钢筋混凝土靶板在冲击或爆炸载荷作用下响应的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土是防护工程和重要军事设施的最常用建筑材料,研究钢筋混凝土在冲击(侵彻)或爆炸载荷作用下的动态响应具有十分重要的理论和现实的意义。在本文中,我们利用有限元分析程序对钢筋混凝土板在卵形弹丸侵彻或爆炸载荷作用下的动态响应进行了数值模拟研究。
     论文首先通过对国内外各种混凝土模型和数值模拟方法的历史与现状进行调研,选择适用于大应变、高应变率和高压条件下的Holmqust-Johnson-Cook (HJC)混凝土本构模型进行侵彻和爆炸的数值模拟。
     其次,对钢筋混凝土靶板在卵形弹丸撞击下的侵彻和穿透进行了有限元(FE)数值模拟,并与用靶体响应力函数的方法所得到的结果进行了比较。经过对比我们发现,采用两种方法得到的弹道极限、残余速度以及侵彻深度一致性较好,并且均同实验结果比较吻合。但是两种方法所得到的弹体等效应力以及等效应变分布有较大的差距,而两者的差距主要在弹头部位,采用靶板FE模型得到的弹头部分的应力值和应变值都远远大于采用力函数法的结果。
     最后,采用LS-DYNA的流固耦合算法对炸药在钢筋混凝土靶板近场爆炸的过程进行了数值模拟,再现了炸药爆炸后,冲击波的传播过程以及混凝土的破坏情况。数值模拟得到的压力-时程曲线与典型的经验公式计算结果吻合良好,混凝土靶中的破坏特征也与实验现象具有良好的一致性。
     本文的研究结果表明:采用数值模拟方法能够很好的反映出混凝土在侵彻或爆炸载荷下的破坏形态,并且与现有的试验数据基本吻合。由此可见,利用数值模拟方法研究动能弹侵彻和爆炸冲击问题可以达到较好的精度,是一种切实可行的手段,本文可为进一步的深入研究和工程计算提供参考。但要使结果更加符合实际情况,还需要进一步完善混凝土材料本构模型以及相应的破坏准则。
Rreinforced concrete is the most common building material which has been widely used in protective engineering and military installations/facilities, it is, therefore, valuable and significant to study the damage effect and failure characteristic of reinforced concrete targets under impact by projectiles or blast loading. In this dissertation, the impact and blast response of reinforced concrete slabs is studied numerically by using finite element program LS-DYNA.
     Firstly, the pevious work on the development of concrete materials models and the relevant numerical simulations are critically reviewed and the Holmquist-Johnson-Cook (HJC) model, which can describe the response of concrete subjected to large strains, high strain rates and high pressures loads, is chosen in the numerical study of the response of reinforced concrete slabs to projectile impact and blast loading.
     Secondly, 3D numerical simulations of reinforced concrete slabs subjectled to impact by an ogival-nosed projectile are conducted using the HJC model, and the numerical results obtained are compared with those obtained by forcing function method where a forcing function is used to represent the target’s response. It is found that the ballistic limits, penetration depths and residual velocities obtained by these two methods are comparable. It is also found that the distribution of the equivalent stress and equivalent plastic strain on the surface of the projectile obtained by these two methods are similar except for the projectile nose surface where the results obtained by FE methods are much larger than those obtained by forcing function approach.
     Finally, the response of reinforced concrete slabs under explosive loading is studied numerically by the fluid-solid coupled method of LS-DYNA. The numerical simulation reproduced the transient process of the shock wave and the main rupture process of the slabs. The numerically obtained pressure-time histories are found to be in reasobale agreement with those predicted by the empirical equations and the failure patterns obtained by the numerical simulation is found to be similar to those obtained experiemtally.
引文
[1]陈大年,尹志华,俞宇颖等。混凝土的冲击特性描述。弹道学报, 2001 (2):89-97。
    [2] Kennedy RP. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nucl Eng Des, 1976, 37:183 - 203.
    [3] Sliter GE. Assessment of empirical concrete impact formulas. ASCE J Struct Div, 1980, 106(ST5):1023-1045.
    [4] Williams MS. Modelling of local impact effects on plain and reinforced concrete. ACI Struct J, 1994, 91(2):178-187.
    [5] Li QM., Reid SR., Wen HM. and Telford AR. Local impact effects of hard missiles on concrete targets. Int. J. Impact Eng., 32, 224-284.
    [6] NDRC. Effects of impact and explosion. Washington D C, National Defence Research Committee, Vol. 1, Summarry Technical Report of Division 2, 1946.
    [7] Young CW. The development of empirical equation for predicting depth of an earth penetrating projectile. SC-DR-67-60, 1967.
    [8] Young CW. Depth Prediction for Earth-Penetrating Projectiles, J. of the Soil Mechanics and Foundations Division. Proceedings of the American Society of Civil Engineers, 1969, 803-817.
    [9] Bernard RS. Deep penetration theory for homogeneous and layered targets. S-75-9, 1975.
    [10] Bernard RS. Depth and motion prediction for earth penetrators. S-78-4, 1978.
    [11] Degen PO. Perforation of reinforced concrete slabs by rigid missiles. Journal of structural Engineering. 1980, 106(7):1623-1642.
    [12] Chang WS. Impact of solid missiles on concrete barriers. ASCEJ Struct Div, 1981, 107(ST2):257-271.
    [13] Haldar A, Miller FJ. Local effects of concrete structures. Proceedings of Concrete Structure under Impact and Impulsive Loading. WestBerlin, WestGermany, 1982:345-357.
    [14] Haldar A, Hamieh AH. Local effect of solid missiles on concrete structures. ASCEJ Struct Div, 1984, 110(5):948-960.
    [15] Berriaud C, Sokolovsky A, Gueraud R, etal. Local behaviour of reinforced concrete walls under missile impact. Nuclear Engineering and Design , 1978 ,45:457-469.
    [16] Forrestal MJ, Altman BS, Cargile JD, Hanchak SJ. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures, Panama City Beach, May 3-7, 1993:9-32.
    [17] Forrestal MJ, Altman BS, Cargile JD, Hanchak SJ. An empirical equation for penetration of ogive-nose projectiles into concrete target. Int J Impact Engng 1994; 15:395-405.
    [18] Forrestal MJ, Frew DJ, Hickerson JP, Rohwer TA. Penetration of concrete targets with deceleration-time measurements.int J Impact Engng 2003; 28:479-497.
    [19] Qian LX, Yang YB, Liu T. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets. Int J Impt Engng 2000; 24:947-955.
    [20] Tenland JA, Sj?l H. Penetration into concrete by truncated projectiles. Int J Impt Engng 2004; 30:447-464.
    [21] Li QM, Chen XW. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. Int J Impt Engng 2003; 28:93-116.
    [22] Reid SR, Wen HM. Predicting penetration, cone cracking , scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles. UMIST Report ME/AM/02.01/TE/G/018507/Z, 2001.
    [23] Wen HM. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Compos Struct 2000; 49(3):321-329.
    [24] Wen HM. Penetration and perforation of thick FRP laminates. Compos Sci Technol 2001; 61(8):1163-1172.
    [25] Reid SR, Wen HM. Perforation of FRP laminates and sandwich panels subjected to missile impact. Impact Behaviour of Fibre-Reinforced Composite Materials and Structures, Reid SR and Zhou G (eds), Woodhead Publishing Limited, Cambridge, 2000.
    [26] Wen HM. Predicting the penetration and perforation of targets struck by projectiles at normal incidence. Mech Struct Mach 2002; 30(4):543-577.
    [27] Bishop RF, Hill R and Mott NF. The theory of indentation and hardness. Proceedings of the Physical Society, 1945, 57, 147-159.
    [28] Goodier JN. On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres. Proceedings of the 7th Symposium on Hypervelocity Impact III,1965, 215-259.
    [29] Hill R. A Theory of Earth Movement Near a Deep Underground Explosion. Memo No. 21-48, Armament Research Establishment, Fort Halstead, Kent, England, 1948.
    [30] Hill R. The Mathematical Theory of Plasticity. Oxford University Press, London, 1950.
    [31] Hopkins HG. Dynamic Expansion of Spherical Cavities in Metal. Progress in Solid Mechanics, Vol. 1, edited by I. N. Sneddon, R. Hill North-Holland, Amsterdam, 1960.
    [32] Forrestal MJ. Penetration into Dry Porous Rock. International Journal of Solids and Structures, 1986, 22, 1485-1500.
    [33] Forrestal MJ and Luk VK. Penetration into soil Targets. Int. J. Impact Engineering, 1992,12,427- 444.
    [34] Forerstal MJ, Tzou DY, Askari E, Longcope BD. Penetration into Ductile Metal Targets with Rigid Spherical-nose Rods. Int. J. Impact Engineering,1995,16,699-710.
    [35] Forrestal MJ, Frew DJ, Hanchak SJ, Brar NS. Penetration of grout and concrete targets with ogive-nose steel projectiles. Int J Impact Engng 1996; 18(5):465-476.
    [36]金丰年,刘黎,张丽萍等。深钻地武器的发展及其侵彻。解放军理工大学学报(自然科学版), 2002, V.3, No.2。
    [37]王延斌,俞茂宏,林俊德。弹体垂直侵彻混凝土靶体的柱形空腔膨胀理论分析。西安交通大学学报, 2004, 38(3):303-307。
    [38] Holt RM., Unander TE and Kenter CJ. Constitutive Mechanical Behavior of Synthetic Sandstone Formed under Stress. Int. J. Rock Mech. Min. Sci&Geomech. Abstr, Vol. 30, n7, 719-722, 1993.
    [39]俞茂宏,赵均海。混凝土强度理论及其应用。北京,高等教育出版社, 2002。
    [40]魏雪英。长杆弹侵彻混凝土实验研究。博士学位论文,西安交通大学, 2002。
    [41]徐建波。长杆射弹队混凝土的侵彻特型研究。博士学位论文,国防科技大学, 2001。
    [42]尹放林,钱七虎。抗常规武器侵彻试验研究。防护工程, 1998 (2):1-5。
    [43]王励自。聚能装药对岩土介质的侵彻研究,博士学位论文,西南交通大学, 2002。
    [44]高凌天。冲击载荷在各向异性体内的应力波传播、损伤及破坏。博士学位论文,大连理工大学, 2002。
    [45]王礼立,余同希,李永池。冲击动力学进展。中国科学技术大学出版社,合肥, 1992。
    [46]胡时胜,王道荣。混凝土材料动态本构关系。宁波大学学报(理工版), 2000,13(增刊):82-85。
    [47]胡时胜,王道荣。冲击载荷下混凝土材料的动态本构关系。爆炸与冲击, 2002,22(3): 242-246。
    [48]姜芳。钢筋混凝土材料动态力学性能进行了实验研究。硕士学位论文,北京理工大学, 2003。
    [49]王道荣。高速侵彻现象的工程分析方法和数值模拟研究。博士学位论文,中国科学技术大学, 2002。
    [50]孙宇新。混凝土抗贯穿问题研究。博士学位论文,中国科学技术大学, 2003。
    [51]曲建波。细长弹对混凝土的侵彻效应研究。硕士学位论文,西南交通大学, 2001。
    [52]何涛。动能弹在不同材料靶体中的侵彻行为研究。博士学位论文,中国科学技术大学, 2007。
    [53]何涛、文鹤鸣。靶体响应力函数的确定方法及其在侵彻力学中的应用。中国科学技术大学学报, 200737(10), 1249-1261。
    [54] TM 5-1300, Structures to Resist the Effects of Accidental Explosion. Department of the Army Technical Manual, Department of the Navy Publication NAVFACP-397, Departmentof the Air F orce Manual AFM 88-22, Department of the Army, the Navy, and the Air Force, Jun. 1969.
    [55] TM-5-855-1, Fundamentals of Protective Design for Conventional Weapons. Washington D C: US Department of the Army, 1986.
    [56] Design and Analysis of Hardened Structures to Conventional Weapons Effects,DSWA DAHSCWE-97, Army TM5-855-1, Airforce AF JMAN 32-1055, NAVFAC P-1080, Apr. 1997.
    [57] Woodson SC, Kiger SA. Stirrup Requirements for Blast-Resistant Slabs. Journal of Structural Engineering, September, 1988,Vol.114,No.9: 2057-2069
    [58] Krauthammer T. Shallow-buried RC box-type structure. Journal of Structural Engineering. 1984, 110(3): 637-651.
    [59] Krauthammer T, Bazeos N, Holmquist TJ. Modified SDOF analysis of RC box-type structures. Jounral of Structural Engineering.1986, 112(4):726~744.
    [60] Krauthammer T, A Assadi-Lamouki, H M Shanaa. Analysis of impulsively loaded reinforced concrete elements-I theory. Computers and Structures.1993, 48 (5): 851-860.
    [61] Krauthammer T, A Assadi-Lamouki, H M Shanaa. Analysis of impulsively loaded reinforced concrete elements-II theory. Computers and Structures.1993, 48(5): 861-871.
    [62] Ghabossi J, Millavec WA, Senber J. RC structures under impulsive loading. Journal of Structural Engineering.1984, 110(3): 505-522.
    [63] Ross TJ. Direct shear failure in reinforced concrete beams under impulsive loading. AFWL-TR-83-84, Kirtland Air Force Base, Air Force Weapons Laboratory, 1983.
    [64] Kraus D, Roetzer J, Thoma K. Effect of high explosive detonations on concrete structures. Nuclear Engineering and Design, 1994, 150(2):309-314.
    [65] Ayaho Miyamoto, Michael W King, Manabu Fuji. Analysis of failure modes for reinforced concrete slabs under impulsive loads .ACI Structural Journal. 1991, (9-10): 538-545.
    [66] Nemkumar Banrhia, Sidney Mindes, J F Trotier. Impact resistance of steel fiber reinforced concrete .ACI Materials Journal.Title no.93-M54, 472-479.
    [67] Crouch RS, Chisp TM. The Response of Reinforced Concrete Slabs to Non-nuclear Blast Loading. IN: 4th Asia-Pacific Conference on Shock&Impact Loads on Structures, Singapore: November21-23, 2001:69-76.
    [68] Low HY, Hao H. Reliability analysis of Direct Shear and Flexural Failure Modes of RCSlabs under Explosive Loading. Engineering Structures, 2002(24):189-198.
    [69]南京橄浦地区国防工程抗力试验总结。抗力试验指挥部, 1958年6月。
    [70]西拔子工程抗力试验总结。北京军区工程兵司令部, 1960年12月。
    [71]李晓军。常规武器破坏效应与工程防护技术。总参工程兵科研三所, 2002年10月。
    [72]徐凡力。各向异性材料在快速荷载作用下的动力特性。硕士学位论文,清华大学, 1991。
    [73]高健。室内燃气爆炸对居住房屋的危害及减灾措施。硕士学位论文,清华大学, 1991。
    [74]叶宏。民用燃气爆炸对建筑结构影响的分析与研究。硕士学位论文,清华大学, 1994。
    [75]苗启松。核爆炸冲击波作用下附建式人防地下室倾覆分析。硕士学位论文,清华大学, 1988。
    [76]江水德。核爆冲击波作用下土中浅埋结构承载力研究。博士学位论文,清华大学, 1993。
    [77]汪小虎。核爆炸冲击波作用下房屋倒塌碎片分布与钢筋混凝土结构动力分析。博士学位论文,清华大学, 1991。
    [78]林大超。爆炸地面振动的随机演变理论及应用研究。博士学位论文,北京理工大学, 2001。
    [79]吴开腾。爆炸与冲击问题的三维数值模拟及算法研究。博士学位论文,北京理工大学, 2002。
    [80]李伟。爆炸与冲击问题数值模拟中驾驭式计算技术研究与实现。博士学位论文,北京理工大学, 2002。
    [81]王仲琦。面向对象的爆炸力学Euler型多物质数值方法及其应用研究。博士学位论文,北京理工大学, 2000。
    [82]楼沩涛。地下核试验中若干动力学问题的研究。博士学位论文,中国科学技术大学, 2001。
    [83]刘文韬。岩石含损伤本构模型和地下爆炸效应研究。博士学位论文,中国科学技术大学, 2002。
    [84]钟光复。岩石、混凝土介质中爆炸近区破坏规律的研究。硕士学位论文,中国科学技术大学, 2006。
    [85]方正。爆炸荷载作用下碾压混凝土围堰结构动态特性的试验及数值模拟。硕士学位论文,中国科学院力学研究所, 2001。
    [86]方秦,柳景春,张亚栋。爆炸荷载作用下钢板与钢筋混凝土组合梁动力响应分析。工程力学增刊, 1997: 321-325。
    [87]柳景春,方秦等。爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析。爆炸与冲击, 2003, 23(1): 25-30。
    [88]方秦,吴安平。爆炸荷载作用下影响RC梁破坏形态的主要因素。计算力学学报, 2003, 20(l): 39-43。
    [89]贺虎成,唐德高等。碳纤维布加固构件抗爆能才提高效果初步研究。建筑技术开发, 2002, 29(8): 3-5。
    [90]林润德等。钢筋混凝土结构内粘钢板加固技术可行性分析。爆炸与冲击, 1997, 17(3):276-280。
    [91]王怀忠。核爆地冲击效应下远场深埋防护结构与介质动力相互作用的数值分析。博士学位论文,同济大学, 1992。
    [92]范宇洁。粘钢加固抗爆地下结构的研究。博士论文,同济大学, 2000。
    [93]胡栋,韩肇元,张寿齐等。炸药爆炸变形和首次破碎的研究。高压物理学报, 2004年,第18卷,第3期, 188-202。
    [94]胡栋,韩肇元,张寿齐等。炸药爆炸作用下液体破碎后颗粒尺寸分布的研究。高压物理学报, 2008年,第22卷,第1期, 6-20。
    [95]盖京波,王善,杨世全。舰船板架在接触爆炸冲击载荷作用下的破坏。舰船科学技术, 2005年,第27卷,第5期, 16-18。
    [96]盖京波,王善,唐平。薄板在接触爆炸载荷作用下的破坏分析。哈尔滨工程大学学报, 2006年,第27卷,第4期, 523-525。
    [97]文鹤鸣。混凝土冲击响应的经验公式。爆炸与冲击, 2002年,第23卷,第3期, 267-274。
    [98] Zukas J. Survey of computer codes for impact simulation, In: Zukas J edit, High Velocity ImpactDynamics, Wiley 1990:593-714.
    [99] Johnson WW, Anderson C E.History and application of hydrocodes in hypervelocity impact. Int J Impt Engng 1987; 5:423-439.
    [100] Tham CY.Reinforced concrete perofration and penetration simulation using AUTODYN-3D. Finite Elements in Analysis and Design 2005; 41:1401-1410.
    [101] Tai YS, Tang CC. Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact. Theor appl fracture mech 2006; 45:117-127.
    [102] B?rvik T, Hopperstad OS, Berstad T, Langseth M. Perforation of 12mm thick steel plates by 20mm diameter projeciltes with flat, hemispherical and conical noses Part II: numerical simulatios. Int J Impt Engng 2002; 27:37-64.
    [103] Teng X, Wierzbicki T. Evaluation of six fracture models in high velocity perforation. Engineering Fracture Mechanics 2006; 73:1653-1678.
    [104]江见鲸,陆新征,叶列平。混凝土结构有限元分析。北京:清华大学出版社,2005。
    [105] Ngo D, Scordelis AC. Finite element analysis of reinforced concrete beams. ACI Journal, 1967, 63(3):152-163.
    [106] Holmquist TJ, Johnson GR, Cook WH. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In: 14th InternationalSymposium on Ballistics, Quebec, Canada, 1993, 26-29:591-600.
    [107]江见鲸。钢筋混凝土结构非线性有限元分析。陕西:陕西科学技术出版社, 1994。
    [108] Inoue K, Sawaizumi S, Higashibata Y. Stiffening design at the edge of the reinforced concrete panel including unbonded steel diagonal braces. Journal of Structural and Construction Engineering, Architectural Institute of Japan 443 (1993), pp. 137–146.
    [109]朱伯龙,董振祥。钢筋混凝土非线性分析。上海:同济大学出版社, 1985。
    [110]沈聚敏,王传志,江见鲸。钢筋混凝土有限元与板壳极限分析。北京:清华大学出版社, 1993。
    [111] Nilson A H. Nonlinear analysis of reinforced concrete by the finite element method. ACI Journal. 1968, 65(9): 89-93.
    [112]周荃,孙利民。钢筋混凝土结构弹塑性分析在ANSYS中实现。同济大学土木工程防灾国家重点实验室ANSYS论文集。
    [113] Zienkiewicz OC, et al. Finite element method in analysis of reactor vessels. Nuclear engineering and design, 1972(20):56-73.
    [114] Phillips DV, Zienkiewicz OC. Finite element nonlinear analysis of concrete structures. Proceedings of Instit. Civ. Engrs.1976, 61(3):59-88.
    [115] Suidan M, Schnobrich WC. Finite element analysis of reinforced concrete. Journal of structural division ASCE.1973, 99(10):2109-2122.
    [116]王勖成,邵敏。有限元法基本原理和数值方法。北京:清华大学出版社, 1997,117-141。
    [117]混凝土结构设计规范(GBJ10-89)。北京:中国建筑工业出版社, 1989。
    [118]康清梁主编。钢筋混凝土有限元分析。北京:中国水利水电出版社, 1996。
    [119]王勋成,邵敏。有限单元法基本原理和数值方法。清华大学出版社, 1997。
    [120]美国ANSYS股份有限公司, ANSYS/LS-DYNA算法基础和使用方法, 2000。
    [121] Hallquist JO. LS-DYNA3D Theoretical Manual. LSTC, Livermore, 1997.
    [122] Hanchak SJ, Forrestal MJ, Young ER. Perforation of concrete slabs with 48 MPa and 140 MPa unconfined compressive strenths. International Journal of Impact Engineering, 1992, 12 (1):1-7.
    [123]屈明,陈小伟。钢筋混凝土穿甲的数值模拟。爆炸与冲击, 2008年7月,第28卷第4期,341-349。
    [124]张凤国,李恩征。混凝土撞击损伤模型参数的确定方法。弹道学报, 2001, 13(4):12-16。
    [125]冯乃谦。实用混凝土大全。北京:科学技术出版社, 2001。
    [126] Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,high strain rates,and high temperatures[A]. In:Proc.of the 7th Intern. Symp. on Ballistics. Netherlands: Am. Def. Orp.(ADPA), 1983. 541–547.
    [127] Ben-Dor G, Dubinsky A, Elperin T. Ballistic impact: recent advances in analytical modeling of plate penetration dynamics-a review. Applied Mechanics Reviews 2005, 58:355-371.
    [128] FEMA.Reference Manual to Mitigate Potential Terrorist Attacks Against Building. US: Federal Emergency Management Agency, 2003.
    [129] Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian Eulerian computing method for all flow speeds. J Computational Physics,1974,14: 227-253.
    [130]董海山。炸药及相关物性。绵阳:《中国工程物理研究院科技丛书》编辑部出版, 2005。
    [131] Zhou XQ, Kuznetsov VA, Hao H et al. Numerical prediction of concrete slab response to blast loading. International Journal of Impact Engineering, 2008, 12(suppl): 1-15.
    [132] Brode HL. Blast wave from a spherical charge. Phys Fluids, 1959 (2): 217.
    [133] Henrych J. The Dynamic of Explosion and its Use. Elsevier, Amsterdam (1979).
    [134] Choi HJ, Crawford JE, Karagozian and Case. Suggestion of Procedure for R.C. Component Blast Retrofit Effectiveness Analysis and its Application to the Test Specimen Design.
    [135]叶晓华。军事爆破工程。北京:解放军出版社, 1999。
    [136] Wu C, Hao H. Modeling of simultaneous ground shock and airblast p ressure on nearby structures from surface explosions. Int J Impact Eng, 2005, 31(6):699 - 717.
    [137]王飞,朱立新,顾文彬等。基于ALE算法的空气冲击波绕流数值模拟研究。工程爆破, 2002, 8 (2) : 13-16。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700