小鼠胸腺T细胞淋巴瘤模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     通过腹腔注射DNA烷化剂N-甲基-N-亚硝基脲(MNU)诱导小鼠胸腺淋巴瘤,建立相应动物模型;应用组织形态学、免疫表型、超微结构观察及巢式聚合酶链反应(PCR)方法鉴定肿瘤细胞来源并分型。
     【方法】
     1.第一部分,选用6~8周龄C57BL/6小鼠52只,随机分实验组40只和对照组12只。实验组小鼠腹膜腔内注射新鲜配制MNU诱导液(50mg/kg体重);对照组腹膜腔内注射等量生理盐水,共注射2次(分别于第0、8周)。注射后观察动物一般情况,对濒死及死亡小鼠进行解剖观察。第22周采用颈椎脱位法处死全部小鼠,解剖检查胸腺淋巴瘤的发生及其他脏器情况。
     2.第二部分,应用光镜和透射电镜,对诱发的胸腺淋巴瘤及其侵袭脏器进行研究,分析其组织学及超微结构特点。通过免疫组织化学方法(所选抗体有CD3、CD20、TdT及PCNA)鉴定肿瘤细胞来源、分型。
     3.第三部分,采集8例实验组胸腺淋巴瘤组织及4例对照组胸腺组织,迅速放入液氮罐内,后置入-70℃冰箱冻存。提取基因组DNA,采用巢式PCR方法,对采集样本进行T细胞受体β链(TCRβ)和γ链(TCRγ)克隆性基因重排分析,并对TCRγ基因重排的PCR产物直接测序。
     【结果】
     1.实验后期,实验组小鼠体重明显下降。第22周,67.5%(27?40)实验组小鼠产生胸腺淋巴瘤。不同性别对成瘤率影响无明显差异。77.8%胸腺淋巴瘤合并其他脏器侵犯。
     2. 27例胸腺淋巴瘤光镜下主要表现为:胸腺结构破坏,代之以弥漫分布的中等大小淋巴样细胞,细胞形态比较一致,胞质稀少,核圆形、卵圆形或扭曲核,染色质细腻,核仁显著,核分裂象多见,可见“星空”现象。免疫组化显示瘤细胞表达CD3和TdT。超微结构观察,瘤细胞平均直径7.02±1.12μm,表面无突起,核形相对规则或伴有扭曲核,核仁靠近核膜,核浆比例高,胞质内细胞器极少,凋亡细胞易见。
     3. 8例胸腺淋巴瘤检测TCRβ和TCRγ均呈克隆性基因重排,阳性率100%;4例对照组胸腺组织均未检测到TCRβ或TCRγ克隆性基因重排。DNA序列测定证实TCRγ基因PCR扩增产物为基因重排产物。
     【结论】
     1.腹腔分次注射MNU可以诱导小鼠产生胸腺淋巴瘤,其生物学行为与人类肿瘤相似。
     2.结合光镜、免疫组化和电镜检查结果,证实所有肿瘤为胸腺T淋巴细胞起源的前驱淋巴母细胞淋巴瘤。
     3.巢式PCR TCRβ和TCRγ的基因重排检测及DNA序列分析证实,MNU诱导的小鼠胸腺淋巴瘤实际上是T淋巴细胞的单克隆性增生,是来源于T细胞的肿瘤。
     总之,MNU诱导的小鼠胸腺淋巴瘤在生物学行为、形态学、免疫表型和遗传学方面均与人类相应肿瘤极其相似,可作为人类这一肿瘤实体的理想动物模型。
【Objective】
     To establish an animal model for thymic lymphoma in inbred mice induced by intraperitoneal injection of DNA alkylating agent N-methyl-N-nitrosourea (MNU), which would mimic this kind of human malignant lymphoma. Histopathologic, immunohistochemical, ultrastructural and nested PCR studies were performed to detect the the origin of tumor cells and to identify the subtype classification of induced tumors.
     【Methods】
     1. In the first part of our study, 52 male and female mice of the C57BL/6 strain at 6-8 weeks of age were randomly assigned to exposure and control groups, 40 and 12 animals respectively. Briefly, the exposure group were injected by the intraperitoneal route with MNU solution shortly after dissolution at a dosage of 50 mg/kg body weight. The control group received the same dosage of sterile 0.9% NaCl solution. The experimental animals were boosted 8 weeks later. Following injection of MNU, the mice were examined frequently. Seriously ill animals were killed and with mice found dead were completely autopsied. All mice were sacrificed by cervical dislocation for autopsy before the 22th experimental week. Complete gross examination was performed for detection of tumor masses.
     2. In the second part, thymic lymphomas as well as involved organs were fixed and routinely processed for light and electron microscopy examination to analyze histopathologic and ultrastructure features of the tumors. Sections were submitted to immunohistochemical staining with CD3, CD20, TdT and PCNA to identify the origin and subtype classification of the neoplasias.
     3. In the third part, 8 samples of thymic lymphoma and 4 samples of thymus tissue were frozen immediately in liquid nitrogen after removed and stored at -70℃. Genomic DNA was isolated from the thymic tumors and thymus tissues. Analysis with nested polymerase chain reaction(PCR) for TCRβand TCRγclonal gene rearrangement was carried out to determine the lineage and clonality of the T-cell lymphoma cells. The PCR products of TCRγgene rearrangement were purified and directly sequenced.
     【Results】
     1. The exposure group presented a mean body weight significantly lower than the control at the end of the experiment. At the 22th week, the proportion of MNU-treated animals developing thymic lymphoma after injection of MNU was 67.5%(27?40). No significant sex difference in the incidence was observed. Extensive invasion into other organs was found in 77. 8% of affected animal.
     2. Histopathologic study revealed that 27 cases of thymus became totally replaced by sheets of cells of the lymphoid series. The thymic tumors were densely infiltrated with relatively uniform, mitotically active, medium-sized cells with round to ovoid and sometimes convoluted nuclei that were surrounded by small amounts of cytoplasm. The chromatin pattern was finely granular and prominent nucleoli were present in most of the cells which had a high mitotic rate. There may be a“starry sky”pattern in some cases. All the tumors coexpressed CD3 and TdT. On transmission electron microscopic study, the mean diameter of the malignant lymphocytes was 7.02±1.12μm. Their nuclearcytoplasmic ratio was high, and their plasma membranes were smooth. The nuclear profiles were usually regular, with varying percentage of convoluted nuclei. Most nuclei contained one or two, usually eccentrically located nucleoli. Few cell organoids were observed in cytoplasm. Howere, apoptosis was common.
     3. 8 cases of thymic lymohomas were all detected TCRβand TCRγclonal gene rearrangement. The positive rate was 100%. In the 4 cases of control group, no positive detected. DNA sequence analysis confirmed that the PCR products generated were indeed TCRγrearrangements.
     【Conclusions】
     1. As was confirmed, thymic lymohoma in mice can be induced by twice intraperitoneal administration of MNU. The biological behavior of the MNU-induced tumors resembled those of human thymic lymphomas derived from thymic T-cells.
     2. All the cases classified by histopathologic, immunohistochemical and ultrastructural studies as precursor lymphoblastic lymphoma were unquestionably related to the thymus origin and T-cell lineage.
     3. Just as determined by TCRβand TCRγgene rearrangement analysis and DNA sequence analysis, the MNU-induced thymic lymphoma in mice was of a T-cell origin and of monoclonal origin.
     In conclusion, MNU-induced thymic lymphomas in mice show strong parallels, all in their biological behavior and morphology and immunophenotype and genetics, to human thymic lymphoma. It confirmed that our cases may represent the murine counterpart of human tumor entity.
引文
[1] Mohammad RM, Al Katib A, Aboukameel A, el at. Genistein sensitizes diffuse large cell lymphoma to CHOP(cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy[J]. Mol Cancer Ther, 2003,2(12):1361-1368.
    [2] Roomi MW, Roomi NW, Ivanov V, et al. Modulation of N-methyl-N-nitrosourea induced mammary tumors in Sprague–Dawley rats by combination of lysine, proline, arginine, ascorbic acid and green tea extract[J]. Breast Cancer Res, 2005,7(3):R291-R295.
    [3] 钱立新, 刘训良, 丁鸿, 等. N-甲基亚硝基脲诱导大鼠膀胱肿瘤作用的动态观察[J]. 中华实验外科杂志, 2004,21(5):563-564.
    [4] da Silva Franchi CA, Bacchi MM, Padovani CR, et al. Thymic lymphomas in Wis- tar rats exposed to N-methyl-N-nitrosourea (MNU)[J]. Cancer Sci, 2003,94(3): 240-243.
    [5] Benavides F, Gomez G, Venables GA, et al. Differential susceptibility to chemi- cally induced thymic lymphomas in SENCARB and SSIN inbred mice[J]. Mol Carcinog, 2006,45(7):543-548.
    [6] 魏岚, 刘丽, 徐玉东, 等. 小鼠胸腺结构的增龄性变化[J]. 中国老年学杂志, 2007,27(9):832-835.
    [7] 曾毅, 赵健, 何祖根, 等. EB病毒诱导胸腺恶性T细胞淋巴瘤的研究[J]. 病毒学报, 2001,17(4):289-294.
    [8] Emma B, Helen C, Mark P. Myeloid, B and T lymphoid and mixed lineage thymic lymphomas in the irradiated mouse[J]. Carcinogenesis, 2002,23(6): 1079-1085.
    [9] Jasmin G. Thymic lymphosarcoma in magnesium-deficient rats[J]. Bio Trace Elem Res, 1979,1(3):217-228.
    [10] Qin X, Liu L, Gerson SL. Mice defective in the DNA mismatch gene PMS2 are hypersensitive to MNU induced thymic lymphoma and are partially protected by transgenic expression of human MGMT[J]. Oncogene, 1999,18(30):4394-4400.
    [11] Newcomb EW, Bayona W, Pisharody S. N-methylnitrosourea-induced Ki-ras codon 12 mutations: early events in mouse thymic lymphomas[J]. Mol Carcinog,1995,13(2):89-95.
    [12] Kang HM, Jang JJ, Langford C, et al. DNA copy number alterations and expre- ssion of relevant genes in mouse thymic lymphomas induced by gamma- irradiation and N-methyl-N-nitrosourea[J]. Cancer Genet Cytogenet, 2006,166(1): 27-35.
    [13] Harris G, Lawley PD, Asbery LJ, et al. Autoimmune haemolytic disease in mice after exposure to a methylating carcinogen[J]. Immunology, 1983,49(3):439- 449.
    [14] Boulton E, Cleary H, Papworth D, et al. Susceptibility to radiation-induced leu- kaemia/lymphoma is genetically separable from sensitivity to radiation-induced genomic instability[J]. Int J Radiat Biol, 2001,77(1):21-29.
    [15] Oghiso Y, Yamada Y. Pre-B-cell lymphomas in mice following injection of 239Pu citrate: comparison with MNU-induced T-lymphoblastic lymphomas[J]. J Toxi- col Pathol, 2003,16:93-102.
    [16] Swenberg JA, Koestner A, Wechsler W, et al. Differential oncogenic effects of methylnitrosourea[J]. J Natl Cancer Inst, 1975,54(1):89-96.
    [17] Bosch DA, Gerrits PO, Ebels EJ. The cytotoxic effect of ethylnitrosourea and methylnitrosourea on the nervous system of the rat at different stages of development[J]. Cancer Res Clin Oncol, 1972,77(4): 308-318.
    [1] 郑智勇, 余英豪, 孙慧敏, 等. SP 免疫组织化学染色用于肾活检石蜡切片[J]. 中华病理学杂志, 1993,22:309.
    [2] Griffith RC, Kelly DR, Nathwani BN, et al. A morphologic study of childhood lymphoma of the lymphoblastic type. The pediatric Oncology Group expe- rience[J]. Cancer, 1987,59(6):1126-1131.
    [3] Yu Z, Loehr CV, Fischer KA, et al. In utero exposure of mice to dibenzo[a,l]- pyrene produces lymphoma in the offspring: role of the aryl hydrocarbon recep- tor[J]. Cancer Res, 2006,66(2):755-762.
    [4] Tao HQ, Zou SC. Effect of preoperative regional artery chemotherapy on prolife- ration and apoptosis of gastric carcinoma cells[J]. World J Gastroenterol, 2002, 8(3):451-454.
    [5] Fromowitz FB, Viola MV, Chao S, et al. ras p21 expression in the progression of breast cancer[J]. Hum Pathol, 1987,18(12):1268-1275.
    [6] 茹永新, 赵轼轩, 刘津华, 等. T-淋巴瘤细胞的超微结构[J]. 中国实验血液学杂志, 2006,14(6):1129-1133.
    [7] 马捷, 石群立, 周晓军, 等. 淋巴母细胞性淋巴瘤20例临床病理研究[J]. 诊断病理学杂志, 2006,13(1):26-30.
    [8] Jaffe ES, Harris NL, Stein H, et al. WHO classification of tumors pathology and genetics of haematopoietic and lymphoid tissues[M]. LARC Press Lyon, 2001: 109-117.
    [9] Oghiso Y, Yamada Y. Pre-B-cell lymphomas in mice following injection of 239Pu citrate: comparison with MNU-induced T-lymphoblastic lymphomas[J]. J Toxi- col Pathol, 2003,16:93-102.
    [10] Sternberg C. Leukosarcomatose und Myeloblastenleukamie[J]. Beirr Z Path, 1916,61:75-100.
    [11] Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project[J]. J Clin Oncol, 1998,16(8):2780-2795.
    [12] 武忠弼, 主编. 中华外科病理学(上卷)[M]. 北京: 人民卫生出版社, 2002: 278-388.
    [13] Suzumiya J, Ohshima K, Kikuchi M, et al. Terminal deoxynucleotidyl transferase staining of malignant lymphomas in paraffin sections: a useful method for the diagnosis of lymphoblastic lymphoma[J]. J Pathol, 1997,182(1):86-91.
    [14] Staibano S, Franco R, Mezza E, et al. Loss of oestrogen receptor beta, high PCNA and p53 expression and aneuploidy as markers of worse prognosis in ovarian granulosa cell tumours[J]. Histopathology, 2003,43(3):254-262.
    [15] Cappello F, Rappa F, David S, et al. Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinoge- nesis[J]. Anticancer Res, 2003,23(2B):1325-1331.
    [16] Ruskoné-Fourmestraux A, Lavergne A, Aegerter PH, et al. Predictive factors for regression of gastric MALT lymphoma after anti-Helicobacter pylori treatment[J]. Gut, 2001,48(3):297-303.
    [17] 李甘地. 儿童常见淋巴造血系统肿瘤的诊断和鉴别诊断[J]. 中华病理学杂志, 2005,34(12):765-768.
    [18] 刘彤华, 主编. 诊断病理学(上卷)[M]. 北京: 人民卫生出版社, 2006: 649- 651.
    [19] 夏东, 刘晓翌, 杨桂芳, 等. 非何杰金氏淋巴瘤针吸细胞学及电镜观察[J]. 肿瘤防治研究, 2000,27(3):203-204.
    [20] 史景泉, 陈意生, 卞修武, 主编. 超微病理学[M]. 北京: 化学工业出版社, 2005: 357-358.
    [21] Chorba TL, Orenstein JM, Ney AB, et al. Phenotypic and ultrastructural characterization of a medullary thymocyte acute lymphoblastic leukemia with cellular procoagulant activity[J]. Cancer, 1985,55(3):675-681.
    [22] Barcos MP, Lukes RJ. Malignant lymphomas of convoluted lymphocytes. A new entity of possible T-cell type. In: Sinks LF, Godden JO, eds. Conflicts in Childhood Cancer[M]. New York: Alan R. Liss, Inc., 1975:147-178.
    [23] Greenberg BR, Peter CR, Glassy F, et al. A case of T-cell lymphoma with convo- luted lymphocytes[J]. Cancer, 1976,38(4):1602-1607.
    [1] 许良中, 主编. 现代恶性淋巴瘤病理学[M]. 上海: 上海科学技术文献出版社, 2002:191.
    [2] 龚非力, 主编. 医学免疫学[M]. 北京: 科学出版社, 2004:229-234.
    [3] Garcia MJ, Delgado BM, Granizo JJ, et al. IgH, TCR-gamma, and TCR-beta gene rearrangement in 80 B- and T-cell non-Hodgkin's lymphomas: study of the association between proliferation and the so-called "aberrant" patterns[J]. Diagn Mol Pathol, 2001,10(2):69-77.
    [4] Svachova M, Tichy M. PCR analysis of immunoglobulin heavy chain and TCR gene rearrangements in diagnosis of lymphoproliferative disorders on formalin- fixed, paraffin-embedded tissues[J]. Neoplasma, 2008,55(1):36-41.
    [5] 王萍, 王瑞年, 卢健, 等. 非霍奇金淋巴瘤的IgH和TCRδ基因重排[J]. 临床与实验病理学杂志, 2002,18(1):21-23.
    [6] Lista F, Bertness V, Guidos CJ, et al. The absolute number of trans- rearrangements between the TCRG and TCRB loci is predictive of lymphoma risk: a severe combined immune deficiency (SCID) murine model[J]. Cancer Res, 1997,57(19):4408-4413.
    [7] Lafaille JJ, DeCloux A, Bonneville M, et al. Junctional sequences of T cell recap- tor gamma delta genes: implications for gamma delta T cell lineages and for a novel intermediate of V-(D)-J joining[J]. Cell, 1989,59(5):859-870.
    [8] Jaffe ES, Harris NL, Stein H, et al. WHO classification of tumors pathology and genetics of haematopoietic and lymphoid tissues[M]. LARC Press Lyon, 2001: 12-13.
    [9] Gomez G, Clarkin KZ, Kraig E, et al. TCR V? repertoire restriction and lack of CDR3 conservation implicate TCR–superantigen interactions in promoting the clonal evolution of murine thymic lymphomas[J]. Int Immunol, 2000,12(3): 263-270.
    [10] Kumura T, Hino M, Yamane T, et al. Triple-negative (CD3-/CD4-/CD8-) adult T cell leukemia/lymphoma, histologically presenting as CD30 (Ki-1)-positiveanaplastic large cell lymphoma with clonal Epstein-Barr virus genome[J]. Leu- kemia, 2001,15(6):994-995.
    [11] Arden B, Clark SP, Kabelitz D, et al. Mouse T-cell receptor variable gene seg- ment families[J]. Immunogenetics, 1995,42(6):501-530.
    [12] Raulet DH. The structure, function, and molecular genetics of the γ/δ T cell re- ceptor[J]. Annu Rev Immunol, 1989,7:175-207.
    [13] Khalil SH, Hamadah IR. The applicability of T-cell receptor gamma gene rearrangement as an adjuvant diagnostic tool in skin biopsies for cutaneous T-cell lymphoma[J]. Saudi Med J, 2006,27(7):951-954.
    [14] 孙文佶, 林茂芳, Parwaresch R. 外套细胞淋巴瘤bcl-1基因重排的分析[J]. 中华血液学杂志, 2003,24(4):200-202.
    [1] Mohammad RM, Al Katib A, Aboukameel A, el at. Genistein sensitizes diffuse large cell lymphoma to CHOP(cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy[J]. Mol Cancer Ther, 2003,2(12):1361-1368.
    [2] da Silva Franchi CA, Bacchi MM, Padovani CR, et al. Thymic lymphomas in Wistar rats exposed to N-methyl-N-nitrosourea (MNU)[J]. Cancer Sci, 2003, 94(3):240-243.
    [3] Benavides F, Gomez G, Venables GA, et al. Differential susceptibility to chemically induced thymic lymphomas in SENCARB and SSIN inbred mice[J]. Mol Carcinog, 2006,45(7):543-548.
    [4] Angel JM, Richie ER. Tlag2, an N-methyl-N-nitrosourea susceptibility locus, maps to mouse chromosome 4[J]. Mol Carcinog, 2002,33(2):105-112.
    [5] Woo JS, Kim JM, Lee SH, et a1. Clinical analysis of extranodal non-Hodgkin’slymphoma in the sinonasal tract[J].Eur Arch Otorhinolaryngol, 2004,261(4): 197-201.
    [6] Gan R, Yin Z, Liu T, et al. Cyclosporine A effectively inhibits graft-versus-host disease during development of Epstein-Barr virus-infected human B cell lymphoma in SCID mouse[J]. Cancer Sci, 2003,94(9):796-801.
    [7] 黄燕萍,郭秀婵,何祖根,等. EB病毒诱导胸腺恶性T细胞淋巴瘤的研究[J].病毒学报, 2001,17(4):289-294.
    [8] Pogribny I, Koturbash I, Tryndyak V, et al. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus[J]. Mol Cancer Res, 2005,3 (10):553-561.
    [9] Kominami R, Niwa O. Radiation carcinogenesis in mouse thymic lymphomas[J]. Cancer Sci, 2006,97(7):575-581.
    [10] Emma B, Helen C, Mark P. Myeloid, B and T lymphoid and mixed lineage thy- mic lymphomas in the irradiated mouse[J]. Carcinogenesis, 2002,23(6): 1079- 1085.
    [11] Utsuyama M, Hirokawa K. Radiation-induced-thymic lymphoma occurs in young, but not in old mice[J]. Exp Mol Pathol, 2003,74(3):319-325.
    [12] Drexler HG, Matsuo AY, MacLeod RA. Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research[J]. Leuk Res, 2000,24(11): 881-911.
    [13] 邵晓枫,杨纯正,熊冬生,等. 人 B 淋巴瘤裸鼠腹腔内移植模型[J]. 中国肿瘤临床, 2001,8(3):217-219.
    [14] Merz H, Lange K, Gaiser T, et al. Characterization of a novel human anaplastic large cell lymphoma cell line tumorigenic in SCID mice[J]. Leuk Lymphoma, 2002,43(1):165-172.
    [15] 张宁,脱帅,刘秋珍,等. 人肝恶性淋巴瘤裸小鼠原位和皮下移植模型的建立及生物学特性的研究[J]. 消化外科, 2006,5(1):57-61.
    [16] Gordon JW, Scangos GA, Pbtkin DJ, et al. Genetic transformation of mouse em- bryos by microinjection of purified DNA[J]. Proc Natl Acad Sci USA, 1980,77(12):7380-7384.
    [17] 冯作化,主编. 医学分子生物学[M]. 北京:人民卫生出版社, 2005:160-170.
    [18] Adams J M, Cory S. Transgenic models of tumor development[J]. Science, 1991, 254(5035):1161-1167.
    [19] Adams JM, Cory S. Transgenic models for haemopoietic malignancies[J]. Bio- chim Biophys Acta, 1991,1072(1):9-31.
    [20] Chiarle R, Gong Z, Guasparri I, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors[J]. Blood, 2003,101(5): 1919-1927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700