等离子体改性聚乙烯浸润性的老化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用射频容性耦合氧等离子体对聚乙烯(PE)表面进行改性,对其润湿性能的老化过程进行研究。等离子体改性PE样品前后的润湿性能,化学成分和表面形貌分别通过静态接触角,衰减全反射-Fourier变换红外光谱(ATR-FTIR),X射线光电子能谱(XPS),扫描电子显微镜(SEM)和三维表面轮廓仪表征。
     25 W射频容性耦合氧等离子体处理聚乙烯表面,在30℃空气中的老化过程具有疏水性回复特征,老化后样品仍保持了亲水性的改性效果,改性样品三维形貌较原始表面没有发生明显变化,表面成分分析表明,弱氧等离子体的刻蚀作用和氧化作用导致聚乙烯表面的胺类抗氧化剂和碳酸钙填充微粒减少,含氧官能团增加,引起亲水性的改善。200 W射频容性耦合氧等离子体处理聚乙烯表面,在30℃空气中老化过程表现了疏水性过回复过程。表面形貌和表面成分分析表明,高密度强氧等离子体的刻蚀作用和氧化作用不仅导致了聚乙烯表面胺类抗氧化剂和碳酸钙填充微粒减少,表面粗糙度增加,生成了均一的具有纳米级岛状和微米级沟壑状的微纳米结构特征三维形貌,尽管经历了老化过程,表面仍然保留大量的含氧官能团。200W 5min射频容性耦合氧等离子体处理聚乙烯,经过5hr老化后,获得了具有高水粘附性的超疏水表面,当聚乙烯样品倾斜至88°时,水滴在样品表面不会发生滚动,即使将样品翻转至180°时,水滴仍然不会滴落。老化后表面能的降低使具有微纳结构的聚乙烯表面展现了超疏水性,表面含氧官能团对水滴的吸引作用产生了强的粘附性效果。
     老化温度对射频容性耦合氧等离子体改性聚乙烯表面的老化过程具有显著的影响。200W 5 min射频氧等离子体处理的聚乙烯表面在20℃下展现了疏水性过回复过程,5hr后表现了高于原始聚乙烯表面的疏水性。当老化温度升高到60℃时,聚乙烯表面经过快速的疏水性过回复过程,1hr后展现了超疏水性,老化温度进一步升高至90℃,0.5hr老化后聚乙烯表面就具有超疏水性。200W 1min射频容性耦合氧等离子体处理的聚乙烯样品也表现出接触角随老化温度的升高而提高。200W 10min射频容性耦合氧等离子体处理的聚乙烯表面在20℃、60℃和90℃下,都展现了疏水性过回复过程,20℃时老化5 hr后转变为超疏水性表面,60℃和90℃时,0.5 hr老化后聚乙烯表面呈现超疏水性。
Polyethylene(PE). samples were modified by oxygen radio frequency(RF) capacitively coupled plasma(CCP), and the aging behavior of their wettability were researched. Surface morphology, composition, and wettability of the plasma modified PE samples were characterized by static contact angle, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and 3D profile, respectively. After 5 hours of aging, the PE samples modified by 25 W for 5 minutes exhibited a slightly hydrophilic loss. The macroscopic surface morphology of the post-aged PE samples preserved no obvious change compared with that of the original samples, but the micro-structures and composition of the surfaces changed such that the calcium carbonate filler particles decreased and micro-ravines developed on the modified surfaces.
     A new aging effect on wettability was observed for the PE samples modified by CCP 200 W plasma for 5 minutes. The contact angle of the post-aged PE samples kept on increasing with the aging time, up to a superhydrophobic value of 150.5°for 5 hours. The surface morphology of the post-aged PE samples exhibited a remarkable change in surface roughness to a value of 187 nm. The 2D profiles showed the deep ravine-like etching trace on micrometer scale. The higher-density RF plasma texturing for a long time induced the formation of micro/nanostructure surface with micro-ravines and nano-islands on the PE samples. A lot of the oxygen-containing functional groups remained on the modified PE surfaces, although the aging processes aroused a hydrophobic recovery. The oxygen containing functional groups could induce the attractive force to water droplets and lead to the high adhesion on the post-aged PE surfaces.
     Aging temperature plays a significant role in the wettability of the post-aged PE samples. The aging process in air at the room temperature of 20℃induced the PE samples modified by CCP 200 W for 5 minutes to exhibit a hydrophobic over-recovery. The contact angle of the post-aged PE samples were higher than those of the original PE samples. The aging process in air at an aging temperature of 60℃showed a more remarkable change on wettability. The PE samples quickly turned superhydrophobic after only 1 hour of aging. When the aging temperature was 90℃, the PE samples showed superhydrophobic even in just 0.5 hr. The PE samples modified by CCP 200 W for 1 minute also exhibited a trend of the contact angle increasing with the higher aging temperature. The PE samples modified by CCP 200 W plasma for 10 minutes, after the aging processes in air at the aging temperatures of 20℃,60°C and 90℃, exhibited hydrophobic over-recovery, generally. Under an aging temperature of 20℃, the samples turned superhydrophobic after 5 hours of aging. When the aging temperature increased to 60℃and 90℃, respectively, the samples turned superhydrophobic after the same 0.5 hours of aging.
引文
[1]Xie Y, Sproule T, Li Y, Powwll H, Lannutti J J, Kniss D A. Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro [J].Journal of Biomedical Materials Research,2002,61(2): 234-245.
    [2]Park S, Bearinger J P, Lautenschlager E P, Castner D G, Healy K E. Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating[J].Journal of Biomedical Materials Research,2000, 53(5):568-576.
    [3]Forch R, Zhang Z H, Knoll W. Soft plasma treated surfaces:Tailoring of structure and properties for biomaterial applications[J].Plasma Processes and Polymers,2005,2(5):351-372.
    [4]Ademovic Z, Wei J, Winther-Jensen B, Hou X L, Kingshott P. Surface modification of PET films using pulsed AC plasma polymerisation aimed at preventing protein adsorption[J].Plasma Processes and Polymers,2005,2(1):53-63.
    [5]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [6]Steen M L, Jordan A C, Fisher E R. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment[J]. Journal of Membrane Science,2002,204(1-2):341-357.
    [7]Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification[J] Journal of Membrane Science,2001,188(1):97-114..
    [8]Yu H Y, Liu L Q, Tang Z Q, Yan M G, Gu J S, Wei X W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR:Air plasma treatment[J]. Journal of Membrane Science,2008,311(1-2):216-224.
    [9]Wang C X, Ren Y, Qiu Y P. Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics[J]. Surface and Coatings Technology,2007,202(1):77-83.
    [10]Cui N Y, Brown N M D. Modification of the surface properties of a polypropylene(PP) film using an air dielectric barrier discharge plasma[J].Applied Surface Science,2002,189(1-2):31-38.
    [11]Kou R Q, Xu Z K, Deng H T, Liu Z M, Seta P, Xu Y Y. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of alpha-allyl glucoside[J].Langmuir,2003,19(17):6869-6875.
    [12]I Inagaki N, Tasaka S, Masumoto M. Improved adhesion between kapton film and copper metal by plasma graft polymerization of vinylimidazole[J]:Macromolecules,1996,29(5):1642-1648.
    [13]Gupta B, Plummer C, Bisson I, Frey P, Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films:Characterization and human smooth muscle cell growth on grafted films[J].Biomaterials,2002,23(3):863-871.
    [14]Shoji A, Tsukada N, Kumar D S, Kashiwagi K. Plasma polymerization of manganese chloride tetraphenylporphyrin and evaluation of the thin film[J].Journal of Photopolymer Science and Technology,2007,20(2):241-244.
    [15]Sasai Y, Oikawa M, Kondo S I, Kuzuya M. Surface engineering of polymer sheet by plasma techniques and atom transfer radical polymerization for covalent immobilization of biomolecules[J].Journal of Photopolymer Science and Technology,2007,20(2):197-200.
    [16]Deilmann M, Theiss S, Awakowicz P. Pulsed microwave plasma polymerization of silicon oxide films:Application of efficient permeation barrier[J] Journal of the Electrochemical Society, 2008,155(5):43-48.
    [17]Gupta B, Hilborn J, Hollenstein C, Plummer C J G, Houriet R, Xanthopoulos N. Surface modification of polyester films by RF plasma[J].Journal of Applied Polymer Science,2000,78(5):1083-1091.
    [18]Jones D M, Smith J R, Huck W T S, Alexander C. Variable adhesion of micropatterned thermoresponsive polymer brushes:AFM investigations of poly (N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations[J].Advanced Materials,2002,14(16):1130-1134.
    [19]Mitchell C A, Bahr J L, Arepalli S, et al. Dispersion of functionalized carbon nanotubes in polystyrene[J].Macromolecules,2002,35(23):8825-8830.
    [20]Sanchis M R, Blanes V, Blanes M, Garciab D, Balart R. Surface modification of low density polyetheylene (LDPE) film by low pressure O2 plasma treatment[J].European Polymer Journal, 2006,42(7):1558-1568.
    [21]Gupta B, Hilborn J, Hollenstein CH, Plummer J G, Houriet R, Xanthopoulos N. Surface modification of polyestor films by RF plasma[J] Journal of Applied Polymer Science,2000,78(5):1083-1091.
    [22]Nakamatsu J, Delgado-Aparicio L F, Da Silva R, Soberon F. Ageing of plasma-treated poly(tetrafluoroethylene) surfaces[J].Journal of Adhesion Science and Technology,1999, 13(7):753-761.
    [23]Yun Y I, Kim K S, Uhm S J, Khatua B B, Cho B, Kim J K, Park C E. Aging behavior of oxygen plasma-treated polypropylene with different crystallinities[J].Journal of Adhesion Science and Technology,2004,18(11):1279-1291.
    [24]Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. Superhydrophobic surfaces:from structural control to functional application[J].Journal of Materials Chemistry,2008,18(6):621-633
    [25]Woodward L, Sehofield W C E, Roueoules V, Badyal J P Super-hydrophobic surfaces Produced by plasma fluorination of polybutadiene films [J].Langmuir,2003,19(8):3432-3438.
    [26]Morra M, Occhiello E, Garbassi F. Contact angle hysteresis in oxyen plasma treated poly(tetrafluoroethlene)[J].Langmuir,1989,5(3):873-876.
    [27]Ogawa K, Soga M, Takada Y, Nakayama I. Development of a transparent and ultrahydrophobic glass plate[J].Japanese Journal Applies Physics,1993,32(2):614-615.
    [28]Kim S H,Kim J H,Kang B K, Uhm H S. Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4-H2[J].Langmuir,2005,21(26):12213-12217.
    [29]Lu X Y, Zhang J L, Zhang C C, Han Y C. Low-density polyethylene (LDPE) surface with a wettabilitygradient by tuning its microstructures [J].Macromolecular Rapid Communications,2005, 26(8):637-642.
    [30]Vogelaar L, Lammertink R G H, Wssling M. Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Step [J].Langmuir,2006,22(7):3125-3130.
    [31]Zhang J, Li J, Han, Y. Superhydrophobic PTFE surfaces by extension[J].Macromolecular Rapid Communication,2004,25(11):1105-1108.
    [32]Bartell F E, Shepard J W. Surface roughness as related to hysterics of contact angle[J].Journal of Physical Chemistry,1953,57(2):211-215.
    [33]Lee W, Jin M K, Yoo W C, Lee J K. Nanostructuring of a Polymeric Substrate with Well-Defined Nano-Scale Topography and Tailored Surface Wettability[J].Langmuir,2004,20(18):7665-7669.
    [34]Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J].Advanced material.2005,17 (16):1977-1981.
    [35]Cho W K, Choi I S. Fabrication of hairy polymeric films inspired by geckos:Wetting and high adhesionproperties[J].Advanced Function Maters,2008,18(7):1089-1096.
    [36]Guo Z G, Liu W M. Sticky superhydrophobic surface[J].Applied Physics Letters,2007, 90(22):223111.
    [37]Yao Y H, Dong X, Hong S, Ge H L, Han C C. Shear-Controlled Micro/Nanometer-Scaled Super-Hydrophobic Surfaces with Tunable Sliding Angles from Single. Component Isotactic Poly(propylene) [J].Macro Rapid Commum,2006,27(19):1627-1632.
    [38]Lu Q H, Zhao Y, Chen D S, Wei Y. Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers[J].Journal of Materials Chemistry,2006,16(46):4504-4509.
    [39]Tsougeni K, Vourdas N, Tserepi A, Gogolides. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces:From stable surper hydrophilic to super hydrophobic surfaces[J].Langmuir, 2009,25(19):11748-11759

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700