碳纳米管修饰及其在电化学分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)化学修饰可提高其在溶剂中的溶解性,有利于其性能的发挥,进一步扩大其在实际中的应用。本论文采用聚合物及β-环糊精(β-CD)对单壁碳纳米管(SWCNTs)进行化学修饰,并将β-CD功能化的SWCNTs用于修饰玻碳电极(GCE),修饰后的GCE用来研究某些生物分子的电化学行为,并在此基础上建立它们的分析检测方法。
     聚合物共价修饰SWCNTs。通过混酸对SWCNTs氧化后与乙二醇反应得到羟基修饰的SWCNTs,然后再与丙烯酰氯反应,从而将可聚合双键基团引入到SWCNTs表面,得到乙烯基修饰的SWCNTs;接着以十二烷基苯磺酸钠(SDBS)为乳化剂,偶氮二异丁腈(AIBN)为引发剂,采用乳液聚合方法将聚甲基丙烯酸甲酯(PMMA)接枝到SWCNTs表面。详细研究了预乳化时间对表面接枝聚合物含量高低的影响。溶解度实验显示聚合物共价修饰后增强了SWCNTs在溶剂中的溶解性。采用红外光谱(FTIR)、拉曼光谱(Raman)、透射电子显微镜(TEM)对聚合物修饰的SWCNTs进行了结构分析。Raman测试结果表明聚合物共价接枝到SWCNTs表面,TEM分析结果表明聚合物存在于SWCNTs的侧壁和开口端。热失重分析(TGA)结果表明,在其它条件相同时,SWCNTs表面接枝聚合物含量随着预乳化时间的延长而增加。
     β-CD功能化SWCNTs修饰GCE及其在电化学中应用研究。先采用混酸氧化SWCNTs,表面产生的羧基进一步转化为酰氯,然后与氨基化的β-CD反应,从而在SWCNTs表面引入β-CD,并将β-CD共价键修饰的SWCNTs用于修饰GCE。以抗坏血酸(AA)、尿酸(UA)混合体系为研究对象,采用循环伏安(CA)法对AA、UA的电化学行为进行研究。具体考查了溶液pH值,扫描速率,底物浓度及干扰离子等实验条件改变对AA、UA电化学行为的影响。结果显示,相比较裸GCE,β-CD共价键修饰SWCNTs改性的GCE结合了SWCNTs优良的电化学催化性能及β-CD对某些客体化合物的包结能力,修饰电极具有较高的灵敏度。与β-CD非共价键分散SWCNTs修饰GCE相比,该方法可克服高浓度β-CD在CNTs表面形成膜阻碍电活性底物在电极表面扩散的缺点,提高分析电极的灵敏度,降低了电化学电位。
The current research involved covalent functionalization of single-wall carbon nanotubes (SWCNTs) and its application in the field of electrochemical analysis. The following two aspects were included.
     Covalent functionalization of SWCNTs with polymer was accomplished by emulsion polymerization using sodium dodecylbenzene sulfonate (SDBS) as emulsifying agent. The polymerizable vinyl groups were incoperated on SWCNTs surfaces by successive chemical reaction process, including oxidation, hydroxylation, and vinylation reactions. The as-prepared vinylated SWCNTs were then dispersed in water in the presence of SDBS, resulting in the exfoliation of SWCNT bundles into individual SWCNTs and formation of SWCNT micelles simultaneously. Subsequent addition of methyl methacrylate (MMA) resulted in its absorption into the formed SWCNT micelles due to the interactions between the monomer and the tube surface functionalities. Grafting copolymerization of MMA with vinyl groups on the SWCNT surface was thus performed in the micelles to produce poly(methyl methacrylate) (PMMA) functionalized SWCNTs. Thermogravimetric analysis (TGA) indicated that the average polymer content in the functionalized SWCNTs ranged from 42 wt% to 63 wt%, depending on the pre-emulsion time of monomer. Further characterization was accomplished by transmission electron microscopy (TEM), which was utilized to image SDBS exfoliated SWCNTs and polymer-functionalized SWCNTs.
     Carbon nanotubes have been increasingly used in electrochemical analysis because of their excellent electrical conductivity and good catalytic activity. A new electrochemical sensor combined with the excellent electrochemical properties of SWCNTs and the recognition ability ofβ-cyclodextrin (β-CD) to guest molecule was fabricated in this paper. Firstly,β-CD was covalently incorporated on the surface of SWCNTs through the reaction of carboxylic chloride groups on the SWCNTs surface with mono-6-(hexanediamino)-β-cyclodextrin (HDA-β-CD), resulting inβ-CD functionalized SWCNTs (SWCNT-β-CD). Subsequently, SWCNT-β-CD modified glassy-carbon electrode (GCE) was constructed by dropping SWCNT-β-CD suspension onto the GCE. The modified GCE was used to simultaneously determine the mixture of ascorbic acid (AA) and uric acid (UA). The electrochemical behaviors of AA and UA were investigated by cyclic voltammetry (CV). The results demonstrated that SWCNT-β-CD modified GCE could discriminately determine AA and UA with their respective oxidation peaks. An enhanced analytical performance was obtained compared with non-modified GCE.
引文
[1] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high young’s modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381:678-80.
    [2] Yu MF, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287:637-640.
    [3] Odom TW, Huang JL, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 391:62-64.
    [4] Ferrer-Anglada N, Gomis V, EI-Hachemi Z, et al. Carbon nanotube based composites for electronic applications: CNT-conducting polymers, CNT-Cu[J]. Phys. Status. Solidi. A., 2006, 203(6):1082-1087.
    [5] Bliznyuk V, Singamaneni S, Kattumenu R, et al. Surface electrical conductivity in ultrathin single-wall carbon nanotube polymer nanocomposite films[J]. Appl. Phys. Lett., 2006, 88(16):164101.
    [6] Itoh E, Suzuki I, Miyairi K. Field emission from carbon-nanotube-dispersed conducting polymer thin film and its application to photovoltaic devices[J]. Jpn. J. Appl. Phys., 2005, 44:636-640.
    [7] Zhang DH, Kandadai MA, Cech J, et al. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation[J]. J. Phys. Chem. B, 2006, 110(26):12910-12915.
    [8] Thomas W, Ebbesen T W. Self-preservation of rough-wall turbulent boundary layers[J]. Phys. Today., 1996, 49(6):26-31.
    [9]胡文平,刘云圻,曾鹏举.纳米碳管[J].化学通报, 2000, 63(2):7-11.
    [10] Sinnott SB, Shenderous OA, White CT, et al. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations[J]. Carbon, 1998, 36(36):1-9.
    [11] Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system[J]. Appl. Phys. Lett., 2001, 79(25):4225-4227.
    [12] Lu W, Dong J, Li Z. Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method[J]. Phys. Rev. B., 2001, 63(3):33401-33404.
    [13] Saito R, Fujita M, Dreselhaus G, et al. Electronic structure and growth mechanism of carbon tubules[J]. Mater. Sci. Eng.B, 1993, 19:185-191.
    [14] Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes[J]. Science, 1996, 272(5261):523-526.
    [15] De Heer WA, Bacsa WS, Ugarte D, et al. Aligned carbon nanotubes films: production and optical and electrical properties[J]. Science, 1995, 268(5212):845-847.
    [16] Huang YH, Okada M, Tanaka K, et al. Estimation of superconducting transition temperature in metallic carbon nanotubes[J]. Phys. Rev. B., 1996, 53(9):5129-5132.
    [17] Murakami Y, Shibata T, Okuyama K, et al. Structural, magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds[J]. J. Phys. Chem. Solids., 1993, 54(12):1861-1870.
    [18] Rinzler AG, Hafner JH, Nikolaev P, et al. Unraveling nanotubes-field-emission from an atomic wire[J]. Science, 1995, 269(5230):1550-1553.
    [19] De Heer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, (270):1179-1180.
    [20] Collins PG, Zettl A. Unique characteristics of cold cathode carbon nanotube-matrix field emitters[J]. Phys .Rev. B., 1997, 55(15):9391-9399.
    [21] Petrov P, Stassin F, Pagnoulle C, et al. Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers[J]. Chem. Commun., 2003, (23):2904-2905.
    [22] Star A, Stoddart JF, Steuer D. Preparation and properties of polymer wrapped single-walled carbon nanotubes[J]. Angew. Chem. Int. Ed., 2001, 40:1721.
    [23] Carrillo A, Swartz JA, Gamba JM, et al. Noncovalent unctionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles[J]. Nano Letters, 2003, 3(10):1437-1440.
    [24] Kim O, Je J, Baldwin JW, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylase[J]. J. Am. Chem. Soc., 2003, 125(15): 4426-4427.
    [25] Wang ZH, Wang YM, Luo GA. A selective voltammetric method for uric acid detection atβ-cyclodextrin modified electrode incorporating carbon nanotubes[J]. The Analyst, 2002, 127:1353-1358.
    [26] Xiao SF, Wang ZH, Wang YM, et al. Voltammetric behavior of ascorbic acid atα-cyclodextrin incorporated carbon nanotubes coated electrode[J]. J. Qingdao Uni., 2002, 15(4):1-6.
    [27] Azamian BR, Davis JJ, Coleman KS, et al. Bioelectrochemical single walled carbon nanotubes[J]. J. Am. Chem. Soc., 2002, 124(43):12664 -12665.
    [28] Chen RJ, hang YG, Wang DW, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. J. Am. Chem. Soc., 2001, 123(16):3838- 3839.
    [29] Chen J, et al. Dissolution of full-length single-walled carbon nanotubes[J]. J. Phys. Chem. B, 2001, 105(13):2525-2528.
    [30]Chen J, Hamon MA, et al. Solution properties of single-walled carbon nanotubes[J]. Science, 1998, 282:95-98.
    [31]Hamon MA, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes[J]. Adv. Mater., 1999, 11:834-840.
    [32]Hamon MA, et al. Ester-functionalized soluble single-walled carbon nanotubes[J]. Appl. Phys. A., 2002, 74:333-338.
    [33] Bahr JL, Yang J, et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode[J]. J. Am. Chem. Soc., 2001, 123:6536-6542.
    [34] Bahr JL, Tour JL. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chem. Mater., 2001, 13:3823-3824.
    [35] Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes[J]. J. Am. Chem. Soc., 2002, 124:760-761.
    [36] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes[J]. Science, 1998, 282:95-98.
    [37] Holzinger M, Vostrowsky O, Hirsch A, et al. Sidewall functionalization of carbon nanotubes[J]. Angew. Chem. Int. Ed., 2001, 40:4002-4005.
    [38] Hong C, You Y, Wu D, et al. Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP[J]. Macromolecules, 2005, 38(7):2606-2611.
    [39] Shen J, Hu Y, Qin C, et al. Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization[J]. Langmuir, 2008, 24(8): 3993-3997.
    [40] Mickelson ET, Chiang IW, Zimmerman JL, et al. Solvation of fluorinated single-wall carbon nnanotubes in alcohol solvents[J]. J. Phys. Chem. B, 1999, 103:4318-4322.
    [41] Boul PJ, Liu J, Mickelson ET, et al. Reversible sidewall functionalization of buckytubes[J]. Chem. Phys. Lett., 1999, 310:367-372.
    [42] Pekker S, Salvetat J P, Jakab E, et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia[J]. J. Phys. Chem. B., 2001, 105(33):7938-7943.
    [43] Yuan W, et al. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects[J]. J. Phys. Chem. C, 2008, 112(48): 18754-18759.
    [44] Gao JB, Zhao B, et al. Engineering of the single-walled carbon nanotube nylon 6 interface[J]. J. Am. Chem. Soc., 2006, 128:7492-7496.
    [45] Zhang Y, et al. Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry[J]. Langmuir, 2009, 25(10): 5814-5824.
    [46] Yang D, Hua JH, Wang C. Synthesis and characterization of pH-responsive single-walled carbon nanotubes with a large number of carboxy groups[J]. Carbon, 2006, 44(15):3161- 3167.
    [47] Hong CY, You YZ, et al. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization[J]. Chem.Mater., 2005, 17(9):2247-2254.
    [48] Viswanathan G, Chakrapani N, Yang H, et al. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites[J]. J. Am. Chem. Soc., 2003, 125(31):9258-9259.
    [49] Liang F, Beach JM, Kobashi K, et al. In situ polymerization initiated by single-walled carbon nanotube salts[J]. Chem. Mater., 2006, 18(20):4764-4767.
    [50] Yang Y, et al. Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains[J]. J. Phys. Chem. C, 2007, 111(30):11231-11239.
    [51] Kan X, et al. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition[J]. J. Phys. Chem. C, 2008, 112(13):4849-4854.
    [52] Hiura H, Ebbesen TW, Tanigaki K. Opening and purification of carbon nanotubes in high yields[J]. Adv. Mater., 1995, 7:275-276.
    [53] Tsang SC, Chen YK, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372:159-162
    [54] Campbell JK, Sun L, et al. Electrochemistry using single carbon nanotubes[J]. J. Phys. Chem.Soc., 1999, 121(15):3779-3780.
    [55] Luo HX, Shi ZJ, Li NQ, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Anal. Chem., 2001, 73:915-920.
    [56] Wang ZH, Liang QL, et al. Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid[J]. J. Electroanal. Chem., 2003, 540:129-134.
    [57] Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci., 2006, 103:3357.
    [58] Wu KB, Fei JJ, et al. Direct electrochemistry of DNA, guanine and adenine at a nanostru- ctured film-modified electrode[J]. Anal. Bioanal. Chem., 2003, 376:205-209.
    [59] Boo H, et al. Electrochemical nanoneedle biosensor based on multiwall carbon nanotube[J]. Anal. Chem., 2005, 78(2):617-620.
    [60] Marcela C. Rodríguez, JoséSandoval, et al. Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine[J]. Sens. Actuators B. Chemical, 2008, 134:559-565.
    [61] Wang Z, Xiao S, Yue Chen. ?-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine[J]. J. Electroanal. Chem., 2006, 589:237-242.
    [1] Ferrer-Anglada N, Gomis V, EI-Hachemi Z, et al. Carbon nanotube based composites for electronic applications: CNT-conducting polymers, CNT-Cu[J]. Phys. Status Solidi A, 2006, 203(6):1082-87.
    [2] Bliznyuk V, Singamaneni S, Kattumenu R, et al. Surface electrical conductivity in ultrathin single-wall carbon nanotube polymer nanocomposite films[J]. Appl. Phys. Lett., 2006, 88(16):164101.
    [3] Itoh E, Suzuki I, Miyairi K. Field emission from carbon-nanotube-dispersed conducting polymer thin film and its application to photovoltaic devices[J]. Jpn. J. Appl. Phys., 2005, 44:636-640.
    [4] Zhang DH, Kandadai MA, Cech J, et al. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation[J]. J. Phys. Chem. B, 2006, 110(26):12910-12915.
    [5] Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, et al. Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction[J]. Langmuir, 2004, 20(15):6085-6588.
    [6] Priya BR, Byrne HJ. Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-wall carbon nanotubes[J]. J. Phys. Chem. C, 2008, 112(2):332-37.
    [7] Chattopadhyay J, Cortez FJ, Chakraborty S, et al. Synthesis of water-soluble PEGylated single-walled carbon nanotubes[J]. Chem. Mater., 2006, 18(25): 5864-68.
    [8] Kahn MGC, Banerjee S, Wong SS. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization[J]. Nano. Lett., 2002, 2(11):1215-18.
    [9] Chen RJ, Zhan YG, Wang DW, et al. Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. J. Am. Chem. Soc., 2001, 123(16):3838- 3839.
    [10] Grzelczak M, Correa-Duarte MA, Liz-Marzán LM. Carbon nanotubes encapsulated in wormlike hollow silica shells[J]. Small, 2006, 2(10):1174-77.
    [11] Kim YT, Ohshima K, Higashimine K, et al. Fine size control of platinum on carbon nanotubes: from single atoms to clusters[J]. Angew. Chem. Int. Ed., 2006, 45(3):407-411.
    [12] Li Q, Sun B, Kinloch IA, et al. Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes[J]. Chem. Mater., 2006, 18(1):164-68.
    [13] Zhao B, Hu H, Yu AP, et al. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers[J]. J. Am. Chem. Soc., 2005, 127(22):8197–8203.
    [14] Zhao B, Hu H, Haddon RC. Synthesis and properties of a water soluble single-walled carbon nanotube-poly(m-aminobenzene) sulfonic acid graft copolymer[J]. Adv. Func.t Mater., 2004, 14(1):71-76.
    [15] Yao Z, Braidy N, Botton GA, et al. Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites[J]. J. Am. Chem. Soc., 2003, 125(51):16015-16024.
    [16] Sakellariou G, Ji H, Mays JW. Enhanced polymer grafting from multiwalled carbon nanotubes through living anionic surface-initiated polymerization[J]. Chem. Mater., 2008, 20(19):6217-30.
    [17] Gao C, Muthukrishnan S, et al. Linear and hyperbranched glycopolymer-functionalized carbon nanotubes:synthesis, kinetics, and characterization[J]. Macromolecules, 2007, 40(6):1803-15.
    [18] Yang Y, Wang X, Liu L, et al. Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains[J]. J. Phys. Chem. C, 2007, 111(30):11231-39.
    [19] Yang M, Gao Y, Li HM, et al. Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization[J]. Carbon, 2007, 45(5):2327-33.
    [20] Hong CY, You YZ, Pan CY. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization[J]. Chem. Mater., 2005, 17(9):2247-54.
    [21] Tour JM, Hudson JL, Kirshnamoorti R, et al. Elastomers reinforced with carbon nanotubes[J]. European Patent, 2004, 1644438.
    [22] Yang D, Hua JH, Wang C. Synthesis and characterization of pH-responsive single-walled carbon nanotubes with a large number of carboxy groups[J]. Carbon, 2006, 44(15):3161- 3167.
    [23] Marshalla MW, Popa-Nitab S, Shaptera JG. Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process[J]. Carbon, 2006, 44(7):1137-1141.
    [24] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes[J]. Acc. Chem. Res., 2002, 35(12):1105-1113.
    [25] Attal S, Thiruvengadathan R, Regev O. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy[J]. Anal. Chem., 2006, 78(23):8098-8104.
    [26] Xia HS, Wang Q, Qiu GH. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization[J]. Chem. Mater., 2003, 15:3879-3886.
    [27] Rao AM, Jorio A, Pimenta MA, et al. Polarized Raman study of aligned multiwalled carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84:1820-1823.
    [28] Wu HX, Qiu XQ, Cao WM, et al. Polymer-wrapped multiwalled carbon nanotubes synthesized via microwave-assisted in situ emulsion polymerization and their optical limiting properties[J]. Carbon, 2007, 45:2866-2872.
    [1] Zhang R, Jin GD, Chen D, et al. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode[J]. Sens. Actuators B, 2009(138):174-181.
    [2] Tai A, et al. An isocratic HPLC method for the simultaneous determination of novel stable lipophilic ascorbic acid derivatives and their metabolites[J]. Chromatogr. B, 2006, 840:38- 43.
    [3] Tai A, et al. Determination of ascorbic acid and its related compounds in foods and beverages by hydrophilic interaction liquid chromatography[J]. Chromatogr. B,2007, 853:214-220.
    [4] Barrales PO, et al. Indirect determination ofascorbic acid by solid-phase spectrophotometry[J]. Anal. Chim. Acta, 1998, 360:143-152.
    [5] Sun X, Niu Y, Bi S, et al. Determination of ascorbic acid in individual rat hepatocyte by capillary electrophoresis with electrochemical detection[J]. Chromatogr. B, 2008, 870: 46-50.
    [6] Thangamuthu R, et al. Direct amperometric determination of l-ascorbic acid (Vitamin C) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals[J].Sens. Actuators B Chem., 2007, 120:745-753.
    [7] Kumar SA, Lo PH, Chen SM. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71[J]. Biosens. Bioelectron., 2008, 24:518-523.
    [8] Thiagarajan S, Tsai TH, Chen SM. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosens. Bioelectron., 2009, 24:2712-2715.
    [9] Goyal RN, Singhal NK. Comparison of electrochemical and enzymic oxidation of 1,3-dimethyluric acid[J]. Bioelectrochem. Bioener., 44 (1998):201-208.
    [10] Rodrígueza MC, et al. Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine[J]. Sensors and Actuators B, 2008, 134:559-565.
    [11] Li YX, Lin XQ. Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode[J]. Sensors and Actuators B, 2006, 115:134-139.
    [12] Hu GZ, Ma YG, et al. Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode[J]. Electrochimica Acta, 2008, 3:6610-6615.
    [13] Oreste A, et al. Ascorbic acid: much more than just an antioxidant[J]. Biochimica et Biophysica Acta, 2002, 1569:1-9.
    [14] Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, et al. Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction[J]. Langmuir, 2004, 20(15):6085-6088.
    [15] He PG, Xu Y? Fang YZ. Applications of carbon nanotubes in electrochemical DNA biosensors[J]. Microchimica Acta.? 2006? 152:175-186.
    [16] Wang J, Musameh M, Lin YH. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors[J]. J. Am. Chem. Soc., 2003, 125(9): 2408-2409.
    [17] Sun YY, Fei JJ, Wu KB, et al. Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode[J]. Anal .Bioanal. Chem., 2003, 475:544.
    [18] Zhang HJ, et al. Fabrication of a single-walled carbon nanotube-modified glassy carbon electrode and its application in the electrochemical determination of epirubicin[J]. J. Nanopart. Res., 2004,(6):665-669.
    [19] M. Teresa Fernández-Abedul, Agustín Costa-García. Carbon nanotubes (CNTs)-based electroanalysis[J]. Anal. Bioana.l Chem., 2008, 90:293-298.
    [20]童林荟著.环糊精化学----基础与应用[M].科学出版社. 2001
    [21] Song Li, William C. Purdy. Cyciodextrins and Their Applications in Analytical Chemistry[J]. Chem. Rev., 1992(92):1457-1470.
    [22] Eduardo A, et al. Molecular recognition of a self-assembled, monolayer of a polydithiocarbamate derivative ofβ-cyclodextrin on silver[J]. Electrochemistry Communications, 1999(1):10-13.9-14.
    [23] Wang ZH, Xiao SF, Chen Y.β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine[J]. Journal of Electroanalytical Chemistry, 2006, 589:237-242.
    [24] Adriana F, et al. Determination of tricyclic antidepressants using a carbon paste electrode modified withβ-cyclodextrin[J]. J. Electroanal.Chem., 2000(492):74-77.Electroanal., 2002(14):559-574.
    [26] Liu YY, Fan XD, Gao L. Synthesis and characterization ofβ-cyclodextrin based functional monomers and its copolymers with n-isopropylacrylamide[J]. Macromol. Biosci., 2003, 3: 715–719.
    [25] Chen WQ, Nicholas JP et al. Expression profile matrix of arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700