百瓦量级2K超流氦制冷系统的动态仿真和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代粒子加速器、可控核聚变装置等大科学工程的建设,推进了超导磁体和超导加速腔向更大的磁场强度和更高的加速梯度发展,同时也促进为超导设备提供冷量的氦低温系统也由4.2K液氦温区向超流氦温区发展。本文以超导射频腔超流氦低温冷却系统为研究对象,采用数学模拟方法深入研究了超导射频腔的超流氦低温系统的热力循环性能,分析了超导加速腔的工作运行温度对超导腔低温系统功率消耗的影响关系等;针对4.5K氦低温系统和2K超流氦低温系统中不同设备的动态特性,采用集中参数法和分布参数法,建立了系统的动态仿真数学模型,编制了动态降温过程仿真程序,对4.5K氦低温系统以及超流氦低温系统的降温过程进行了深入的研究分析。
     经济合理的超流氦热力循环是进行动态降温过程分析的前提,本文首先利用大型过程分析软件及其用户自定义模块对温度为2K、制冷量为100W的超流氦低温冷却的热力循环方案进行了研究,从提高超流氦冷却系统的效率方面,对百瓦量级超流氦低温制冷系统进行了深入的冷却流程方案的热力学分析和研究,比较了不同冷却方案下超流氦制冷系统的制冷效率等因素,研究结果表明:带回收负压氦气冷量的负压换热器和预冷用低温换热器的氦制冷循环,其系统的制冷效率最大,但系统结构也较复杂,设备投入成本高,运行费用低。
     以广泛用于高能物理加速器的1.3GHz超导加速腔为例,深入分析研究了影响其工作性能的BCS表面电阻和制冷系统耗功与超导腔运行温度之间的关系,获得不同制冷温度下由超导腔的BCS表面电阻引起的超导腔射频损耗和制冷系统功耗,研究表明:合理选择超导加速腔的工作运行温度对于降低制冷系统的运行成本效果显著。最后,根据这两种主要损耗确定了适合该型超导腔的工作运行温度。
     氦系统动态仿真研究,主要是为了模拟氦系统在降温、升温以及非正常稳态运行等动态变化热力过程,研究动态过程中系统热力性能的变化规律,为系统的优化设计、实际运行操作提供理论依据。
     针对优化的超流氦热力循环方案,本文将相应的超流氦制冷系统划分为4.5K氦制冷系统和超流氦制冷系统两部分。运用制冷系统热动力学理论,采用集中参数法和分布参数法,分别根据各设备的工作特点,建立其动态仿真数学模型,并采用计算机编程语言FORTRAN对氦低温系统不同降温方案的降温过程进行了仿真模拟。
     动态仿真中考虑并研究了主要的低温调节阀门的开度、相应的氦气质量流量对降温过程系统各点热力参数的影响。结果表明,降温过程中压缩机旁通阀的开度变化直接影响系统的降温时间。进入系统的氦气质量流量受到透平膨胀机和节流阀流通能力的限制,必须在降温过程中调节压缩机的旁通阀来控制进入冷箱的氦气质量流量。
     通过动态仿真,获得了氦低温系统动态降温过程中沿氦气流动方向上复杂的温度变化规律,给出了氦制冷机系统内部沿氦气流动方向上温度测点的温度值在温熵图上的变化趋势。
     通过对4.5K液氦制冷系统以及超流氦制冷系统的动态降温过程的数值模拟还发现:采用低温换热器的超流氦制冷系统在降温过程中产生2K超流氦的时间要早于系统中产生130kPa的饱和液氦所需要的时间。
     仿真结果还表明,氦制冷系统的动态仿真结果可以对优化氦制冷机试车方案、节省调试费用、节约调试时间、进一步提高氦制冷机制冷效率提供可靠的理论基础。
Large-scale superconducting magnets are presently widely used in modern high-energy particle accelerators and controllable nuclear fusion experimental device, which develops superconducting magnet and superconducting RF cavity technology toward higher magnetic field and higher accelerating gradient. Meanwhile the liquid helium cryogenic systems applied on superconducting devices are developed from 4.2K temperature region toward superfluid helium temperature region.
     In this thesis, the thermodynamic performance of superfluid helium cryogenic system cooling SRF cavities is deeply analyzed through numerical simulation. The influence of SRF cavity operating temperature on power consumption of SRF cavity system is researched also. The dynamic simulation models of key components in both 4.5K helium cryogenic system and 2K superfluid cryogenic system are built based on lumped-parameter and distributed-parameter methods. The cooling process of both 4.5K helium cryogenic system and 2K superfluid cryogenic system are deeply analyzed using reliable dynamic simulation procedure developed in this thesis.
     The premise of dynamic cooling process analysis is economical and reasonable thermodynamic cycle. At first, the scheme of 2K then the refrigerating output is 100W superfluid helium cryogenic thermodynamic cycle is studied using large process analysis softare and its user-defined models. Then the thermodynamic analysis of 2K superfluid helium cryogenic is deeply studied to improve the refrigerant efficiency, system reliability, and system adaptability. Compared the refrigerant efficiencies of superfluid helium cryogenic system under different cooling schemes, it shows that the helium cryogenic system with pre-cooling heat exchanger and negative pressure heat exchanger to recover cooling capacity of helium gas has the highest refrigerant efficiency, lowest operation cost, but the system structure is more complex and the equipment cost is higher.
     1.3GHz SRF cavities are widely applied to high-energy accelerators. The relationship between BCS surface resistance, power consumption of refrigerator and SRF cavity operating temperature are thorough analyzed. The radio-frequency losses of SRF cavity and power consumptions of refrigerator for different operating temperatures due to BCS surface resistance of SRF cavity are researched. The result shows that the reasonable operating temperature of SRF cavity can obviously reduce the operation cost, and the optimal operating temperature of this kind of SRF cavities are determined based on the two kinds of dominate losses.
     The dynamic simulation study of helium system is mainly on the dynamic thermodynamic process during cooling-down, warming-up and non normal operation mode. The analysis results can provide theoretical basis for the optimum design of helium system, and practice operation.
     In this paper, the superfluid helium refrigerator system is divided into 2 parts: 4.5K helium refrigerator system and superfluid helium refrigerator system. Based on the thermodynamics theory of the refrigeration system, the dynamic simulation model of each cryogenic component has been built according to its working characteristic, and utilizing lumped parameter and distribution parameter technique. The different cooling-down processes of superfluid helium refrigerator have been simulated using the FORTRAN program developed by this thesis.
     The influences of the opening of main cryogenic governor valves and helium gas flow rate on the refrigerator system parameters during cooling-down process are considered and researched in dynamic simulation. The simulation results shows that the opening variety of compressor by-pass valve affects cooling-down time of refrigerator system directly. The helium gas flow rate entering refrigerator system is limited by the negotiabilityof turbine expander and throttle valve, and must be controlled during cooling-down process by adjusting compressor by-pass valve.
     Through dynamic simulation the complex temperature distribution regularity along helium flow direction is obtained, and the temperature variety tendency on temperature-entropy figure of temperature measuring points along helium flow direction in helium refrigerator is presented in this thesis.
     The dynamic simulation of cooling down process shows that utilizing cryogenic heat-exchanger the time when the superfluid appears in the superfluid helium refrigeration system is earlier than time that the saturation liquid helium appears in the system.
     The dynamic simulation result also indicates that the trial-run scheme of helium refrigerator can be optimized and the debugging cost and time can be saved though dynamic simulation.
引文
1林良真,张金龙,李传义等.超导电性及其应用.北京工业大学出版社. 2001:324~336
    2张新民.超导低温技术与粒子加速器.科学出版社,1994
    3 H. Rode, D. Proch. Cryogenic Optimization for Cavity Systems ,4th Workshop on RF Superconductivity, 751,Tsukuba, Japan, Aug.1989
    4 L. Tavian. Large Cryogenic Systems at 1.8K Proceedings of EPAC 2000,Vienna, Austria. 194~199
    5方守贤,梁岫如.神通广大的射线装置.清华大学出版社. 2001
    6 Bernd Seeber, Handbook of Applied Superconductivity, Institute of Physics Publishing, Bristol and Philadelphisa, 1998
    7 H. Safa. Optimum Operating Temperature of Superconducting Cavities. XIX International Linear Accelerator Conference, Chicago,USA,1998
    8 J. F. Parmer, M. W. Liggett. Magnet Cooling Economics. IEEE Transactions on Magnetics, 1985, mag-21(2):1056~1059
    9 M. A. Green, R.A.Byrns, S.J.St.Lorant. Estimating the Cost of Superconducting Magnets and the Refrigerators Needed to Keep them Cold. Advances in Cryogenic Engineering, 1992, (37):637~643
    10 C. H. Rode. Temperature Optimization for Superconducting Cavities. IEEE, Transactiongs on Applied superconductivity, 1999,9(2)
    11 B. Aune, R. Bandelamann, D. Bloess et al. The Superconducting TESLA Cavities[J]. Phys. Rev. ST Accel. Beams, 2001, (3):1~25
    12 Review of Models of RF Surface Resistance in High Gradient Niobium Cavities for Particle Accelerators Revision 1, Review of RF Surface Resistance Contributions in High Gradient RF Cavities Made from Nb,TD-04-014,Dec 2004
    13王家素,王素玉.超导Nb腔的加工和表面处理.低温与超导. 1984,(3): 63~69
    14王家素,王素玉,魏新奇.超导Nb微波谐振腔的加工和表面处理.低温与超导. 1984, 16(3): 49 ~52
    15王莉芳,张宝澄等. 1.5GHZ铌材超导腔的研制.强激光与粒子束, 1996,8(3):349~354
    16赵夔.国产铌材超导腔的研制和实验.核物理动态. 1996, 13(2):26~27
    17刘声雷.超导铌膜的制备及其性能的研究.微细加工技术.1993,(4): 44~47
    18刘立强.低温技术在大型超导磁体中的应用.低温工程. 2002, 129 (5):45~48
    19 G. Claudet et al.,“Tore Supra and HeⅡCooling of Large High-Field Magnet”, Advances in Cryogenic Engineering,1900 , (35A):55~67
    20 Nagai, H., Development and Testing of Superfluid-Cooled 900 MHz NMR, Cryogenics, 2001,(41): 623~630
    21 T. Haruyama, T. Shintomi, H. Nakai, et al. Database for He II-Cooled Superconducting Magnet System Design, International Cryogenic Engineering Conference-19, Grenoble, France, 2002
    22 C. Haberstroh. ELBE Accelerator: First Year of Cryogenic Operation. International Cryogenic Engineering Conference-19, Grenoble, France, 2002
    23 C. Rode, The SNS Superconducting Linac System. PAC’01, Chicago, June 18– 22, 2001
    24 J. Hogan. Design of the SNS Cavity Support Structure. PAC’01, Chicago, June 18– 22, 2001
    25 F. Millet. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider, Advances in Cryogenics Engineering ,1998, (43):387~393
    26 S. Wolff. the Cryogenic System of TESLA 500-An Update, International Cryogenic Engineering Conference-17, IoP, London, UK ,1998, 879~882
    27 S.W. Van Sciver. Cryogenic System for the 45-T Hybrid Superconducting Magnet, Cryogenic Engineering, Teion Kougaku, English, 1996,( 31): 2~8
    28 N. Kimura. A Pressurized He II Cryogenic System for the Superconducting Magnet Test Facility at KEK, Advances in Cryogenics Engineering ,2002
    29朱学武,浦钔,常淑云.同步辐射加速器超导Wiggler磁体系统低温恒温器.中国核科技报告. S1,1994,1~7
    30 P. D. Weng. The Engineering Design of the HT-7U Tokamak, SOFT 21,2000
    31 Jia.L.X, Wang. L. Computational Simulation of Refrigeration Process forBEPCII Superconducting Facilities. Advances in Cryogenic Engineering, 2004, (49): 111~118
    32 He, Z.H., Wang, L., Tang, H.M., et al. CFD Analyses on LHe Cooling for SCQ Magnets in BEPCII Upgrade. Advances in Cryogenic Engineering, 2004, (49):799~806
    33 B. C. Zhang, K. Zhao, J. K. Hao, et al. Proposal of Peking University Superconducting Accelerator Facility(PKU-SCAF). Proceedings of the Second Asian Particle Accelerator Conference, Beijing, China,2001
    34 S. Claudet. Four 12kW/4.5K Cryoplants at CERN. Proceedings of the Fifteenth International Cryogenic Engineering Conference, Genoa, Italy, 1994: 24~28
    35 K.Tsuchiya. Helium Cryogenic Systems for the Superconducting Insertion Quadrupole Magnets of the TRISTAN Storage Ring. Advances in Cryogenic Engineering. 1992, (37A): 667~672
    36 S. W. VanSciver. Helium Cryogenics.1986, PlenumPress, NewYork
    37 Ph. Lebrun, Superfluid Helium as a Technical Coolant, AttiⅩⅤCongresso Nazionale Sulla Trasmissione del Calore, Edizioni ETS, Politecnico di Torino, Italy,1997:61~77
    38 Y. Makida, H. Yamaoka, Doi Y, et al. Development of a Superconducting Solenoid Magnet Systemfor the B - Factory Detector (BELLE). Advances in Cryogenic Engineering , 1998 , (43) : 221 ~ 228
    39 D. Gusewell. Cryogenics for the LEP200 Superconducting Cavities at CERN,Proc. PAC93, Washington,1993: 2956~2958
    40 A. Kabe. Cryogenic System for KEKB Superconducting RF Cavities. Advances in Cryogenic Engineering,2000,(45):1347 ~1354
    41 B. Dwersteg. Operating Experience with Superconducting Cavities in HERA. Proc. EPAC94,London,U.K. ,1994:2039~2041
    42 S. Wolff. the Cryogenic System of TESLA 500-An Update, International Cryogenic Engineering Conference-17, IoP, London, UK,1998:879~882
    43 C. H. Rode. 2.0K CEBAF Cryogenics. Advances in Cryogenic Engineering, 1990;(35A):275 ~286
    44 [美].R.B.斯科特著.舒泉声等译.低温工程.科学出版社. 1977
    45 I. L. Zermanov, Comptes rendus(Doklady) Acad, Sci.URSS, 19,469(1938); ibid.,20,537
    46 W. M. Toscano, F.J. Kudirka. Thermodynamic and Mechanical Design of the FNAL Central Helium Liquifier, Advances in Cryogenic Engineering, 1978, (23):456~466
    47 D. Brown, A. Schlafke, K. Wu. Cycle Design for the ISABELLE Helium Refigerator, Advances in Cryogenic Engineering, 1980, (27):501~508
    48 H. Hubbell, W. M. Toscano. Thermodynamic Optimization of Helium Liquefaction Cycles. Advances in Cryogenic Engineering, 1980, (25):551~562
    49 A. Khalil,, GE. Mcintosh. Thermodynamic Optimization Study of the Helium Multi-Engine Claude Refrigeration Cycle. Advances in Cryogenic Engineering, 1977,(23):431~437
    50 MA. Khalil. Optimization of Helium Refrigerators and Liquefiers for Large Superconducting System. Cryogenics,1979,(7):415~420
    51 GB. Narinsky, VV. Temirova. Chernokov, LV. Influence of Thermodynamic Parameters on Main Characteristics of Helium Liquefaction and Refrigeration Plant. Cryogenics, 1995,(35):483~487
    52 B. Ziegler, H. Quack. Helium Refrigeration at 40 Percent Efficiency? Advances in Cryogenic Engineering, 1992,(37):645~651
    53 G. Cammarata, A. Fichera, D. Guglielmino. Optimization of a Liquefaction Plant Using Genetic Algorithms. Applied Energy,2001, (68):19~29
    54 C. S. Hung, Cryogenics in China today, 8th International Cryogenic Engineering Conference, 1980:881~892
    55白红宇. HT-7U超导托克马克氦制冷机系统热力学分析及设计研究.中国科学院等离子体物理研究所博士论文. 2002
    56 Z.H. He, L. Wang, H.M. Tang, et al. CFD Analyses on LHe Cooling for SCQ Magnets in BEPCII Upgrade. Advances in Cryogenic Engineering,2004, (49): 799~806
    57 L. Wang, L.X. Jia, et al., Numerical simulation of cooling process for SIR magnets in BEPCII. Proceedings of ICCR2003,2003:23~26
    58 L.X, Jia, L.Wang. Computational Simulation of Refrigeration Process for BEPCII Superconducting Facilities. Transactions of the CryogenicEngineering Conference - CEC. Volume 710, 2004:111~118
    59殷秀娓,傅秦生,厉彦忠.氦制冷系统方案的热力学分析.华北电力大学学报,2003.9, 30(5):86~89
    60殷秀娓.氦制冷系统方案选择与优化[D].西安:西安交通大学能源与动力工程学院, 2001
    61 W. C. Chronis, D. Arenius, D. Kashy, et al. The CEBAF Cryogenic System. Proseedings of the 1989 IEEE Particle Accelerator Conference, 1989,(3),:592~594
    62 P. Brindza, W. Chronis, C. Rode, et.al. CEBAF’S Cryogenic System. Proseedings of the 1989 IEEE Particle Accelerator Conference, 1989,(3):623~630
    63 T. Pererson. Status:Large-Scale Subatmospheric Cryogenic System. Proseedings of the 1989 IEEE Particle Accelerator Conference, 1989,(3): 1769 ~1773
    64 P. Lebrun. Operating at 1.8K: The Technology of Superfluid Helium.
    65 E. Adler, B. Chromec, K. Logkeub, et al. Refrigeration at 1.8 K by Using a Combination of Warm Screw Compressors and Cold Two-Stage Turbo-Compressors. International Cryogenic Engineering Conference-17, ICEC17, England,1998: 101~108
    66陈国邦.新型低温技术.上海交通大学出版社. 2003:75~80
    67张鹏,黄永华,陈国邦.氦-4和氦-3及其应用.国防出版社. 2006:40~45
    68 D.W. Hoch. Design and Test of a 1.8K Liquid Helium Refrigerator. Univercity of Wisconsin-Madison,2004
    69厉彦忠.超导线及其多孔涂层在超流液氦内的传热性能.西安交通大学博士论文. 1995
    70 R.Z. Wang, J.P. Jia, Y.H. Zhu, et al. Study on a New Solid Adsorption Refrigeration Pair:Active Carbon Fiber-Methanol, ASME Journal of Solar Energy Engineering, 1997, 119(3):214~218
    71 R. Z. Wang, H. Kobayashi. Two Step Phase Transition Model of Heat Transfer in Bath of Subcooled Superfluid Helium, Cryogenics, 1998,38(10):1035~1038
    72 R. Z. Wang, P. Zhang. Pressure Effect on the Heat Transfer in Bath ofSuperfluid Helium, Cryogenics, 1998, 38(7):701~706
    73王如竹.超流氦传热中的几个特殊问题:相界面问题以及压力效应.低温工程. 1999,(4):268~275
    74张鹏.超流氦膜沸腾的物理机制研究.上海交通大学博士论文. 1998
    75陈煜,郑青榕,汪荣顺等.几种获取1.8 K超流氦方案的对比分析.上海交通大学学报. 2005, 39(2):235~237
    76陈煜,郑青榕,林文胜等.抽真空获取1.8K超流氦方案分析以及真空泵抽速的预测.低温与超导. 2006, 34(2):85~90
    77王莉,牛国俊,杜宏鹏等. PKU-SCAF低温系统流程设计数值模拟. 2005, 23(3):202~205
    78 J.R. Delayen. The Jefferson Lab Superconducting Accelerator, Advances in Cryogenics Engineering ,1998, (43): 37~42
    79 J.W. Macarthur, Transient Heat Pump Behavior a Theoretical Investigation.Int.J.Refig.,1984, 7(2):123~132
    80 J.W. Macarthur, E.W. Grald. Prediction of Cyclic Heat Pump Performance with a Fully Distributed Model and Comparsion with Experimentaldata. ASHRAE.trans, 1987, (93), Part2:1159~1178
    81 A. Kutzschbach, M. Kauschke, et al. Dynamic Characteristics of a Simple Brayton Cryocycle.CEC2005
    82 Z.C, Zhou, G.Z, Xie. Transient Simulation of a Cascade Vapor Compression Refrigeration System. International Conference on Energy Aaving in Refrigerat ion, 1986:187~195
    83葛云亭,彦启森.蒸发器动态参数数学模型的建立与理论计算.制冷学报. 1995,(1):9~17
    84葛云亭,彦启森.冷凝器动态参数数学模型的建立与理论计算.制冷学报. 1995,(3):17~26
    85黄国强.制冷空调系统仿真和优化的国际DIALOG联机检索报告.1991.12
    86吴志宝.汽车空调.北京宇航出版社. 1991
    87 T. Michael. Introduction to Physical Modeling with Modelica[M] . Kluwer Academic Publishers ,2001
    88 W. D. Steinmann, S. Zunft, Techthermo-A Library for Modelica Applications in Technical Thermodynamics. Modelica 2002:217~224
    89 P. Torge, S. Gerhard. Modeling and Simulation of Refrigeration Systems with the Natural Refrigerant CO2. Modelica 2002,(145):1~9
    90 H. Yoshimura, M. Mori. Miyake. A. Dynamic Simulator of Helium Refrigeration System. Cryogenic Engineering Conference the 60th, July, Japanese, 1999
    91 T. Shintomi, Superfluid Cooling System of the LHC Project, Cryogenic Engineering ,Teion Kougaku, Japanese, 2001,(36):671~674
    92 R. Maekawa., K. Ooba., M. Nobutoki., et al. Dynamic Simulation of the Helium Refrigerator/Liquiefier for LHD. Cryogenics,2005,(45):199~211
    93叶美萍.压缩机动态运行模拟子程序.制冷. 1994,47(2):50~53
    94丁国良,伏龙,苏祖坚等.螺杆机组动态仿真(一):开机过程.工程热物理学报(增刊). 2002,(23):29~32
    95 J. Chi, D. Didion. A Simulation of the Transient Performance of a Heat Pump. In J Refrigeration, 1982,5(3):176~184
    96 L. Plong-Sorensen, J.P.Fredsted, M.Willatzen. Improvements in the Modeling and Simulation of Refrigeration Systems: Aerospace Tools Applied to a Domestic Refrigerator. In J HVAC&R Research. 1997,3(4):387~403
    97 W.E. Murphy, V.W. Goldschmidt. Cycling Characteristics of Residential Air Conditioner Modeling of Shutdown Transients. ASHRAE Transactons,1985,91(2):186~202
    98 J W. MacArthur. Transient Heat Pump Behaviour:a Theoretical Investigation. In J Refrigeration, 1984,7(2):123~132
    99 G.L Ding, H. Li, C.L. Zhang. Study on Thermodynamic Model of a Compressor with Artificial Neural Betworks. Chinese Journal of Mechanical Engineering,1999,12(1):23~26
    100张春路,丁国良,李灏.小型制冷压缩机热力计算神经网络方法的改进.机械工程学报. 2001,37(1):75~77
    101 X. D. He, S. Liu, H. Asada. Modeling of Vapor Compression Cycles for Advanced Controls in HVAC Systems. In: Proc American Control Conf, Seattle, 1995:3664~3668
    102刘博强,袁修平,李敏.板翅式换热器动态模型.化工学报. 1994, 45 (6):673~677
    103杜浦,徐益锋,李美玲等.板翅式换热器动态特性的实验研究.华东工业大学学报. 1996, 18(1): 27~32
    104许益锋,蔡祖恢,李美玲等.两股流板翅式换热器动态性能研究的集中热容模型.化工学报. 1997, 48(6): 721~728
    105叶东辉,许益锋,武贻文.多股流换热器动态特性系数的理论确定方法.上海理工大学学报. 1998, 20(3): 215~219
    106关欣,李美玲,罗行等.预测多股流板翅式换热器动态特性的网络法.工业加热. 2002,(5):21~24
    107 H. Yoshimura, M. Mori, A. Miyake. Dynamic Simulator of Helium Refrigeration System. ICEC18, India,2000:423~426
    108 E. Kashtanov, V. Pleskatch, K. Polkovnikov, et al. Large Low Pressure Heat Exchanger for the TTF Cryogenic System. ICEC18, India,2000:315~318
    109张祉祐,石秉三.低温技术原理与装置.机械工业出版社. 1985
    110 P. Knudsen, V. Ganni. Simplified Helium Refrigrerator Cycle Analysis Using the 'Canot step'. Advances in Cryogenic Engineering, 2006, (51): 1977~1986
    111惠钟锡,杨振华.自由电子激光.北京:国防工业出版社,1995
    112 B. C. Zhang, K. Zhao, J. K. Hao et al. High Average Current Superconducting Accelerator at Peking University[C]. Proceedings of the Second Asian Particle Accelerator Conference, Beijing, China,2001,97~99
    113 Rode C H, Proch D. Cryogenic Optimization for Cavity Systems, 4th Workshop on RF Superconductivity, 751,Tsukuba, Japan, Aug.1989
    114 P. Bauer. Review of Models of RF surface Resistance in High Gradient Niobium Cavities for Particle Accelerators Revision 1. Review of RF Surface Resistance Contributions in High Gradient RF Cavities Made from Nb, TD-04-014, Dec 2004
    115董玉平,由世俊,汪洪军等. R22地源热泵机组单螺杆式压缩机循环性能研究.压缩机技术. 2004,(1):1~4
    116戈璜.单螺杆气体压缩机工作过程分析与计算.青岛科技大学学报. 2004,(25):163~166
    117吴业正,韩宝琦著.制冷原理及设备(第二版).西安:西安交通大学出版社. 1997
    118 R. Strauss, K. A. Perrota. Separation of Compressor Oil from Helium
    119赵雷.氦压缩机油气分离初探.安徽农业大学学报. 2001,(3):334~336
    120 W. D. Moeller, B.Petersen, B.Sparr. Aproposal for a TESLA Accelerator Module Test Facility. TESLA Report
    121 K. Hosoyama. KEK STF Cryogenic System Plan.first ILC Workshop,2004, 15
    122 Haberstroh Ch. ELBE Accelerator: First Year of Cryogenic Operation
    123达道安.真空设计手册(第三版).北京,国防工业出版社, 2004
    124付卫东,袁修干,黄本城等.调节阀流量的计算方法.阀门. 1999,(1): 4~6
    125杨纪伟,郭晋平,秦卫锋等.调节阀工作流量分析.河北建筑科技学院学报. 1999, 16(6):28~32
    126杨纪伟.调节阀的可调比特性分析.阀门. 2001,(5):11~14
    127陈兵,杜鹃.调节阀阀瓣型线设计研究.阀门. 1999,(4): 5~7
    128金家东,王建辉.调节阀流通面积设计.阀门. 2000,(5):8~10
    129杨纪伟,张丽荣.调节阀阻力特性分析.阀门. 2001,(2): 22~24
    130陈长青,沈裕浩著.低温换热器.机械工业出版社,北京, 1993
    131 R. F. Barron. Cryogenic System. Mcgraw Hill,1968
    132 B. DeGraff, W. Soyars, and A. Martinez. SCRF Cryogenic Operating Experience at FNPL. Advance in Cryogenic Engineering. 2005, (51):1164~1171
    133 P. Roussel, A. Girard, et al. The 400W at 1.8K Test Facility at CEA-Grenoble. Advance in Cryogenic Engineering. 2005, (51): 1420~1427
    134 R. F. Barron. Cryogenic Heat Transfer. Louisiana Tech University, Ruston, Louisiana,1999
    135化学工业部第四设计院.深冷手册,下册.化学工业出版社, 1979: 50~70
    136钱靖.百瓦量级超流氦制冷系统负压换热器的设计与优化分析.哈尔滨工业大学硕士学位论文. 2006:39~46
    137陈林辉,张东彬,王石等.制冷压缩机热力性能的仿真计算.制冷与空调. 2005,5(6):29~32
    138项献红,丁力行. FK4制冷压缩机性能仿真模型研究.长沙铁道学院学报. 1997 , 15 (1) : 61~65
    139关志强.往复活塞式制冷压缩机性能系数的曲面回归方程.湛江水产学院学报. 1994 , 14 (2) : 67~70
    140俞炳丰,王军,项卫中等.制冷压缩机工程过程的计算模拟.西安交通大学学报. 1995 , 29 (11) : 64~70
    141黄虎,刘启芬.空调用全封闭活塞式制冷压缩机工作过程的数值模拟.南京建筑工程学院学报. 1995, (4):53~58
    142化工机械手册编辑委员会编.化工机械手册(上),天津大学出版社,1991
    143 R. Maekawa, K. Ooba, M. Nobutoki,etc. Dynamic Simulation of a Helium Liquefier. Advances in Cryogenic Engineering, 2004, (49A):192~199
    144第一机械工业部石油机械研究所编辑.板翅式换热器.上海,化工部化工设备设计专业技术中心站,1968,3
    145 Bernd Seeber. Handbook of Applied Superconductivity, Institute of Physics Publishing, Bristol and Philadelphia, 1998
    146 L. Liu, G. Riddone, L. Tavian. Numerical Analysis of Cooldown and Warmup for the Large Hadron Collider. Cryogenics. 2003,(43): 359~367
    147 Bottura L. Kv~value and Head Loss Factor in Control Valves. CryoSoft Internal Note, CRYO/98/011, February 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700