鄂尔多斯高原海流兔河地下水和地表水交互作用关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水和地表水交互作用关系是水文研究的热点领域,本论文在鄂尔多斯高原选择海流兔河开展地下水和地表水交互作用研究。首先运用Pettitt、CUSUM和RSI等统计检验方法对海流兔河水文情势变化和主要气象要素如降水、蒸发、气温以及耕地面积进行了分析。海流兔河流量可以分为1957-1967,1968-1985,1986-1991,1992-2000,和2001-2007五个阶段,从年均流量、最大流量、最小流量、流量变化幅度、周期性和流量历时曲线等方面对各个阶段进行了详细的分析,第一个阶段为近似自然状态,第二个阶段到第四个阶段由于受到水利工程建设和用水的影响,流量逐步下降,直到第五个阶段由于土地开发利用政策的变化河道流量部分恢复。经进一步分析,海流兔河水文情势变化的主要原因不是气候变化,而是受土地开发政策影响。
     在海流兔河支流补浪河上建立一系列地下水水位观测孔,测量河水流量的测流堰、自动雨量计、在河床中不同深度埋设温度自计仪等设备进行了一年的水位、温度、降水和流量观测。采用水力学法、温度研究法定性分析了补浪河子流域地下水和地表水交互作用关系;采用水化学和同位素法对降水时地下水和地表水相互作用进行研究,降水时河水中74.8%来自于地下水的排泄,只有25.4%的河水流量是由降水径流产生的,观测期一年的补浪河水中有96.5%来自于地下水的排泄;提出了一种利用电导率沿程变化的结合质量平衡估算地下水沿河道渗流量的新方法,经研究分析,虽然河水流量是从均一的砂层含水层渗流而出,地下水沿程渗流量仍然表现出空间分布的差异。补浪河子流域的地下水沿河道渗流量约为10.84m3/m/d,该方法适用于半干旱区以地下水排泄为主的河流,具有简便易行,受测量误差影响较小的特点。
Identification and quantification of groundwater and surface-water interactions have beenmore important in the field of hydrology. This paper examines the flow regime shifts, changes inthe climatic variables such as precipitation, evaporation, temperature, and crop area in the semi-arid Hailiutu catchment in the middle section of the Yellow River by performing severalstatistical analyses. The Pettitt test, cumulative sum charts (CUSUM), regime shift index (RSI)method, and harmonic analysis were carried out on annual, monthly, and daily discharges.Characteristics of the flow regime were analyzed in the five periods:1957-1967,1968-1985,1986-1991,1992-2000, and2001-2007. From1957to1967, the flow regime reflects quasinatural conditions of the high variability and larger amplitude of6months periodic fluctuations.The river peak flow was reduced by the construction of two reservoirs in the period1968-1985.In the period of1986-1991, the river discharge further decreased due to the combined influenceof river diversions and increase of groundwater extractions for irrigation. In the fourth period of1992-2000, the river discharge reached lowest flow and variation in corresponding to a largeincrease in crop area. The flow regime recovered, but not yet to natural status in the fifth periodof2001-2007. Climatic factors are found not likely responsible for the changes in the flowregime, but the changes in the flow regime are corresponding well to historical land use policychanges.
     Multiple field measurements were taken in the semi-arid Bulang sub-catchment, part ofthe Hailiutu River basin, to identify and quantify groundwater and surface-water interactions. Aset of instruments such as divers in monitoring wells, temperature sensors at different depths inriverbed, raingage, river stage recorder in front of one weir were installed. The hydraulicsmethod and temperature method were employed for indentifying the interactions betweengroundwater and surfacewater. Hydrochemial and isotopic method was used for quantifying theinteractions during rainfall event. Measurements of groundwater levels at several monitoringwells and stream stages in the bulanghe river for a one-year investigation period indicatecontinuous groundwater discharge to the river. Temperature measurements of stream water,streambed deposits at different depths, and groundwater confirm the upward flow ofgroundwater to the stream during all seasons. Results of a tracer-based hydrograph separationexercise reveal that, even during heavy rainfall events, groundwater contributes much more tothe increased stream discharge than direct surface runoff. The groundwater discharge occupied74.8%of total discharge while the runoff took25.2%, respectively. The baseflow index is0.965,which means almost96.5%of the river water came from the groundwater discharge. Spatially-distributed groundwater seepage along the stream was estimated using mass balance equationswith electrical conductivity measurements during a constant salt injection experiment. Calculatedgroundwater seepage rates showed surprisingly large spatial variations for a relativelyhomogeneous sandy aquifer. The estimated average groundwater seepage is10.84m3/m/d. Thecombined method for estimating groundwater seepage has comparably less uncertainty and cost,which is suitable for the gaining reach in semi aird region.
引文
Anderson JK., Wondzell SM., Gooseff MN., et al.,:Patterns in stream longitudinal profiles andimplications for hyporheic exchange flow at the HJ Andrews Experimental Forest, Oregon, USA. HydrologicalProcesses,2005,19:2931-2949.
    Anderson, M. P.: Heat as a ground water tracer, Ground Water,2005,43,951-968.
    Arnell, N. and Reynard, N.: The effects of climate change due to global warming on river flows in GreatBritain, Journal of Hydrology,1996,183,397-424.
    Ayenew T, Kebede S, Alemyahu T.: Environmental isotopes and hydrochemical study applied to surfacewater and groundwater interaction in the Awash River basin. Hydrological Processes,2008,22:1548-1563.
    Bewket W., and Sterk G.: Dynamics in land cover and its effect on stream flow in the Chemogawatershed, Blue Nile basin, Ethiopia, Hydrological Processes,2005,19,445-458.
    Brodie R., Sundaram B., Tottenham R., et al.,:An Overview of Tools for Assessing Groundwater-Surface Water Connectivity: Bureau of Rural Sciences, Canberra.2007.
    Buttle J.,:Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins.Progress in Physical Geography,1994,18:16-41.
    Cey EE, Rudolph DL, Parkin GW, et al.,: Quantifying groundwater discharge to a small perennialstream in southern Ontario, Canada. Journal of Hydrology,1998,210:21-37.
    Chen, X.H.:Measurement of streambed hydraulic conductivity and its anisotropy. EnvironmentalGeology,2000,39(12),1317-1324.
    Chen X.:Streambed hydraulic conductivity for rivers in south-central nebraska. Journal of the AmericanWater Resources Association,2004,40(3):561-573.
    Chen Y., Takeuchi K., Xu C. C., et al.,:Regional climate change and its effects on river runoff in theTarim Basin, China, Hydrological. Processes,2006,20,2207–2216.
    Chiew F. H. S., and McMahon T. A.: Modelling the impacts of climate change on Australian streamflow,Hydrological Processes,2002,16,1235-1245.
    Christensen N. S., Wood A. W., Voisin N., et al.,: The effects of climate change on the hydrology andwater resources of the Colorado River basin, Climatic change,2004,62,337-363.
    Cognard-Plancq A. L., Marc V., Didon-Lescot J. F., et al.,: The role of forest cover on streamflow downsub-Mediterranean mountain watersheds: a modelling approach, Journal of Hydrology,2001,254,229-243.
    Conant B.: Delineating and quantifying ground water discharge zones using streambed temperatures.Groundwater,2004,42:243-257.
    Constantz J.: Heat as a tracer to determine streambed water exchanges, Water Resources Research.2008,44, W00D10.
    Costa M.H., Botta A., and Cardille J.A.: Effects of large-scale changes in land cover on the discharge ofthe Tocantins River, Southeastern Amazonia, Journal of Hydrology.2003,283,206–217.
    Dahmen, E. and Hall, M. J.: Screening of hydrological data: testsfor stationarity and relative consistency,49, International Institute for Land Reclamation and Improvement,1990.
    Didszun J., Uhlenbrook S.:Scaling of dominant runoff generation processes: Nested catchmentsapproach using multiple tracers. Water resources research,2008,44(2).
    Drogue G., Pfister L., Leviandier T., et al.,: Simulating the spatio-temporal variability of streamflowresponse to climate change scenarios in a mesoscale basin, Journal of Hydrology,2004,293,255-269.
    Dou L., Huang M., Hong Y.:Statistical assessment of the impact of conservation measures onstreamflow responses in a watershed of the Loess Plateau, China. Water resources management,2009,23(10):1935-1949.
    Eckhardt K.:A comparison of baseflow indices, which were calculated with seven different baseflowseparation methods. Journal of Hydrology,2008,352,168-173.
    Eckhardt K., and Ulbrich, U.: Potential impacts of climate change on groundwater recharge andstreamflow in a central European low mountain range, Journal of Hydrology,2003,284,244-252.
    Fohrer N., Haverkamp S., Eckhardt K., et al.,: Hydrologic response to land use changes on thecatchment scale, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,2001,26,577-582.
    Fu G.B., Charles S.P., Viney R.N., et al.,: Impacts of climate variability on stream flow in the YellowRiver, Hydrological Processes.2007,21,3431–3439.
    HALL M.J.: Statistics and Sthochastic Processes in Hydrology, Lectures Notes HH296/02/1. IHE, Delft,The Netherlands,2002.
    He Y.Q., Pu T., Li Z.X., et al.,: Climate change and its effect on annual runoff in Lijiang Basin-Mt.Yulong Region, China, Journal of Earth Science,2010,21,137–147.
    Ge Y, Boufade.:Solute transport in multiple-reach experiments: Evaluation of parameters and reliabilityof prediction. Journal of Hydrology,2006,323:106-119
    Gellens D., and Roulin E.: Streamflow response of Belgian catchments to IPCC climate changescenarios, Journal of Hydrology,1998,210,242-258.
    Giraud E.P., Ne′grel P., Gourcy L., et al.,: Geochemical and isotopic constraints on groundwateresurfacewater interactions in a highly anthropized site. The Wolfen/Bitterfeld mega site (Mulde subcatchment,Germany). Environmental Pollution,2007,148(707-717).
    Guo H., Hu Q., and Jiang T.: Annual and seasonal streamflow responses to climate and land-coverchanges in the Poyang Lake basin, China. Journal of Hydrology,2008,355,106-122.
    Hatch CE., Fischer AT., Ruehl CR., et al.,:Spatial and temporal variations in streambed hydraulicconductivity quantified with time-series thermal methods. Journal of Hydrology,2010389:276-288
    Hongve D.: A revised procedure for discharge measurement by means of the salt dilution method,Hydrological Process,1987,1,267-270.
    Hu Y., Maskey S., Uhlenbrook S., et al.,: Streamflow trends and climate linkages in the source region ofthe Yellow River, China, Hydrological Processes.2011,25,1099–1085.
    Hunt R.J., and Steuer J.J.: Simulation of the recharge area for Frederick Springs, Dane County,Wisconsin. U.S. Geological Survey: Water-Resources Investigations Report00-4172,33p,2000.
    Hvorslev M.J.:Time lag and soil permeability in groundwater observations. Vicksburg, Mississippi:Waterways Experiment Station, Corps of Engineers, US Army.1951.
    Jha M., Pan Z., Takle E.S., et al.,: Impacts of climate change on streamflow in the Upper MississippiRiver Basin: A regional climate model perspective, Journal of Geophysical Research,2004,109, D09105,doi:10.1029/2003JD003686.
    Jolly I.D., McEwan K.L., and Holland K.L.:A review of groundwater–surface water interactions inarid/semi-aird wetlands and the consequences of salinity for wetland ecology. journal of Ecohydrology,2008,1,43-58.
    Kalbus E., Reinstorf F., and Schirmer M.:Measuring methods for groundwater--surface waterinteractions: a review. Hydrology&Earth System Sciences,2006,10(6).
    Kendall C., and Caldwell E.A.:Fundamentals of Isotope Geochemistry. In C. a. M. Kendall, J. J.(Ed.),:Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier Science.1998
    Kirchner JW.:A double paradox in catchment hydrology and geochemistry. Hydrological Processes,2003,17:871-874.
    Krein A., De Sutter R.: Use of artificial flood events to demonstrate the invalidity of simple mixingmodels. Hydrological Sciences Journal,2001,46:611-622.
    Landon MK., Rus DL., Harvey FE.: Comparison of instream methods for measuring hydraulicconductivity in sandy streambeds. Ground Water,2001,39:870-885.
    Langhoff JH., Rasmussen KR., and Christensen S.:Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. Journal of Hydrology,2006,320:342-358.
    Lavers D., Prudhomme C., and Hannah D.M.: Large-scale climate, precipitation and British river flows:Identifying hydroclimatological connections and dynamics, Journal of Hydrology,2010,395,242–255.
    Leibundgut C., and Maloszewski P., and Külls C.: Tracers in Hydrology: Wiley Ltd.2009.
    Lerner DN., Issar AS., and Simmers I.: Groundwater recharge, a guide to understanding and estimatingnatural recharge. International Association of Hydrogeologists, Kenilworth.1990.
    Lewandowski J., Angermann L., Nützmann G., et al.,:A heat pulse technique for the determination ofsmall‐s caleflow directions and flow velocities in the streambed of sand‐bed streams. HydrologicalProcesses,2011,25:3244-3255.
    Li L.J., Zhang L., Wang H., et al.,: Assessing the impact of climate variability and human activities onstreamflow from the Wuding River basin in China, Hydrological Processes,2007,21,3485–3491.
    Moore R.:Introduction to salt dilution gauging for streamflow measurement Part2: Constant-rateinjection. Streamline Watershed Management Bulletin,2004,8:11-15.
    Love D., Uhlenbrook S., Twomlow S., et al.,: Changing hydroclimatic and discharge patterns in thenorthern Limpopo Basin, Zimbabwe. Water SA,2010,36(3):335-350.
    McDonnell J., Bonell M., Stewart M., et al.,: Deuterium variations in storm rainfall: Implications forstream hydrograph separation. Water resources research,1990,26:455-458
    Magilligan F.J. and Nislow K.H.: Changes in hydrologic regime by dams, Geomorphology,2005,71,61–78.
    Maheshwari B., Walker K. F., and McMahon T.: Effects of regulation on the flow regime of the RiverMurray, Australia, Regulated Rivers: Research&Management,1995,10,15–38.
    Marimuthu S., Reynolds D., and La Salle C.: A field study of hydraulic, geochemical and stable isotoperelationships in a coastal wetlands system. Journal of Hydrology,2005,315:93-116
    Markstrom S.L., Niswonger R.G., Regan R.S., et al.,: GSFLOW—Coupled ground-water based on theintegration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-water FlowModel (MODFLOW-2005), pp.240: U.S. Geological Survey Techniques and Methods6-D1.2008.
    Masih I., Uhlenbrook S., Maske, S., et al.,:Streamflow trends and climate linkages in the ZagrosMountains, Iran, Climatic Change,2011,104,317–338, DOI10.1007/s10584-009-9793-x.
    Matheussen B., Kirschbaum R.L., Goodman I.A., et al.,: Effects of land cover change on streamflow inthe interior Columbia River Basin (USA and Canada), Hydrological Processes,2000,14,867-885.
    Middelkoop H., Daamen K., Gellens D., et al.,: Impact of Climate Change on Hydrological Regimesand Water Resources Management in the Rhine Basin, Climatic Change,2001,49,105-128,10.1023/a:1010784727448.
    MODHMS: a comprehensive MODFLOW based hydrologic modeling system, Version3.0:HydroGeoLogic Inc,2006.
    Mook W.G.:Environmental Isotopes in the Hydrological Cycle-Principles and Applications.: UNESCO-IAEA. IHP Publications.2001.
    Mook W.G.: Introduction to Isotope Hydrology Stable and Radioactive Isotopes of Hydrogen, Oxygenand Carbon, International contributions to hydrogeology25: UNESCO-IAEA Publications.2006
    Mul M.L., Mutiibwa R.K., Uhlenbrook S., et al.,: Hydrograph separation using hydrochemical tracers inthe Makanya catchment, Tanzania,. Physics and Chemistry of the Earth,2008,33,151-156.
    Neff R., Chang H., Knight C. G., et al.,: Impact of climate variation and change on Mid-Atlantic Regionhydrology and water resources, Climate Research,2000,14,207-218,.
    Nishikawa T., Izbicki J.A., Hevesi J.A., et al.,: Evaluation of geohydrologic framework, rechargeestimates, and ground-water flow of the Joshua Tree area, San Bernardino County, California: U.S. GeologicalSurvey Scientific Investigations Report2004-5267.2005.
    Ocampo C.J., Sivapalan M., and Oldham C.: Hydrological connectivity of upland-riparian zones inagricultural catchments: Implications for runoff generation and nitrate transport,. Journal of Hydrology,2006.331,643-658.
    Okkonen J., Kl ve B.:Assessment of temporal and spatial variation in chemical composition ofgroundwater in an unconfined esker aquifer in the cold temperate climate of Northern Finland. Cold RegionsScience and Technology,2012,71:118-128.
    Oxtobee J., Novakowski K.:A field investigation of groundwater/surface water interaction in a fracturedbedrock environment. Journal of Hydrology,2002,269:169-193.
    Paulsen RJ., Smith CF., O'Rourke D., et al.,:Development and evaluation of an ultrasonic ground waterseepage meter. Ground water,2001,39:904-911.
    Payn R.A., Gooseff M.N., McGlynn B.L., et al.,: Channel water balance and exchange with subsurfaceflow along a mountain headwater stream in Montana, United States. Water resources research.2009,45(11).
    Pettitt A.: A non-parametric approach to the change-point problem, Journal of the Royal StatisticalSociety. Series C (Applied Statistics),1979,28,126–135.
    Poff N.L.R., Bledsoe B.P., and Cuhaciyan, C.O.: Hydrologic variation with land use across thecontiguous United States: geomorphic and ecological consequences for stream ecosystems, Geomorphology,2006,79,264–285.
    Rautio A., Korkka-Niemi K.:Characterization of groundwater-lake water interactions at Pyhajarvi, alake in SW Finland. Boreal environment research,2011,16:363-380.
    Rientjes THM., Haile AT., Kebede E., et al., Changes in land cover, rainfall and stream flow in UpperGilgel Abbay catchment, Blue Nile basin--Ethiopia. Hydrology&Earth System Sciences,2011,15(6).
    Rodgers P., Soulsby C., Petry J., et al.,:Groundwater–surface‐water interactions in a braided river: atracer‐based assessment. Hydrological Processes,2004,18:1315-1332
    Rodionov S.N., and Overland J.E.: Application of a sequential regime shift detection method to theBering Sea ecosystem, ICES Journal of Marine Science: Journal du Conseil,2005,62,1054–3139.
    Rodionov S.N.: A sequential algorithm for testing climate regime shifts, Geophysics Research Letter,2004,31,9204, doi:10.1029/2004GL019448.
    Rodionov S.N.: A brief overview of the regime shift detection methods Large-Scale Disturbances(Regime Shifts) and Recovery in Aquatic Ecosystems: Challenges for Management Toward Sustainabilityed. V Velikova and N Chipev,2005.
    Rosenberry DO., LaBaugh JW.: Field techniques for estimating water fluxes between surface water andground water Techniques and Methods,128pp, U.S. Geological Survey, Denver.2008.
    Rosenberry DO., Morin RH.:Use of an electromagnetic seepage meter to investigate temporalvariability in lake seepage. Ground water,2004,42:68-77.
    Rosenberry DO., Pitlick J.: Local-scale spatial and temporal variability of seepage in a shallow gravel-bed river. Hydrological Processes,2009,23:3306-3318.
    Ruehl C., Fisher A., Hatch C., et al.,: Differential gauging and tracer tests resolve seepage fluxes in astrongly-losing stream. Journal of Hydrology,2006,330:235-248.
    Rus DL., McGuire VL., Zurbuchen BR., et al., Vertical profiles of streambed hydraulic conductivitydetermined using slug tests in central and western Nebraska.2001.
    Said A., Stevens O.K., and Sehlke G.: Estimating water budget in a regional aquifer using HSFP-MODFLOW integrated model. Journal of the American Water Resources Association,2005,41(1),55-66.
    Saenger N., Kitanidis PK., Street RL.: A numerical study of surface‐subsurface exchange processes ata riffle‐p ool pair in the Lahn River, Germany. Water resources research,2005,41(12).
    Schmidt C., Bayer-Raich M., and Schirmer, M.: Characterization of spatial heterogeneity ofgroundwater-stream water interactions using multiple depth streambed temperature measurements at the reachscale, Hydrol Earth Syst Sc,2006,10,849-856.
    Sloto, R.A., and Crouse, M.Y.,1996, HYSEP: A computer program for streamflow hydrographseparation and analysis: U.S. Geological Survey Water-Resources Investigations Report96-4040,46p.
    Sklash MG., Farvolden RN.:The role of groundwater in storm runoff. Journal of Hydrology,1979,43:45-65.
    Sophocleous M.:Interaction between groundwater and surface water: the state of the science.Hydrogeology Journal,2002.10,52-67.
    Sophocleous M., Perkins SP.: Methodology and application of combined watershed and ground-watermodels in Kansas. Journal of Hydrology,2000,236(3):185-201.
    Spanoudaki K., Stamou A.I., and Nanou-Giannarou, A.: Development and verification of a3-Dintegrated surface water-groundwater model. Journal of Hydrology,2009.375,410-427.
    Steele-Dunne S., Lynch P., McGrath R., S et al.,: The impacts of climate change on hydrology in Ireland,Journal of Hydrology,2008,356,28-45.
    Swain ED., Wexler EJ.: A coupled surface-water and ground-water flow model (MODBRANCH) forsimulation of stream-aquifer interaction. US Government Printing Office,1996.
    Taylor W.A.: Change-point analysis: A powerful new tool for detecting changes, preprint, available athttp://www.variation.com/cpa/tech/changepoint.html,2000a,2011.03.10.
    Taylor W.A.: Change-Point Analyzer2.3software package, Taylor Enterprises, Libertyville, Illinois.available at http://www.variation.com/cpa/index.html,2000b,2011.03.10
    Thodsen H.: The influence of climate change on stream flow in Danish rivers, J. Hydrol.2007,333,226–238.
    Timilsena J., Piechota T., Tootle G., et al.,: Associations of interdecadal/interannual climate variabilityand long-term colorado river basin streamflow, Journal of Hydrology,2009,365,289-301.
    Tu M.: Assessment of the effects of climate variability and land use change on the hydrology of theMeuse river basin, PhD thesis. UNESCO-IHE Institute for Water Education, Delft/Vrije Universiteit,Amsterdam, the Netherlands,177,2006.
    Uhlenbrook S., Frey M., Leibundgut C., et al.,: Hydrograph separations in a mesoscale mountainousbasin at event and seasonal timescales. Water resources research,2002,38(6)1-14.
    Uhlenbrook S., and Hoeg S.: Quantifying uncertainties in tracer‐based hydrograph separations: a casestudy for two‐, three‐and five‐component hydrograph separations in a mountainous catchment.Hydrological Processes,2003,17:431-453.
    Van der Velde Y., De Rooij GH., Torfs P.: Catchment-scale non-linear groundwater-surface waterinteractions in densely drained lowland catchments. Hydrology&Earth System Sciences Discussions,2009,6(3).
    Vogt T., Schneider P., Hahn-Woernle L., et al.,: Estimation of seepage rates in a losing stream by meansof fiber-optic high-resolution vertical temperature profiling. Journal of Hydrology,2010,380:154-164.
    Wang Y., Ma T., Luo Z.: Geostatistical and geochemical analysis of surface water leakage intogroundwater on a regional scale: a case study in the Liulin karst system, northwestern China. Journal ofHydrology,2001,246:223-234.
    Wagner BJ., Harvey JW.: Analysing the capabilities and limitations of tracer tests in stream-aquifersystems[C]//Impact of Human Activity on Groundwater Dynamics: Proceedings of an InternationalSymposium (Symposium S3) Held During the Sixth Scientific Assembly of the International Association ofHydrological Sciences (IAHS) at Maastricht, The Netherlands, from18to27July2001. International Assn ofHydrological Sciences,2001(269):191.
    Weeks EP.:The Lisse effect revisited. Groundwater,2002,40(6):652-656.
    Wels C., Cornett RJ., Lazerte BD.: Hydrograph separation: A comparison of geochemical and isotopictracers. Journal of Hydrology,1991,122:253-274.
    Westhoff MC, Savenije HHG, Luxemburg WM, et al.,: A distributed stream temperature model usinghigh resolution temperature observations. Hydrology&Earth System Sciences,2007,11(4).
    Wenninger J., Uhlenbrook S., Tilch N., et al.,: Experimental evidence of fast groundwater responses in ahillslope/floodplain area in the Black Forest Mountains, Germany. Hydrological Processes,2004,18(17):3305-3322.
    Wenninger J., Uhlenbrook S., Lorentz S, et al.,:Identification of runoff generation processes usingcombined hydrometric, tracer and geophysical methods in a headwater catchment in SouthAfrica/Identification. Hydrological sciences journal,2008,53:65-80.
    Winter T.C., Judson W.H., Franke O.L., et al.,: Groundwater and surface water a single resource: U.S.Geological Survey Circular1139,1998.
    Wolfe B.B., Hall R.I., Edwards T.W.D., et al.,: Climate-driven shifts in quantity and seasonality of riverdischarge over the past1000years from the hydrographic apex of North America, Geophys. Res. Lett.2008,35, L24402, doi:10.1029/2008GL036125.
    Wriedt G., Spindler J., Neef T., et al.,: Groundwater dynamics and channel activity as major controls ofin-stream nitrate concentrations in a lowland catchment system? journal of Hydrology,2007.343,154-268.
    Wright C.E.: Surface water and groundwater interaction: a contribution to the InternationalHydrological Programme. In Unesco Studies and Reports in Hydrology,1980, pp.123.
    Xu J.: Variation in annual runoff of the Wudinghe River as influenced by climate change and humanactivity. Quaternary International,2011,244(2):230-237.
    Yan Y., Yang Z., Liu Q., et al.,: Assessing effects of dam operation on flow regimes in the lower YellowRiver, Procedia Environmental Sciences,2010,2,507–516.
    Yang T., Zhang Q., Chen Y. D., et al.,:A spatial assessment of hydrologic alteration caused by damconstruction in the middle and lower Yellow River, China, Hydrological Processes,2008,22,3829–3843.
    Zhang Y.K., and Schilling K.: Increasing streamflow and baseflow in Mississippi River since the1940s:Effect of land use change, Journal of Hydrology,2006,324,412-422.
    Zhao FF., Xu ZX., Zhang L., et al. Streamflow response to climate variability and human activities inthe upper catchment of the Yellow River Basin. Science in China Series E: Technological Sciences,2009,52(11):3249-3256.
    Zhou Y.: Sampling frequency for monitoring the actual state of groundwater systems, Journal ofHydrology.,1996,180,301–318.
    毕于运,郑振源.建国以来中国实有耕地面积增减变化分析.资源科学,2000,22(2):8-12.
    董林垚,陈建耀,谢丽纯,等.基于温度和电导的地下水-海水交互作用研究.热带地理,2010,30(6):597-602.
    范伟,章光新,李然然.湿地地表水—地下水交互作用的研究综述.地球科学进展,2012,27(4):413-423.
    葛晓光,小流域地下径流解析模型及其应用:[博士学位论文],北京,中国地质大学(北京),2008
    侯光才,林学钰,苏小四,等.鄂尔多斯白垩系盆地地下水系统研究.吉林大学学报:地球科学版,2006,36(3):391-398.
    胡立堂.干旱内陆河地区地表水和地下水集成模型及应用.水利学报,2008,39(4):410-418.
    高鹏,穆兴民,李锐,等.黄河支流无定河水沙变化趋势及其驱动因素.泥沙研究,2009,5:22-28.
    栗大海,吕复扬.灌木林在榆林退耕还林模式配置中的作用及经济利用.陕西林业,2004(4):13-13.
    李彦彬,徐建新,黄强.灌区地表水和地下水联合调度模型研究.沈阳农业大学学报,2007,37(6):884-889.
    孟庆伟,刘继朝,苗长军,等.豫北平原地下水与地表水联合调度初探.地下水,2005,26(4):232-235.
    莫兴国,林忠辉,刘苏峡.气候变化对无定河流域生态水文过程的影响.生态学报,2008,27(12):4999-5007.
    聂振龙,陈宗宇,程旭学,等.黑河干流浅层地下水与地表水相互转化的水化学特征.吉林大学学报:地球科学版,2005,35(1):48-53.
    水利部,《水利部关于印发《深化水务管理体制改革指导意见》的通知》水资源司【2005】49号文,2005。
    邵景力,崔亚莉,李慈君.包头市地下水-地表水联合调度多目标管理模型.资源科学,2003,25(4):49-55.
    滕彦国,左锐,王金生.地表水-地下水的交错带及其生态功能.地球与环境,2007,35(1):1-8.
    宋献方,刘鑫,夏军,等.基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究.应用基础与工程科学学报,2009,17(1):8-20.
    潘俊,冷特,常玉辉,等.平原型水库地表水-地下水交互带特性研究——以石佛寺水库工程为例.沈阳建筑大学学报(自然科学版,2013,29(6).
    齐学斌,庞鸿宾,赵辉,等.地表水地下水联合调度研究现状及其发展趋势.水科学进展,1999,10(1).
    王德潜,刘祖植,尹立河.鄂尔多斯盆地水文地质特征及地下水系统分析.第四纪研究,2005,25(1).
    王蕾,倪广恒,胡和平.沁河流域地表水与地下水转换的模拟.清华大学学报(自然科学版),2006,46(12):1978-1981.
    王磊,章光新.扎龙湿地地表水与浅层地下水的水文化学联系研究.湿地科学,2007,5(2):166-173.
    王玲,夏军,张学成.无定河20世纪90年代入黄水量减少成因分析.应用基础与工程科学学报,2007,14(4):463-469.
    王蕊,王中根,夏军.地表水和地下水耦合模型研究进展.地理科学进展,2008,27(4):37-41.
    王华书,徐翔.解析中国“菜篮子”经济.生态经济,2002,7:17-17.
    王中根,朱新军,李尉,等.海河流域地表水与地下水耦合模拟.地理科学进展,2011,30(11):1345-1353.
    魏晓妹,康绍忠,粟晓玲,等.石羊河流域绿洲农业发展对地表水与地下水转化关系的影响.农业工程学报,2005,21(5):38-41.
    徐华山,赵同谦,孟红旗,等.河岸带地下水理化指标变化及与洪水的响应关系研究.环境科学,2011,32(3):632-640.
    夏军,孙雪涛,谈戈.中国西部流域水循环研究进展与展望.地球科学进展,2003,18(1):58-67.
    夏军,刘春蓁,任国玉.气候变化对我国水资源影响研究面临的机遇与挑战.地球科学进展,2011,26(1):1-12.
    肖长来,张力春,方樟,贾涛:洮儿河扇形地地表水与地下水资源的转化关系,吉林大学学报:地球科学版,2006,36,234-239,
    谢新民,颜勇.浅析西北地区地表水与地下水之间的相互转化关系.水利水电科技进展,2003,23(1):8-10.
    杨丽丽,王云霞,谢新民,等.基于地表水和地下水联合调控的水资源配置模型研究.水电能源科学,2011(7).
    杨淇越,吴锦奎,丁永建,等.锡林河流域地表水和浅层地下水的稳定同位素研究.冰川冻土,2009(5):850-856.
    杨永梅.毛乌素沙地沙漠化驱动因素的研究:[博士学位论文]陕西杨陵:西北农林科技大学,2007.
    杨新,延军平,刘宝元.无定河年径流量变化特征及人为驱动力分析.地球科学进展,2005,20(6):637-642.
    尹立河,陶正平,黄金廷等,《鄂尔多斯盆北部地下水循环与合理开发利用研究》,中国地质调查局西安地质调查中心,150pp.2009
    张济世,康尔泗,蓝永超,等.河西内陆河地表水与地下水转化及水资源利用率研究.冰川冻土,2001,23(4):375-382.
    张金鑫,穆兴民,王飞,等.榆林市耕地资源与粮食安全研究.水土保持研究,2009,16(2):160-164.
    张应华,仵彦卿,丁建强,等.运用氧稳定同位素研究黑河中游盆地地下水与河水转化.冰川冻土,2005,1.
    周园园,师长兴,杜俊,等.无定河流域1956-2009年径流量变化及其影响因素,自然资源学报,2012,5,856-865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700