沧州地区地面沉降成因机理及沉降量预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工业化和城市化的快速发展,华北平原普遍发生了地面沉降。地面沉降已经成为影响区域经济社会发展的主要环境问题。本论文以华北平原地面沉降典型区沧州地区为研究对象,系统分析了该地区的地面沉降成因机理,应用地下水数值模型模拟了地下水动力场在时、空方面的变化和发展,预测了该区地面沉降的发展趋势。
     全面搜集并分析了研究区地面沉降相关环境地质资料,从区域地质环境、水文地质条件入手,结合MapGIS空间分析方法,得出了沧州地区乃至整个华北平原的地面沉降与深层地下水开采之间的量化关系。随后,选择沧州地面沉降区的典型试验孔为研究对象,对粘性土体物理特征、土体压缩变形规律及粘性土渗透特征进行分析,进而对沧州地区地面沉降成因机理进行了研究。
     根据区域地层结构及粘性土渗透特征,利用Processing Modflow软件构建了沧州地区地下水水流模型;根据地下水模型对地下水位进行预测,得到2020年两种开采条件下第Ⅲ含水层的最大水位埋深分别为106.8m和101.2m;结合水位埋深与累计沉降量关系及地下水开采量与累计沉降量关系,建立回归模型,从“点”上对沧州地区2020年地面沉降发展趋势进行预测,在现状开采下,两种方程得到的最大累计沉降量分别为3002.7mm和3004.7mm;压采条件下,两种方程得到的最大累计沉降量分别为2590.2mm和2986.3mm。预测结果表明,预测期内,沧州市地面沉降中心仍然位于沧州市区,进一步说明地下水开采与地面沉降的关系,为地面沉降综合治理及预防提供了依据。
     最后,选择京沪高铁沧州北段为研究区,从该区的地形、地貌、工程地质等条件出发,结合综合分析法、层次分析法,并应用ArcGIS软件构建了地面沉降危险性评价模型,对该研究区的地面沉降危险性进行了分区评价,并提出了相应的地面沉降防治措施,为城市规划、建设及未来发展提供了基础。
Due to rapid development of industrialization and urbanization, land subsidenceoccurs commonly in the North China Plain, and has become the main environmentalproblem factor impacting regional sustainable economic and social development.
     This thesis choose Cangzhou, a typical land subsidence area in the North ChinaPlain as the study object, systematically analyzes the mechanism of land subsidence inthis area, simulates the temporal and saptial change and development ofthe groundwater dynamic field by a groundwater numerical model and then forecaststhe development trend of land subsidence in Cangzhou area.
     The geological environment data related to land subsidence have been collectedand analyzed comprehensively. With MapGIS spatial analysis method and startingfrom the regional geological and hydrogeological conditions, quantitative relationshipbetween ground settlement and deep groundwater exploitation is concluded inCangzhou region and the North China Plain. Then a typical test borehole in landsubsidence area of Cangzhou was selected to analyze the physical characteristics,compression deformation laws, and permeability characteristics of clay. At last,the mechanism of land subsidence in Cangzhou area is analyzed
     According to regional stratigraphic structure and permeability characteristics ofclay, a groundwater flow model of cangzhou area was built with the ProcessingModflow. With this contructed groundwater model, the maximum water depths of theIII aquifer in two mining conditions in2020were predicted to be106.8m and101.2m, respectively. Regression equations were contructed between water leveldepth and accumulative settlement, and between groundwater abstraction andaccumulative settlement, respectively. With these regression equations, thedevelopment trend of land subsidence in Cangzhou in2020was predicted. The resultsshow that the maximum accumulative subsidence is predicted to be3002.7mm and3004.7mm respectively in the current abstraction pattern, and predicted to be2590.2m and2986.3mm respectively in the reduction of abstraction scenario. Theresults also indicate that the center of ground subsidence is still located in Cangzhou City in the prediction period, which further illustrate the relationshipbetween groundwater exploitation and land subsidence and provide the basis for thecomprehensive management and prevention of land subsidence.
     Finally, the north section in Cangzhou of the Beijing-Shanghai High-speedRailway was selected as the study area. With considering some facters such as theterrain, landform and engineering geological conditions, using the AHP method andcomprehensive analysis method, a hazard evaluation model was constructed withArcGIS to conduct division evaluation of hazard in the study area. Base on theevaluation results, corresponding prevention measures of ground settlement are putforward, providing the basis for city planning, construction and development in thefuture.
引文
Allis, R., C. Bromley and S. Currie. Update on subsidence at the Wairakei–Tauharageothermal system, New Zealand. Geothermics,2009.38(1):169-180
    Allis, R.G. Review of subsidence at Wairakei field, New Zealand. Geothermics,2000.29(4-5):455-478
    Bahadoran, B. and R. Ajalloeian. Groundwater drawdown and land subsidence in south ofEsfahan area. Iran.In:Laura Carbognin,Giuseppe Gambolati&A.I van Johson.Proceedings of theSixth International Symposium on the Land subsidence.Padova:La Garangola,Via Montona,2000:117-122
    Bravo, R., Rogers, J.R., Cleveland, T.G., Analysis of Groundwater Level Fluctuations andBorehole Extensometer Data from the Baytown Area, Houston, TX, Land Subsidence.International Association of Hydrological Sciences Publication, Washington, D.C,1991:12–18
    Calderhead, A.I., Therrien, R., Rivera, A., MArtel, R., Garfias, J., Simulatingpumping-induced regional subsidence with the use of InSAR and field data in the Toluca Valley,Mexico. Advances in Water Resources.2010
    Chen B, Gong H, Li X, et al. Spatial-temporal characteristics of land subsidencecorresponding to dynamic groundwater funnel in Beijing Municipality, China. ChineseGeographical Science,2011,21(6):753-764
    Delta, China: the example of Su-Xi-Chang area and the city of Shanghai. HydrogeologyJournal,2008,16(3):593-607
    Domenico and Schwartz. Physical and chemical hydrology. New York:2nd edn. Wiley,1998
    ESRI. ArcInfo9Using ArcGIS Desktop[Z].[s.l.]:ESRI,2006
    Frans, B.J., Barends, Laura Carbognin, Giuseppe Gambolati. LAND SUBSIDENCE(SpecialVolume)-Proceedings of Seventh International Symposium on Land Subsidence[c]. Rotterdam:Millpress Science Publishers,2005
    Gambolati, G., Freeze, R.A., Mathematical simulation of the subsidence of Venice:1.Theory.Water Resources Research.1973,9(3):721–733
    Gambolati, G., Gatto, P., Freeze, R.A., Mathematical simulation of the subsidence of Venice:2. Results. Water Resources Research.1974,10(3):563–577
    Gambolati, G., et al., Mathematical simulation of the subsidence of Ravenna. WaterResources Research.1991,27(11):2899–2918
    Gambolati, G., P. Teatini and M. Ferronato. Anthropogenic land subsidence. Earth ScinenceFrontiers,2006.13(1):160-178
    Helm, D.C., One-dimensiona l simulation of aquifer system compaction near Pix-ley,California,(1) constant parameters. Water Resources Research.1975,11(19):8–12
    Helm, D.C., One-dimensional simulation of aquifer system compaction near Pixley,California,(2) stress-dependent parameters. Water Resources Research.1976.,12:121–130
    Hu RL,Yue ZQ,Wang LC and Wang SJ. Review on current status and challenging issuesof land subsidence in China.Engineering Geology,2004,76:65-77
    Larson, K.J., Basagaoglu, H., Marino, M.A., Prediction of optimal safe ground water yieldand land subsidence in the Los Banos-K ettleman City area, California, using a calibratednumerical simulation model. Journal of Hydrology.2001,242(1–2):79–102
    Liu Y, Helm, D.C., Inverse procedure for calibrating parameters that control landsubsidence caused by fluid withdrawal:2. Field application. Water Resources Re-search.2008,44
    Murria, J. Subsidence due to oil production in western Venezuela: engineering problems andsolutions.In:A.I.Johnson.Proceedings of the Fourth International Symposium on the LandSubsidence.The Netherlands:IAHS Pub,Hague,.1995:187-196
    Neuman, S.P., Preller, C., Narasimhan, T.N., Adaptive explicit-implicit quasi threedimensional finite-element model of flow and subsidence in multiaquifer systems. WaterResources Research.1982,18(5):1551–1561
    Nichol, S.L., et al. Lagoon subsidence and tsunami on the West Coast of New Zealand.Sedimentary Geology,2007
    Pacheco, J., et al. Delimitation of ground failure zones due to land subsidence using gravitydata and finite element modeling in the Querétaro valley, México. Engineering Geology,2006.84(3-4):143-160
    Poland JF, Davis GH. Land subsidence due to withdrawal of fluids. In Varnes DJ, KierschG(eds) Reviews in engineering geology II. Geological Society of America Inc., Boulder.1969
    Shearer, T.R., A numerical model to calculate land subsidence applied at Hangu in China.Engineering Geology,1998,49:85–93
    Shi XQ, Xue YQ, Wu JC, et al. Characterization of regional land subsidence in Yangtze Delta,China: the example of Su-Xi-Chang area and the city of Shanghai. Hydrogeology Journal,2008,16(3):593-607
    Singh, R.P. and R.N. Yadav. Prediction of subsidence due to coal mining in Raniganjcoalfield, West Bengal, India. Engineering Geology,1995.39(1-2):103-111
    Tang, J., et al. Geological emission of methane from the Yakela condensed oil/gas field inTalimu Basin, Xinjiang, China. Journal of Environmental Sciences,2008.20(9):1055-1062
    Teatini, P., Ferronato, M., Gambolati, G., Gonella, M., Groundwater pumping and landsubsidence in the Emilia–Romagna coastland: modeling the past occurrence and the future trend.Water Resources Research.2006,42(1)
    Wu JC, Shi XQ, Ye SJ, et al. Numerical Simulation of Viscoelastoplastic Land Subsidencedue to Groundwater Overdrafting in Shanghai, China. Journal of Hydrologic Engineering,2010,15(3):223-236
    Xu YS, Shen SL, Cai ZY, et al. The state of land subsidence and prediction approaches due togroundwater withdrawal in China[J]. Natural Hazards,2008,45(1):123-135
    Xue Y-Q, Zhang Y, Ye S-J, et al. Land subsidence in China[J]. Environ Geol,2005,48(6):713-720
    Yi LX, Zhang F, Xu H, et al. Land subsidence in Tianjin, China[J]. Environmental EarthSciences,2011,62(6):1151-1161
    Zeitoun DG, Wakshal E. Land Subsidence Analysis in Urban Areas: the BangkokMetropolitan Area Case Study, Springer Environmental Science and Engineering,2013, DOI10.1007/978-94-007-5506-22
    Zhang AG, Gong SL, A Ivan Johnson.. LAND SUBSIDENCE(Vol. Ⅰ&Vol.Ⅱ)-Proceedingsof Seventh International Symposium on Land Subsidence[c]. Shanghai: Shanghai Scientific&Technical Publishers,2005
    陈志宏.多元线性回归方法在地下水水位预测中的应用.北京地质,1999,(3):20-26
    第二届全国地质灾害与防治学术讨论会论文集,中国地质灾害研究会,1994
    丁国平,胡成,陈华丽等,衡水地面沉降区黏性土体渗透特征研究.工程地质学报,2012,20(1):82-87
    董国凤,地面沉降预测模型及应用研究:[博士学位论文].天津:天津大学,2006
    段永侯.我国地面沉降研究现状与21世纪可持续发展.中国地质灾害与防治学报,1998a,9(2):1-5
    葛大庆,张玲,王艳等.华北平原地面沉降区insar监测项目成果报告.2010
    龚士良“第七届国际地面沉降学术研讨会”综述.中国地质灾害与防治学报,2006,17(2)177-178
    郭永海,王东胜,沈照理等.河北平原部分地区深层地下水开采的地沉效应及水资源属性再认识.中国地质灾害与防治学报,1994.10.76-83
    郭永海,沈照理,钟佐燊等.从地面沉降论河北平原深层地下水资源属性及合理评价.地球科学,1995,20(4):415-420
    国外地面沉降技术方法论文选译,上海市地质处,地质出版社,1981
    河北省沧州地区及沧州市地质环境监测报告(1986-1990),河北地勘局第四水文地质工程地质大队,1991
    河北省沧州市地质环境监测报告(1991-1995),河北地勘局第四水文地质工程地质大队,1996
    华北平原地面沉降调查与监测重要进展2003-2005
    黄海国,陈琦.全国地质灾害地面变形学术讨论会论文集,中国地质灾害研究会地面变形专业委员会,1990,98-99
    李广雪,庄克琳.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质,2000,20(2):21-26
    李勤奋,方正.上海市地下水可开采量模型计算及预测.上海地质,2000,2:36-43.
    李伟,杨旭东,马学军等.模糊评判法在沧州市地面沉降灾害危险性评价中的应用.勘察科学技术,2006,6(6):39-44
    李云安.深基坑变形环境效应及其水-土耦合三维数值模拟系统研究.上海交通大学,2002.2-3
    刘德成,何静北京市通州区地面沉降危险性评价与区划中国地质灾害与防治学报2008,19(3):158-159
    刘杜娟.中国沿海地区地面沉降问题思考.中国地质灾害与防治学报,2004b(04)
    刘飞.上海市地面沉降变形特征研究.中国地质大学(北京),2003
    刘会平,王艳丽.广州市地面沉降危险性评价海洋地质动态2006,22(1):1-4
    刘毅.地面沉降研究的新进展与面临的新问题.地学前缘,2001.8(2):273-278
    吕庆玉,熊梦琴.沧州深层地下水超采分析及对策,地下水,2011,33(1):46-49
    骆祖江,付延玲,田小伟等.沧州地面沉降灾害预测预警研究.2013
    孟磊,冯启言等.徐州大屯中心区地面沉降机理分析与危险性评价.中国地质灾害与防治学报2008,19(3):60-63
    彭建兵,陈立伟,黄强兵等.地裂缝破裂扩展的大型物理模拟试验研究.地球物理学报,2008,51(6):1826-1834
    彭建兵,范文,李喜安等.汾渭盆地地裂缝成因研究中的若干关键问题.工程地质学报.2007,15(4):433-440
    彭青华.沧州市地面沉降模型研究:[硕士学位论文].北京:中国地质大学(北京),2007
    秦同春,超采深层地下水引起地面沉降规律的探讨.水土保持应用技术,2010:39-49
    任荣.试论华北平原的城市地面沉降与防治-以沧州市为例.工程勘察,1993(4):35-38
    上海市地面沉降勘察研究报告(1962~1976年),上海市地质处,1979
    上海市地面沉降勘察研究总结报告(1986~1990年),上海市环境地质站,1991
    上海市区及近郊区地面沉降勘察研究总结报告(1977~1985年),上海市环境地质站,1987
    石建省,郭娇,孙彦敏等.京津冀德平原区深层水开采与地面沉降关系空间分析.地质评论,2006,52(6):804-809
    田俊花,简明等.河北省沧州市地质环境监测报告.2011
    王国良.地面沉降危险性分级标准初探上海地质2006,100(4):39-42
    王寒梅.上海地面沉降风险评价及防治管理区建设研究上海地质2010,31(4):7-12
    王继强,迟秀成,钟沧生等.沧州市地面沉降重点区地面沉降调查与监测报告.2013
    王若柏,孙东平.天津地区地面沉降及其对地理环境的影响.地理学报,1994,49(4):317-323
    谢金荣.华北地区水资源供需现状发展趋势和战略研究,“七五”国家重点科技公关项目专题报告,1990
    邢忠信,李和学,张熟等.沧州市地面沉降研究及防治对策,地质调查与研究,2004,27(3):157-163
    薛禹群,谢春红.水文地质学的数值法.北京:煤炭工业出版社,1979
    薛禹群.我国地面沉降模拟现状及需要解决的问题.水文地质工程地质,2003,30(5):1-5
    薛禹群,张云,叶淑君等.中国地面沉降及其需要解决的几个问题.第四纪研究,2003,23(6):585-592
    杨天行.求解对流占优地下水水质模型的有限单元高精度广义迎风单元均衡格式及应用长春地质学院,1996(2)
    殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究.大连理工大学学报,2005,16(2):1-8
    张阿根,刘毅,龚士良.等国际地面沉降研究最新进展综述.上海地质.2000,76(04):1-7
    张风霜,薄万举,陈聚忠等.天津滨海新区地面沉降预测方法研究.上海地质,2010
    张宏仁.中国的淡水资源问题.地质环境与生态保护建设重大科学问题研讨会,大连,2003
    张兆吉等.华北平原地下水可持续利用调查评价.地质出版社,2009.5
    张家明,咚永贺.西安地裂缝与地貌成生关系研究.地质灾害与防治,1991,2(2):65-72
    张家明.西安地裂缝研究.西安:西北大学出版社,1990
    张廉钧.超采深层地下水引起地面沉降规律的探讨.华北水利水电学院学报,1999(6),20(2):39-43
    张蔚榛.地下水的合理开发利用在南水北调中的作用,南水北调与水利科技.2003,1(4):1-7
    张宗祜,李烈荣.中国地下水资源(河北卷).北京:中国地图出版社,2005a.48-50
    张宗祜,华北地下水可持续开发利用前景,国土资源大调查项目报告,2003
    张云.一维地面沉降模型及其求解.工程地质学报,2002.10(4):434-437
    郑礼全.逐步回归法在地下水开采中的应用.山东科技大学学报(自然科学版),2001,20(2):21-23
    郑铣鑫,武强,吴孟杰等.地面沉降研究现状与展望.全国地面沉降学术研讨会论文集,2002,448-457
    郑铣鑫,武强,应玉飞等.21世纪我国沿海地区地面沉降防治问题.科技导报,2002(09):47-50
    郑铣鑫.沿海地区城市发展与地面沉降的系统控制.海洋地质与第四系地质,1992年,12(1):57-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700