Yu H, Li J B, Loomis R A, et al. Cadmium selenide quantum wires and the transition from 3D to 2D confinement [J]. Journal of the American Chemical Society, 2003,125(52): 16168-16169.
    [57] Nedeljkovic J M, Micic O I, Ahrenkiel S P, et al. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: Synthesis of InP quantum rods and InP-TiO2 composites [J]. Journal of the American Chemical Society,2004,126(8): 2632-2639.
    [58] Markowitz P D, Zach M P, Gibbons P C, et al. Phase separation in Al_xGa_(1-x)As nanowhiskers grown by the solution-liquid-solid mechanism [J]. Journal of the American Chemical Society, 2001,123(19): 4502-4511.
    [59] Lu X M, Fanfair D D, Johnston K P, et al. High yield solution-liquid-solid synthesis of germanium nanowires [J]. Journal of the American Chemical Society, 2005,127(45): 15718-15719.
    [60] Yu H,Buhro W E. Solution-liquid-solid growth of soluble GaAs nanowires [J].Advanced Materials, 2003,15(5): 416-419.
    [61] Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires [J]. Science, 2000, 287(5457): 1471-1473.
    [62] Hanrath T,Korgel B A. Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals [J]. Journal of the American Chemical Society, 2002,124(7): 1424-1429.
    [63] Hanrath T,Korgel B A. Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals [J]. Advanced Materials, 2003,15(5): 437-440.
    [64] Davidson F M. Schricker A D, Wiacek R J, et al. Supercritical fluid-liquid-solid synthesis of gallium arsenide nanowires seeded by alkanethiol-stabilized gold nanocrystals [J]. Advanced Materials, 2004,16(7): 646-649.
    [65] Davidson F M, Wiacek R, Korgel B A. Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires [J]. Chemistry of Materials, 2005, 17(2):230-233.
    [66] Lee D C, Mikulec F V, Korgel B A. Carbon nanotube synthesis in supercritical toluene [J]. Journal of the American Chemical Society, 2004, 126(15):4951-4957.
    [67] Tuan H Y, Lee D C, Hanrath T, et al. Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents [J]. Nano Letters, 2005,5(4): 681-684.
    [68] Tuan H Y, Lee D C, Hanrath T, et al. Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals [J]. Chemistry of Materials, 2005,17(23): 5705-5711.
    [69] Tuan H Y, Lee D C, Korgel B A. Nanocrystal-mediated crystallization of silicon and germanium nanowires in organic solvents: The role of catalysis and solid-phase seeding [J]. Angewandte Chemie-International Edition, 2006,45(31): 5184-5187.
    [70] Yu D P, Xing Y J, Hang Q L, et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism [J]. Physica E, 2001,9(2): 305-309.
    [71] Xing Y J, Hang Q L, Yan H F, et al. Solid-liquid-solid (SLS) growth of coaxial nanocables: silicon carbide sheathed with silicon oxide [J]. Chemical Physics Letters, 2001,345(1-2): 29-32.
    [72] Xing Y J, Yu D P, Xi Z H, et al. Silicon nanowires grown from Au-coated Si substrate [J]. Applied Physics a-Materials Science & Processing, 2003, 76(4):551-553.
    [73] Wong Y Y, Yahaya M, Salleh M M, et al. Controlled growth of silicon nanowires synthesized via solid-liquid-solid mechanism [J]. Science and Technology of Advanced Materials, 2005, 6(3-4): 330-334.
    [74] Han W Q. Silicon doped boron carbide nanorod growth via a solid-liquid-solid process [J]. Applied Physics Letters, 2006, 88(13): 133118.
    [75] Huo K F, Hu Z, Chen F, et al. Synthesis of boron nitride nanowires [J]. Applied Physics Letters, 2002, 80(19): 3611-3613.
    [76] Huo K F, Hu Z, Fu J J, et al. Microstructure and growth model of periodic spindle-unit BN nanotubes by nitriding Fe-B nanoparticles with nitrogen/ammonia mixture [J]. Journal of Physical Chemistry B, 2003, 107(41):11316-11320.
    [77] Fu J J, Lu Y N, Xu H, et al. The synthesis of boron nitride nanotubes by an extended vapour-liquid-solid method [J]. Nanotechnology, 2004, 15(7):727-730.
    [78] Huo K, Ma Y, Hu Y, et al. Synthesis of single-crystalline α-Si_3N_4 nanobelts by extended vapour-liquid-solid growth [J]. Nanotechnology, 2005, 16(10):2282-2287.
    [79] Wu Q, Hu Z, Wang X Z, et al. Extended vapor-liquid-solid growth and field emission properties of aluminium nitride nanowires [J]. Journal of Materials Chemistry, 2003,13(8): 2024-2027.
    [80] Sears G W. A growth mechanism for mercury whiskers [J]. Acta Metallurgica,1955, 3(4): 361-366.
    [81] Sears G W. A mechanism of whisker growth [J]. Acta Metallurgica, 1955, 3(4):367-369.
    
    [82] Sears G W. Mercury Whiskers [J]. Acta Metallurgica, 1953,1(4): 457-459.
    [83] Johansson J, Svensson C P T, Martensson T, et al. Mass transport model for semiconductor nanowire growth [J]. Journal of Physical Chemistry B, 2005,109(28): 13567-13571.
    [84] Cahn J W. Surface stress and the chemical equilibrium of small crystals--I. the case of the isotropic surface[J].Acta Metallurgica,1980,28(10):1333-1338.
    [85]Park H D,Gailot A C,Prokes S M,et al.observation of size dependent liquidus depression in the growth on InAs nanowires.[J].Journal of Crystal Growth,2006,296:159-164.
    [86]Li N,Tan T Y,Gosele U.Chemical tension and global equilibrium in VLS nanostructure growth process:from nanohillocks to nanowires[J].Applied Physics a-Materials Science & Processing,2007,86(4):433-440.
    [87]Tan T Y,Li N,Gosele U.On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process[J].Applied Physics a-Materials Science &Processing,2004,78(4):519-526.
    [88]Tan T Y,Li N,Gosele U.Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process?[J].Applied Physics Letters,2003,83(6):1199-1201.
    [89]A special issue on carbon nanotubes[J].Accounts of Chemical Research,2002,36:997-1113.
    [90]Puretzky A A,Geohegan D B,Jesse S,et al.In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition[J].Applied Physics a-Materials Science & Processing,2005,81(2):223-240.
    [91]Tan T Y,Lee S T,Gosele U.A model for growth directional features in silicon nanowires[J].Applied Physics a-Materials Science & Processing,2002,74(3):423-432.
    [92]Wang S L,He Y H,Xu J,et al.Growth of Single-crystalline Tungsten Nanowires by an Alloy-catalyzed Method at 850℃.[J].Joural of Materials Research,2008,23(1):72-77.
    [93]Wang S,He Y,Zou J,et al.Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850℃[J].Journal of Crystal Growth,2007,306(2):433-436.
    [94]Possin G E.A Method for Forming Very Small Diameter Wires[J].Review of Scientific Instruments,1970,41(5):772-774.
    [95]Martin C R.Nanomaterials:a membrane-based synthetic approach[J].Science,1994,266(5163):1961-1966.
    [96]Lakshmi B B,Patrissi C J,Martin C R.Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures[J].Chemistry of Materials,1997,9(11):2544-2550.
    [97]秦润华.一维磁纳米线阵列的制备及其应用[J].微纳电子技术,2006,43(8):372-376.
    [98]Plaut A S,Kash K,Kapon E,et al.Magneto-optics of quantum wires grown on V-grooved substrates[J].Surface Science,1994,305(1-3):576-579.
    [99]Zach M P,Ng K H,Penner R M.Molybdenum nanowires by electrodeposition [J].Science,2000,290(5499):2120-2123.
    [100]Walter E C,Zach M P,Favier F,et al.Metal nanowire arrays by electrodeposition[J].Chemphyschem,2003,4(2):131-138.
    [101]Weiqiang H,Shoushan F,Qunqing L,et al.Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J].Science,1997, 277(5330): 1287-9.
    [102] Satishkumar B C, Govindaraj A, Nath M, et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates [J]. Journal of Materials Chemistry, 2000,10(9): 2115-2119.
    [103] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide [J]. Nature, 1992, 360(6403): 444-446.
    [104] Rothschild A, Sloan J, Tenne R. Growth of WS2 nanotubes phases [J]. Journal of the American Chemical Society, 2000,122(21): 5169-5179.
    [105] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium nitride nanotubes [J]. Nature, 2003, 422(6932): 599-602.
    [106] Gudiksen M S, Wang J F, Lieber C M. Size-dependent photoluminescence from single indium phosphide nanowires [J]. Journal of Physical Chemistry B, 2002,106(16): 4036-4039.
    [107] Feng M, Pan A L, Zhang H R, et al. Strong photoluminescence of nanostructured crystalline tungsten oxide thin films [J]. Applied Physics Letters,2005, 86(14): 141901.
    [108] Lee K, Seo W S, Park J T. Synthesis and optical properties of colloidal tungsten oxide nanorods [J]. Journal of the American Chemical Society, 2003, 125(12):3408-3409.
    [109] Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires [J]. Science, 2001,293(5534): 1455-1457.
    [110] Kind H, Yan H Q, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches [J]. Advanced Materials, 2002,14(2): 158-160.
    [111] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292(5523): 1897-1899.
    [112] Smith D P E. Quantum Point Contact Switches [J]. Science, 1995, 269(5222):371-373.
    [113] Choi S H, Wang K L, Leung M S, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask [J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2000,18(4): 1326-1328.
    [114] Chung S W, Yu J Y, Heath J R. Silicon nanowire devices [J]. Applied Physics Letters, 2000, 76(15): 2068-2070.
    [115] Lee Y H, Choi C H, Jang Y T, et al. Tungsten nanowires and their field electron emission properties [J]. Applied Physics Letters, 2002, 81(4): 745-747.
    [116] Wang S J, Chen C H, Chang S C, et al. Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films [J].Applied Physics Letters, 2004, 85(12): 2358-2360.
    [117] Tsakalakos L, Rahmane M, Larsen M, et al. Mo2C nanowires and nanoribbons on Si by two-step vapor-phase growth [J]. Journal of Applied Physics, 2005,98(4): 044317.
    [118] Li Y B, Bando Y, Golberg D. ZnO nanoneedles with tip surface perturbations: Excellent field emitters [J]. Applied Physics Letters, 2004, 84(18): 3603-3605.
    [119] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle arrays[J].Applied Physics Letters,2003,83(1):144-146.
    [120]Zhou J,Gong L,Deng S Z,et al.Growth and field-emission property of tungsten oxide nanotip arrays[J].Applied Physics Letters,2005,87(22):223108.
    [121]Li Y B,Bando Y,Golberg D.Quasi-aligned single-crystalline W_(18)O_(49)nanotubes and nanowires[J].Advanced Materials,2003,15(15):1294-1296.
    [122]Zhou J,Xu N S,Deng S Z,et al.Large-area nanowire arrays of molybdenum and molybdenum oxides:synthesis and field emission properties[J].Advanced Materials,2003,15(21):1835-1840.
    [123]Liu J G,Zhang Z J,Pan C Y,et al.Enhanced field emission properties of MoO_2nanorods with controllable shape and orientation[J].Materials Letters,2004,58(29):3812-3815.
    [124]Zhou J,Deng S Z,Xu N S,et al.Synthesis and field-emission properties of aligned MoO3 nanowires[J].Applied Physics Letters,2003,83(13):2653-2655.
    [125]Buffat P,Borel J P.Size effect on the melting temperature of gold particles[J].Physical Review A(General Physics),1976,13(6):2287-2298.
    [126]Schmidt M,Kusche R,von Issendorff B,et al.Irregular variations in the melting point of size-selected atomic clusters[J].Nature,1998,393(6682):238-240.
    [127]Wu Y Y,Yang P D.Melting and welding semiconductor nanowires in nanotubes [J].Advanced Materials,2001,13(7):520-523.
    [128]Link S,Burda C,Mohamed M B,et al.Femtosecond transient-absorption dynamics of colloidal gold nanorods:Shape independence of the electron-phonon relaxation time[J].Physical Review B,2000,61(9):6086-6090.
    [129]Diao J K,Gall K,Dunn M L.Surface-stress-induced phase transformation in metal nanowires[J].Nature Materials,2003,2(10):656-660.
    [130]张立德,解思深,纳米材料和纳米结构—国家重大基础研究项目新进展[M].北京:化学工业出版社,2004.
    [131]Kong J,Franklin N R,Zhou C W,et al.Nanotube molecular wires as chemical sensors[J].Science,2000,287(5453):622-625.
    [132]Pengfei Q F,Vermesh O,Grecu M,et al.Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection[J].Nano Letters,2003,3(3):347-351.
    [133]Kind H,Yan H Q,Messer B,et al.Nanowire ultraviolet photodetectors and optical switches[J].Advanced Materials,2002,14(2):158-+.
    [134]Kolmakov A,Zhang Y X,Cheng G S,et al.Detection of CO and O-2 using tin oxide nanowire sensors[J].Advanced Materials,2003,15(12):997-1000.
    [135]Thorsen T,Maerkl S J,Quake S R.Microfluidic large-scale integration[J].Science,2002,298(5593):580-584.
    [136]Santini J T,Cima M J,Langer R.A controlled-release microchip[J].Nature,1999,397(6717):335-338.
    [137]Kong X Y,Wang Z L,Wu J S.Rectangular single-crystal mullite microtubes[J]. Advanced Materials,2003,15(17):1445-1449.
    [138]Li X L,Cao G H,Feng C M,et al.Synthesis and magnetoresistance measurement of tellurium microtubes[J].Journal of Materials Chemistry,2004,14(2):244-247.
    [139]Hu J P,Bando Y,Liu Z W,et al.The first template-free growth of crystalline silicon microtubes[J].Advanced Functional Materials,2004,14(6):610-614.
    [140]Ma R Z,Bando Y,Sato T,et al.Single-crystal Al_(18)B_4O_(33)microtubes[J].Journal of the American Chemical Society,2002,124(36):10668-10669.
    [141]Zhan J H,Bando Y,Hu J Q,et al.Hollow and polygonous microtubes of monocrystalline indium germanate[J].Angewandte Chemie-International Edition,2006,45(2):228-231.
    [142]Venables J A,Introduction to Surface and Thin Film Processes[M].Cambridge:Cambridge University Press,2000.
    [143]Jeong J S,Lee J Y,Cho J H,et al.Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method [J].Chemistry of Materials,2005,17(10):2752-2756.
    [144]Wang S L,He Y H,Huang B Y,et al.Formation and growth mechanism of tungsten oxide microtubules[J].Chemical Physics Letters,2006,427(4-6):350-355.
    [145]Wu Y,Xi Z H,Zhang G M,et al.Growth of hexagonal tungsten trioxide tubes [J].Journal of Crystal Growth,2006,292(1):143-148.
    [146]Hu W B,Zhu Y Q,Hsu W K,et al.Generation of hollow crystalline tungsten oxide fibres[J].Applied Physics a-Materials Science & Processing,2000,70(2):231-233.
    [147]Ye C H,Meng G W,Zhang L D,et al.A facile vapor-solid synthetic route to Sb2O3 fibrils and tubules[J].Chemical Physics Letters,2002,363(1-2):34-38.
    [148]Sharma S,Sunkara M K.Direct synthesis of gallium oxide tubes,nanowires,and nanopaintbrushes[J].Journal of the American Chemical Society,2002,124(41):12288-12293.
    [149]Zhang R,Chen X Y,Mo M S,et al.Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process[J].Journal of Crystal Growth,2004,262(1-4):449-455.
    [150]Heuer M,Wagner G,Doring T,et al.Nanowire arrangements of PbS-Sb_2S_3-compounds[J].Journal of Crystal Growth,2004,267(3-4):745-750.
    [151]童亚杰.,李亚栋.一维纳米材料的合成、组装与器件[J].科学通报,2002,47:641.
    [152]Wang J W,Li Y D.Rational synthesis of metal nanotubes and nanowires from lamellar structures[J].Advanced Materials,2003,15(5):445-447.
    [153]Li X L,Liu J F,Li Y D.Large-scale synthesis of tungsten oxide nanowires with high aspect ratio[J].Inorganic Chemistry,2003,42(3):921-924.
    [154]Li X L,Li Y D.Synthesis of scroll-type composite microtubes of Mo_2C/MoCO by controlled pyrolysis MO(CO)_6[J].Chemistry-a European Journal,2004,10(2):433-439.
    [155]Remskar M,Skraba Z,Ballif C,et al.Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study [J]. Surface Science, 1999,435: 637-641.
    [156] Golod S V, Prinz V Y, Mashanov V I, et al. Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils [J]. Semiconductor Science and Technology, 2001,16(3): 181-185.
    [157] Bernardi A, Goni A R, Alonso M I, et al. Probing residual strain in InGaAs/GaAs micro-origami tubes by micro-Raman spectroscopy [J]. Journal of Applied Physics, 2006, 99(6): 063512.
    [158] Martin C R, Van Dyke L S, Cai Z, et al. Template synthesis of organic microtubules [J]. Journal of the American Chemical Society, 1990, 112(24):8976-8977
    [159] Cai Z,Martin C R. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities [J]. Journal of the American Chemical Society, 1989,111(11): 4138-4139.
    [160] Matterson B J, Lupton J M, Safonov A F, et al. Increased efficiency and controlled light output from a microstructured light-emitting diode [J].Advanced Materials, 2001,13(2): 123-127.
    [161] Kyotani T, Tsai L F, Tomita A. Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film [J]. Chemistry of Materials,1996, 8(8): 2109-2113.
    [162] Zhao L L, Steinhart M, Yosef M, et al. Lithium niobate microtubes within ordered macroporous silicon by templated thermolysis of a single source precursor [J]. Chemistry of Materials, 2005,17(1): 3-5.
    [163] Li Y, Wang Z, Ma X D, et al. Large-scale CdX (X=S, Se) microtube arrays on glass substrate: transformation of CdOHCl microrod arrays by a simple template-sacrificing solution method [J]. Journal of Solid State Chemistry, 2004,177(12): 4386-4393.
    [164] Motojima S, Suzuki T, Noda Y, et al. Preparation of helical TiO_2/CMC microtubes and pure helical TiO_2 microtubes [J]. Journal of Materials Science,2004, 39(8): 2663-2674.
    [165] Wu X C, Tao Y R, Mao C J, et al. In situ hydrothermal synthesis of YVO_4 nanorods and microtubes using (NH_4)O_(0.5)V_2O_5 nanowires templates [J]. Journal of Crystal Growth, 2006, 290(1): 207-212.
    [166] Yang S, Ueshima N, Motojima S. Preparation of TaN/C (carbon microcoils)/TaN composite microtubes and TaN microtubes by vapor phase diffusion treatment of carbon microcoils [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 346(1-2):29-33.
    [167] Gudiksen M S,Lieber C M. Diameter-selective synthesis of semiconductor nanowires [J]. Journal of the American Chemical Society, 2000, 122(36):8801-8802.
    [168] Hu J Q, Bando Y, Xu F F, et al. Growth and field-emission properties of crystalline, thin-walled carbon microtubes [J]. Advanced Materials, 2004, 16(2):153-155.
    [169]Kong X H,Li Y D.Ultraviolet-emitting ZnO microtube array synthesized by a catalyst-assisted flux method[J].Chemistry Letters,2003,32(11):1062-1063.
    [170]Hu J Q,Bando Y,Xu F F,et al.Growth and field-emission properties of crystalline,thin-walled carbon microtubes[J].Advanced Materials,2004,16(2):153-+.
    [171]Lu J,Xie Y,Xu F,et al.Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se,Te tubular bulk single crystals[J].Journal of Materials Chemistry,2002,12(9):2755-2761.
    [172]Xi G C,Peng Y Y,Xu L Q,et al.Selected-control synthesis of PbO2submicrometer-sized hollow spheres and Pb3O4 microtubes[J].Inorganic Chemistry Communications,2004,7(5):607-610.
    [173]Li Y D,Li X L,Deng Z X,et al.From surfactant-inorganic mesostructures to tungsten nanowires[J].Angewandte Chemie-International Edition,2001,41(2):333-335.
    [174]Lionel V,Karin K,Anders H,et al.Three-dimensional array of highly oriented crystalline ZnO microtubes[J].Chemistry of Materials,2001,13:4935.
    [175]Hopkins A R,Lipeles R A,Kao W.Electrically conducting polyaniline microtube blends[J].Thin Solid Films,2004,447:474-480.
    [176]Toshima N,Eguchi K,Inokuchi M,et al.Self-fonning microtubes of polypyrrole:Reaction conditions and physical properties[J].Synthetic Metals,2005,152(1-3):145-148.
    [177]王洪涛,张淑敏,刘太奇.微米管制备与应用进展[J].化学世界,2005(12):754-757.
    [178]Lassner E,Schubert W D,Tungsten:Properties,Chemistry,Technology of the Element,Alloys,and Chemical Compounds[M].New York:Kluwer Academic/Plenum Publishers,1998.
    [179]杜泽学,凌云,闵恩泽.钨系催化剂的应用和研究进展[J].中国钨业,2001,16:82-86.
    [180]徐志昌,张萍.钨,钼氧化物涂层的性能,应用和制备[J].中国钨业,199822:9-13.
    [181]Gu G,Zheng B,Han W Q,et al.Tungsten oxide nanowires on tungsten substrates[J].Nano Letters,2002,2(8):849-851.
    [182]Li Y B,Bando Y,Golberg D,et al.WO3 nanorods/nanobelts synthesized via physical vapor deposition process[J].Chemical Physics Letters,2003,367(1-2):214-218.
    [183]Liu J G,Zhao Y,Zhang Z J.Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods[J].Journal of Physics-Condensed Matter,2003,15(29):L453-L461.
    [184]Liu J G,Zhang Z J,Zhao Y,et al.Tuning the field-emission properties of tungsten oxide nanorods[J].Small,2005,1(3):310-313.
    [185]Qi H,Wang C Y,Liu J.A simple method for the synthesis of highly oriented potassium-doped tungsten oxide nanowires[J].Advanced Materials,2003,15(5):411-414.
    [186]Zhou J,Ding Y,Deng S Z,et al.Three-dimensional tungsten oxide nanowire networks [J]. Advanced Materials, 2005,17(17): 2107-2110.
    [187] Jin Y Z, Zhu Y Q, Whitby R L D, et al. Simple approaches to quality large-scale tungsten oxide nanoneedles [J]. Journal of Physical Chemistry B, 2004,108(40):15572-15577.
    [188] Hong K Q, Yin W C, Wu H S, et al. A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions [J]. Nanotechnology, 2005,16(9): 1608-1611.
    [189] Zhu Y Q, Hu W B, Hsu W K, et al. Tungsten oxide tree-like structures [J].Chemical Physics Letters, 1999,309(5-6): 327-334.
    [190] Zhenhui Kang E W M J S L Y L C H. Convenient Controllable Synthesis of Inorganic 1D Nanocrystals and 3D High-Ordered Microtubes [J]. European Journal of Inorganic Chemistry, 2003,2003(2): 370-376.
    [191] Zhao Y M, Li Y H, Ahmad I, et al. Two-dimensional tungsten oxide nanowire networks [J]. Applied Physics Letters, 2006, 89(13): 1131161.
    [192] Lai W H, Shieh J, Teoh L G, et al. Fabrication of one-dimensional mesoporous tungsten oxide [J]. Nanotechnology, 2006,17(1): 110-115.
    [193] Zhu K K, He H Y, Xie S H, et al. Crystalline WO3 nanowires synthesized by templating method [J]. Chemical Physics Letters, 2003, 377(3-4): 317-321.
    [194] Choi H G, Jung Y H, Kim D K. Solvothermal synthesis of tungsten oxide nanorod /nanowire /nanosheet [J]. Journal of the American Ceramic Society,2005,88(6): 1684-1686.
    [195] Ponzoni A, Comini E, Sberveglieri G, et al. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks [J].Applied Physics Letters, 2006, 88(20): 203101.
    [196] Parthangal P M, Cavicchi R E, Montgomery C B, et al. Restructuring tungsten thin films into nanowires and hollow square cross-section microducts [J].Journal of Materials Research, 2005, 20(11): 2889-2894.
    [197] Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants [J]. Nature, 1997, 387: 791-793.
    [198] Zhang G Y, Jiang X, Wang E G. Tubular graphite cones [J]. Science, 2003,300(5618): 472-474.
    [199] Bonard J M, Salvetat J P, Stockli T. Field emission from single-wall carbon nanotube films [J]. Applied Physics Letters, 1998, 73: 918-922.
    [200] Albrecht T R, Quate C F. J. Vac. Sci. Technol., 1988, A6: 271-274. [J].
    [201] Nakamura J, Mera Y, Maeda K. Reproducible Method to Fabricate Atomically Sharp Tips for Scanning Tunneling Microscopy. Rev. Sci. Instrum., 1999, 70:3373-3375. [J].
    [202] Guise O L, Ahner J W, Jung M C, et al. Reproducible electrochemical etching of tungsten probe tips [J]. Nano Letter, 2002, 2(3): 191-193.
    [203] Bai X D, Zhi C Y, Liu S, et al. High-density uniformly aligned silicon nanotip arrays and their enhanced field emission characteristics [J]. Solid State Communications, 2003,125(3-4): 185-188.
    [204] Park W I, Yi G C, Kim M, et al. ZnO nanoneedles grown vertically on Si substrates by nano-catalytic vapor-phase epitaxy [J]. Advanced Materials, 2002, 14(24):1841-1843.
    [205]Seeger K,Palmer R E.Fabrication of silicon cones and pillars using rough metal films as plasma etching masks[J].Applied Physics Letters,1999,74(11):1627-1629.
    [206]Hsu C H,Lo H C,Chen C F,et al.Generally applicable self-masked dry etching technique for nanotip array fabrication[J].Nano Letters,2004,4(3):471-475.
    [207]Hsu C-H,Lo H-C,Chen C-F,et al.Generally applicable self-Masked dry etching technique for Nanotip Arrays Fabrication.Nano Lett.,4(3):471-473.[J].
    [208]Liu K H,Wang W L,Xu Z,et al.In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope[J].Applied Physics Letters,2006,89(22):221908.
    [209]刘预知,无机物质理化性质及重要反应方程式手册[M].成都:成都科技大学出版社,1993.
    [210]叶大伦,胡建华,实用无机物热力学数据手册[M].北京:冶金工业出版社,,2002.
    [211]印世协,钨丝生产原理、工艺及其性能[M].北京:冶金工业出版社,1998.
    [212]Hashimoto H,Tanaka K,Yoda E.Growth and evaporation of tungsten oxide crystals[J].J.Phys.Soc.Japan.,1960,15:1006-1014.
    [213]Pfeifer J,Badaljan E,Tekula-Buxbaum P,et al.Growth and morphology of W18049 crystals produced by microwave decomposition of ammonium paratungstate[J].Journal of Crystal Growth,1996,169(4):727-733.
    [214]Okuyama F.Vapor-grown tungsten whiskers induced by vacuum discharges[J].Journal of Applied Physics,1974,45(10):4239-41.
    [215]Okuyama F,Shibata T,Yasuda N.tungsten needles produced by decomposition of hexacarbonyltungsten[J].Appl.Phys.Lett.,1979,35(1):6-7.
    [216]Okuyama F.Growth of multineedles of tungsten caused by reaction of tungsten oxide with acetone[J].J.Appl.Phys.,1974,46:3255-3259.
    [217]Okuyama F.A technique to prepare metallic multi-point field emission sources [J].Rev.Sci.Instrum.,1980,51:1109-1115.
    [218]白春礼,田芳,罗克,扫描力显微术[M].北京:科学出版社,2000.
    [219]Chen C,Introduction to Scanning Tunneling Microscopy[M].New York:Oxford University Press,1993.
    [220]Whitney T M,Jiang J S,Searson P C,et al.Fabrication and magnetic properties of arrays of metallic nanowires[J].Science,1993,261(5126):1316-1319.
    [221]Patolsky F,Weizmann Y,Willner I.Actin-based metallic nanowires as bio-nanotransporters[J].Nature Materials,2004,3(10):692-695.
    [222]Walter E C,Penner R M,Liu H,et al.Sensors from electrodeposited metal nanowires[J].Surface and Interface Analysis,2002,34(1):409-412.
    [223]Wu Y,Xiang J,Yang C,et al.Sing-crystal metallic nanowires and metal/semiconductor nanowire Heterostructures[J].Nature,2005,430:61-64.
    [224]Song Y,Schmitt A L,Jin S.Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity[J].Nano Lett,2007,7:965-969.
    [225] Walter E C, Ng K, Zach M P, et al. Electronic devices from electrodeposited metal nanowires [J]. Microelectronic Engineering, 2002, 61-2: 555-561.
    [226] Hong B H, Bae S C, Lee C W, et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase [J]. Science, 2001, 294(5541):348-351.
    [227] Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing [J]. Nano Letters, 2002, 2(2): 165-168.
    [228] Arbiol J, Kalache B, Cabarrocas P R I, et al. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism [J]. Nanotechnology, 2007,18(30): 305606-305613.
    [229] Harmand J C, Patriarche G, Pere-Laperne N, et al. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth [J]. Applied Physics Letters,2005, 87(20): 203101.
    [230] He Y H, Chen L B, Huang B Y, et al. Recycling of heavy metal alloy turnings to powder by oxidation-reduction process [J]. International Journal of Refractory Metals & Hard Materials, 2003, 21(5-6): 227-231.
    [231] Wang S L, He Y H, Xu J, et al. Growth of Single-crystalline Tungsten Nanowires by an Alloy-catalyzed Method at 850℃. [J]. Joural of Materials Research, 2008.
    [232] Millneir T,Neugebauer J. Volatility of the oxides of tungsten and molybdenum in the presence of water vapour [J]. Nature, 1949,163: 601-602
    [233] Campbell C E, Boettinger W J, Kattner U R. Development of a diffusion mobility database for Ni-base superalloys [J]. Acta Materialia, 2002, 50(4):775-792.
    [234] Guo T. Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization [J]. Chemical Physics Letters, 1995, 243(1-2): 49-54.
    [235] Villars P, Prince A, Okamoto H, Handbook of Ternary Diagrams [M]. Vol. Vol.8. Metals Park, OH: ASM international 8610-8612, 1990.
    [236] Haubner R, Schubert W D, Lassner E, et al. Influence of Iron and Nickel on the Hydrogen Reduction of WO_3 to Tungsten [J]. International Journal of Refractory & Hard Metals, 1988, 7(1): 47-56.
    [237] Bustnes J A, Sichen D, Seetharaman S. Kinetic studies of reduction of Co and CoWO4 by hydrogen [J]. Metallurgical and Materials Transctions B, 1995, 26B:547-552.
    [238] Schubert W D,Lux B. Formation and incorporation of dopant phases during technical reduction of NS-doped tungsten blue oxide [J]. Int. J. Refr. Metals &Hard Mater., 1995,13: 119-135.
    [239] Keren K, Krueger M, Gilad R, et al. Sequence-specific molecular lithography on single DNA molecules [J]. Science, 2002, 297(5578): 72-75.
    [240] soumitra K. simple thermal evaporation route to synthesize Zn and Cd meta nanowires [J].
    [241] Creighton J R,Parmeter J E. Metal CVD for microelectronic applications: an examination of surface chemistry and kinetics [J]. Critical reviews in solid state and materials sciences, 1993, 18(2): 175-238.
    [242] Bjorklund K L, Lu J, Heszler P, et al. Kinetics, thermodynamics and microstructure of tungsten rods grown by thermal laser CVD [J]. Thin Solid Films, 2002, 416(1-2): 41-48.
    [243] Duan J, Cao Q, Yang S, et al. Preparation and characterization of rectangular tin dioxide microtubes [J]. Journal of Crystal Growth, 2006,289(1): 164-167.
    [244] Webb W W,Riebling E F. on the growth of metal whiskers by hydrogen reduction of halides [J]. The Journal of Chemical Physical, 1958, 26(6):1242-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700