神经元随机共振机制及其在语音与图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机共振是非线性系统、随机噪声和输入信号之间的一种协同现象,它反映了噪声的积极作用,可以在很多非线性系统中观测到,特别是在神经系统中,随机共振发挥着重要的作用。
     目前针对神经元模型的随机共振研究,主要集中于阈下单频周期信号输入的情况,但在现实中,非周期信号的检测和估计更具有实际应用意义,而且一些理论和模型研究表明,阈上信号情况下的随机共振可能是人类听觉和视觉感知的潜在机制。因此,论文重点围绕神经元模型的非周期阈上信号随机共振现象进行深入的研究,并基于阈上非周期随机共振机制,开展了语音复原、图像复原和图像增强的应用研究。
     首先系统介绍了随机共振理论的发展、研究现状,简要说明了经典和非经典随机共振理论、各种计算模型,分析整理了常用的随机共振评价方法。
     论文工作分三个部分:
     1.关于神经元模型随机共振的研究选择了Hodgkin-Huxley(H-H)神经元模型、Fitzhugh-Nagumo神经元模型以及EEG模型,对随机共振在神经系统中信息处理的作用进行了仿真研究。在分析三种模型的阈下随机共振现象的基础上,重点研究了其阈上随机共振,采用信噪比、互相关系数、互信息率对比评价方法,定量描述神经元阈上随机共振现象的效果,分析神经元阈值特性,提供了随机共振机制在信息处理中的应用基础。实验结果表明:
     神经元模型中的随机共振不仅仅局限于周期信号,对于非周期信号也广泛存在。这一结论揭示出生物体在复杂多变的环境中,可能利用随机共振机制达到微弱信号检测的目的。
     在某些特定的条件下,神经元对阈上信号也能产生随机共振现象。
     通过分析FHN神经元阈值特性,得出结论:神经元模型动力学行为可等效为两状态的阈值跨越行为。这是随机共振机制在信号检测和信息处理中的应用基础。
     2.关于一维信息处理的应用研究
     选择含噪语音信号作为研究对象,基于神经元阈上非周期随机共振机制,提出了一种随机共振语音复原算法,实现含噪语音信号阈上随机共振,从而达到语音复原的目的。利用改进后的互相关系数衡量语音信号的随机共振效果。将此方法对含噪语音信号的复原效果与传统方法复原效果做了比较和分析,得出结论:在强背景噪声情况下,本文方法的语音复原效果要优于传统方法。该方法具有一定的鲁棒性,有望转化为工程上的具体应用。
     3.关于二维信息处理的应用研究
     进一步分析图形图像类二维信号中随机共振的现象,提出一种自适应随机共振图像复原算法,并运用于灰度图像的复原处理。针对含噪彩色图像信息量较大、噪声寻优空间动态变化等特点,基于固定阈值、添加合适类型的噪声、采用折半方法快速寻找最佳噪声强度等方法,改进前述算法,提出一种快速自适应最优随机共振图像复原算法,并用于含噪灰度图像和彩色图像的复原处理。
     定性与定量分析了图像复原系统中的阈上非周期随机共振现象,针对不同复原方法、不同噪声添加次数对复原效果的影响,进行了定性与定量的对比实验,实验结果表明,在二维信息处理中,无论对于含噪灰度图像还是彩色图像,在强背景噪声下,本文方法复原效果优于传统方法复原效果,算法鲁棒性较好,对于图像处理系统具有一定的通用性。
     在算法改进过程中,对比分析了添加高斯白噪声和均匀分布随机噪声对随机共振效果以及图像复原效果的影响,实验结果表明,均匀分布随机噪声的性能优于高斯白噪声的性能。
     最后,研究基于随机共振技术的微弱图像信号增强问题,即借助添加的噪声,将弱信号从图像中提取出来。
     实验结果表明,相比于传统的图像增强方法,快速自适应随机共振图像增强算法可以借助添加的噪声能量,更好地提取出湮没在图像中的微弱信号,从而达到图像增强的目的。值得注意的是,该方法对RGB彩色模型和HSI彩色模型都具有一定的适用性,在某非零叠加噪声强度下,峰值信噪比均具有最大值,噪声的存在起到了改善图像质量的效果,但对不同的图像进行增强处理时,基于RGB模型和基于HSI模型的增强算法各具优势。
     随机共振理论的应用研究并不局限于语音复原、图像复原、图像增强领域,在图像分割、机械故障检测等领域,也具有潜在的应用价值,需要在今后的工作中开展更广泛深入的研究和探索。
Stochastic resonance (SR) is a cooperative phenomenon between signal and randomnoise in the nonlinear system.It reflects whereby the noise can benefit to the signal,whichcan be observed in many nonlinear systems.Especially in the neural system,stochasticresonance may play an important role for information processing.
     Up to now,the research of stochastic resonance in the neuron models was mainlyfocused on the subthreshold periodic input.But indeed,application of SR techniques toaperiodic signal detection or estimation is more meaningful.Furthermore,Some researches oftheory and models indicate that suprathreshold stochastic resonance may be the mechanismof human hearing and visual signal detection.This thesis focused on the research ofsuprathreshold aperiodic stochastic resonance in neuron models,and this mechanism to detectweak signal was applied to speech restoration,image restoration and image enhancement.
     At first,the research status of the SR theory was introduced.The traditional andnon-traditional SR theory was explained in brief,and the formal methods for performanceevaluation of stochastic resonance were analyzed.
     The work of the thesis includes three parts.
     1.Research of stochastic resonance in the neuron models
     The function of the stochastic resonance for information processing in neural systemwas simulated by using of Hodgkin-Huxley (H-H) neuron model,Fitzhugh-Nagumo(FHN)neuron model and EEG model.Based on analyzing the subthreshold SR phenomenon,thesuprathreshold SR was studied carefully.The effect of suprathreshold stochastic resonance ofthe neuron models was analyzed quantitatively by signal-noise-ratio,cross correlationcoefficient and mutual information ratio.The threshold characteristic of one neuron wasdiscussed.The result of simulation and experiment showed that in follows:
     Stochastic resonance in the neuron models was not only for periodic signal but alsofor aperiodic signal.It revealed that the organism may make use of stochasticresonance to detect the weak signal in complex background.
     Suprathreshold SR would be happened in the neuron models under certainconditions.
     By analyzing the threshold characteristic of FHN neuron,the conclusion wasobtained that the dynamics conduct can be equivalent to the transit action from onestate to another.
     2.Study of application on one-dimension signal processing
     The corrupted speech signal was selected as a case study.The SR performance of speechsignal was estimated by the improved cross correlation coefficient.The speech restorationalgorithm was proposed based on the mechanism of suprathreshold stochastic resonance inthe neuron models,and was used to reconstruct the speech signal.Compared with traditionalrestoration methods,this new method had better performance and good robustness.
     3.Study of application on two-dimension signal processing
     The stochastic resonance phenomenon in two-dimension image signals was analyzed.Self-adaptive stochastic resonance method of image restoration was proposed and used torestore gray-scale image with noise.Because the information amount of the color image withnoise was very large and the range of optimum noise intensity was variable,fast self-adaptiveoptimal stochastic resonance method of image restoration was proposed and used to restoregray-scale image and color image with noise.The new method was based on thefixed-threshold and the certain type of noise.The quick-bisearch method was designed toimprove the efficiency of algorithm.
     The phenomenon of suprathreshold aperiodic stochastic resonance was analyzedquantitatively and qualitatively.The contrast experiments were done according to variousrestoration methods and various adding noise number.In two-dimension informationprocessing,the restoration performance and robustness of gray-scale image or color imagewith noise were both better than the formal methods'.
     Comparing the effect of equality distributing stochastic noise and Gaussian white noiseto the stochastic resonance performance and image restoration quality,it was found that thecharacteristic of the equality distributing stochastic noise was better than of Gaussian whitenoise.
     At last,the question of the enhancement of weak image signal was studied based SRmechanism in order to detect the weak signal from the image with the help of the addednoise.
     The experiment results showed that the fast self-adaptive stochastic resonance methodwas effective to enhance the image.It was remarkable that the method based on RGB colormodel and the method based on HSI color model has some advantage respectively.
     The SR theory can be used in many other fields,such as image segment,test ofmechanical failure,etc.It is valuable to study more deeply and widely.
引文
[1]J.S.Anderson,I.Lampl,D.C.Gillespie,et.al.The contribution of noise to contrast invariance of orientation tuning in cat visual cortex.Science,2000,290:1968-1972
    [2]R.D.Astumian,R.K.Adair,J.C.Waver.Stochastic resonance at the single-cell level.Nature,1997,388:632-633
    [3]H.A.Braun,H.Wissing,K.Sch(a|¨)fer,et.al.Oscillation and noise determine signal transduction in shark multimodal sensory cells.Nature,1994,367:270-273
    [4]M.Rudolph,A.Destexhe.Do neocortical pyramidal neurons display stochastic resonance?.J Comput Neurosci,2000,11:19-42
    [5]F.Veiga,M.Tragtenberg.A very stochastic resonant neuron model.Neurocomputing,2001,38:423-431
    [6]F Moss,L.M.Ward,W.G.Sannita.Stochastic resonance and sensory information processing:a tutorial and review of application.Clinical Neurophysiology,2004,115(2):267-281
    [7]H.A.Braun,M.T.Huber,M.Dewald,et.al.Computer simulations of neuronal signal transduction:the role of nonlinear dynamics and noise.Int J Bifurc Chaos,1998,8:881-889
    [8]B.J.Gluckman,T.I.Netoff,E.J.Neel,et.al.Stochastic resonance in a neuronal network from mammalian brain.Phys.Rev.Lett.,1996,77:4098-4101
    [9]向学勤,庞全,范影乐,薛凌云.EEC动力学模型中随机共振现象的仿真研究.系统仿真学报,2008,20(16):4299-4301
    [10]C.Koch,I.Segev.The role of single neurons in information processing.Nat Neurosci,2000,3:1171-1177
    [11]V.M.Gandhimathi,K.Murali,S.Rajasekar.Stochastic resonance with different periodic forces in overdamped two coupled anharmonic oscillators.Chaos,Solitons & Fractals,2006,30(5):1034-1047
    [12]A.Das,N.G.Stocks,E.L.Hines.Enhanced coding for exponentially distributed signals using suprathreshold stochastic resonance.Communications in Nonlinear Science and Numerical Simulation,2009,14(1):223-232
    [13]H.Sasaki,S.Sakane,T.Ishida,et.al.Suprathreshold stochastic resonance in visual signal detection.Behavioural Brain Research,2008,193 (1):152-155
    [14]H.Sasaki,M.Todorokihara,T.Ishida,et.al.Effect of noise on the contrast detection threshold in visual perception.Neuroscience Letters,2006,408(2):94-97
    [15]R.Benzi,A.Sutera,A.Vulpiani.The mechanism of stochastic resonance.Journal of Physics A,1981,14(11):453-457
    [16]C.Nicolis,G.Nicolis.Stochastic aspects of climatic transitions-additive fluctuations.Tellus,1981,33(3):225-234
    [17]S.Fauve,F.Heslot.Stochastic resonance in a bistable sytem.Phys.Lett.A,1983,97A(1-2):5-7
    [18]B.McNamara,K.Wiesenfeld,R.Roy.Observation of stochastic resonance in a ring laser.Physical Review Letter,1988,1(4):3~4
    [19]V.Gautam,R.Rajarshi.Stochastic resonance in a bistable ring laser.Phys.Rev.A.,1989,39(9):4668-4674
    [20]B.McNamara,K.Wiesenfeld.Theory of stochastic resonance.Physical Review A.,1989,39(9): 4854-4869
    [21] A. Longtin, A. Bulsara, F. Moss. Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett., 1991, 67(5): 656-659
    [22] J.K. Douglass, L. Wilkens, E. Pantazelou, et.al. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 1993, 365(6444): 337-340
    [23] J.E. Levin, J.P. Miller. Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature, 1996,380(6570): 165-168
    [24] C William, M Dominique. Stochastic Resonance Improves Signal Detection in Hippocampal CA1 Neurons. J Neurophysiol, 2000, 83: 1394-1402
    [25] Y. Sakumura, S. Ishii. Stochastic resonance with differential code in feedforward network with intra-layer random connections. Neural Netw., 2006, 19(4): 469-476
    [26] A.R. Bulsara, A. Zador. Threshold detection of wideband signals: A noise-induced maximum in the mutual information. Phys. Rev. E., Stat. Phys., Plasmas, Fluids, Relat. Interdiscip Topics, 1996, 54(3):R2185-R2188
    [27] M. Misono, T. Kohmoto, et al. Noise-enhanced transmission of information in a bistable system. Phys. Rev. E, 1998, 58(5): 5602-5607
    [28] T. Yang. Adaptively optimizing stochastic resonance in visual system. Phys. Lett. A, 1998, 245: 79-86
    [29] F. Vaudelle, J. Gazengel, et al. Stochastic resonance and noise-enhanced transmission of spatial signals in optics: the case of scattering. J. Opt. Soc. Am. B, 1998, 15(11): 2674-2680
    [30] T. Ditzinger, M. Stadler, et al. Noise improve three-dimensional Perception: Stochastic resonance and other impacts of noise to the Perception of autostereograms. Phys. Rev. E, 2000, 62(2):2566-2575
    [31] N.G. Stocks, D. Allingham, R.P. Morse. The application of suprathreshold stochastic resonance to cochlear implant coding. Fluct Noise Lett., 2002, 2: 169-181
    [32] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, et.al. Stochastic Resonance in Bistable Systems, Phys. Rev. Lett, 1989, 62(4): 349-352
    [33] M.I. Dykman, R. Mannella, P.V.E. McClintock, et al. Comment on Stochastic resonance in bistable systems. Preceding Comment, Physical Review Letter, 1990, 65(20):2606-2606
    [34] M.I. Dykman, D.G. Luchinsky, et al. Stochastic resonance: Linear response theory and giant nonlinearity, J. Stat. Phys, 1993, 70(1/2): 463-479
    [35] M.I. Dykman, R. Mannella, R.V.E. McClintock, et al. Giant nonlineanty in the low-frequency response of a fluctuating bistable system. Physical Review E, 1993, 47(3): 1629-1632
    [36] T. Zhou, F. Moss. Analog simulations of stochastic resonance. Physics Review A, 1990, 41(8): 4255-4264
    [37] L.Gammaitoni, F. Marchesoni, S. Santucci. Stachastic resonance as a bona-fide resonance. Physical Review Letter, 1995, 74: 1052-1057
    [38] M.H. Choi, R.F. Fox, P. Jung. Quantifying stochastic resonance in bistable systems: response vs residence-time distribution functions. Physical Review E, 1998, 57(6): 6335-6344
    [39] G. Giacomelli, F. Marin, I. Rabbiosi. Stochastic and bona fide resonance: an experimental investigation. Physical Review Letter, 1999, 82(4): 675-678
    [40] P. Hanggi, P.V.E. McClintock. Bistability driven by colored noise: Theory and experiment. Physical Review A, 1985, 32(1): 695-698
    [41] P. Jung, P. Hanggi. Stochastic nonlinear dynamics modulated by external periodic forces. Europhys. Lett..,1989,8(6):505~510
    [42]R.F.Fox.Stochastic resonance in a double well.Physical Review A,1989,39(8):4148-4153
    [43]P.Jung,P.Hanggi.Amplification of small signals via stochastic resonance.Physical Review A,1991,44(12):8032-8042
    [44]G.Hu,G.Nicolis,C.Nicolis.Periodically forced Fokker-Planck equation and stochastic resonance.Physical Review A,1990,42(4):2030-2041
    [45]G.Hu,D.Gong,X.Wen,et al.Stochastic resonance in a nonlinear system driven by an apeoridic force.Physical Review A,1992,46(6):3250-3254
    [46]J.J.Collins,Carson C.Chow,Thomas T.Imhoff.Aperiodic stochastic resonance in excitable systems.Physical Review E,1995,52(4):R3321-R3324
    [47]尚晓清,王军锋,宋国乡.基于Bayesian估计和Wiener滤波的阈值去噪方法.光子学报,2003,32(7):889-891
    [48]杨竹青,李勇,胡德文.独立成分分析方法综述.自动化学报,2002,28(5):762-772
    [49]G.Schmid,P.Hanggi.Controlling nonlinear stochastic resonance by harmonic mixing.Physica A:Statistical and Theoretical Physics,2005,351 (1):95-105
    [50]A.R.Bulsara,M.E.Inchiosa,L.Gammaitoni.Noise-Controlled Resonance Behavior in Nonlinear Dynamical Systems with Broken Symmetry.Phys.Rev.Lett.,1996,77(11):2162-2165
    [51]EL Naschie MS,Gebeshuber IC,A.V.Holden,D.Petracchi,eds.Stochastic resonance in biological systems.Chaos,Solitons & Fractals,2000:11-11
    [52]H.E.Plesser,T.Geisel.Signal Processing by means of noise.Neuralcomputing,2001,38-40:307-312
    [53]JJ.Collins,C.C.Chow,T.T.Imhoff.Stochastic resonance without tuning.Nat.,1995,376:236-239
    [54]N.G.Stocks.Suprathreshold stochastic resonance in multilevel threshold systems.Phys.Rev.Lett.,2000,84(11):2310-2313
    [55]N.G.Stocks.SuPrathreshold stochastic resonance:an exact result for uniformly distributed signal and noise.Phys.Lett.A,2001,279:308-312
    [56]J.Masoliver,A.Robinson.Coherent stochastic resonance.Phys.Rev.E,1995,51 (5):4021-4026
    [57]向学勤,杨翠容,范影乐等.基于随机共振检测的神经元非周期激励响应模拟研究.电子器件.2007,3 1(4):1436-1439
    [58]E.Manjarrez,O.Diez-Mart(?)nez,I.Me'ndez,et.al.Stochastic resonance in human electroencephalographic activity elicited by mechanical tactile stimuli.Neuroscience Letters,2002,324:213-216
    [59]M Dafilis,P Bourke,D Liley,et al.Visualising chaos in a model of brain electrical activity.Computers & Graphics,2002,26(6):971-976
    [60]Y.Kim,M.Grabowecky,S.Suzuki.Stochastic resonance in binocular rivalry.Vision research,2006,46(3):392-406
    [61]I.Bojak,D.T.J.Liley.Self-organized 40 Hz synchronization in a physiological theory of EEG,Neurocomputing,2007,70:2085-2090
    [62]S.G.Lee,A.Neiman,S.Kim.Coherence resonance in a Hodgkin-Huxley neuron.Phys.Rev.E,1998,57(3):3292-3297
    [63]P.O.Amblard,S.Zozor.Cyclostationary and stochastic resonance in threshold deviees.Phys.Rev.E,1999,59(5):5009-5020
    [64]I.Goychuk.Information transfer with rate-modulated Poisson processes:A simple model for nonstationary stochastic resonance.Phys.Rev.E,2001,64(2):021909
    [65] S. Mitaim, B. Kosko. Adaptive stochastic resonance. Pro. IEEE, 1998, 86(11): 2152-2183
    [66] M Dafilis, D Liley, P Cadusch. Robust chaos in model of the electroencephalogram: Implications for braindynamics. Chaos, 2001, 11(3) :474-478
    [67] V. Rallabandi. Enhancement of ultrasound images using stochastic resonance-based wavelet transform. Computerized Medical Imaging and Graphics, 2008, 32(4): 316-320
    [68] C Jung, J Scharcanski. Adaptive image denoising and edge enhancement in scale-space using the wavelet transform. Pattern Recognition Letters, 2003, 24(7): 965-971
    [69] M. Ferraro, G. Boccignone. Image contrast enhancement via entropy production. Real-Time Imaging, 2004, 10(4): 229-238
    [70] M. Szczepanski, B. Smolka, K Plataniotis, et. al. On the distance function approach to color image enhancement. Discrete Applied Mathematics, 2004, 139(1):283-305
    [71] A.S. Asdi, A.H.Tewfik. Detection of weak signals using adaptive stochastic resonance. Pro. IEEE Int. Conf. On Acoustics, Speeeh, and Signal Processing, Detroit, MI, 1995
    [72] X. Godivier, J. Rojas-Varela, F. Chapeau-Blondeau. Noise-assisted signal transmission via stochastic resonance in a diode non-linearity. Electronics Letters, 1997, 33(20): 1666-1668
    [73] F. Torkamani-Azar, K.E. Tait. Image recovery using the anisotropic diffusing equation. IEEE Trans Image Processing, 1996,5(11): 1573-1578
    [74] F. Chapeau-Blondeau. Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel. Phys. Rev. E, 1997, 55(2): 2016-2019
    [75] F. chapeau-Blondeau. Stochastic resonance and optimal detection of pulse trains by threshold devices. Dig. Sig. Proc., 1999,9: 162-177
    [76] F. Chapeau-Blondeau. Periodic and aperiodic stochastic resonance with output signal-to-noise ratio exceeding that at the input. Int. J. Bifurcation and Chaos, 1999, 9(1): 267-272
    [77] F. Chapeau-Blondeau, J. Rojas-Varela. Nonlinear signal Propagation enhanced by noise via stochastic resonce. Int. J. Bifurcation & Chaos, 2000, 10(8): 1951-1959
    [78] D.G. Luchinsky, R. Mannella, P.V.E. McClintock, et.al. Stochastic resonance in electrical circuits-Ⅱ: Nonconventional stochastic resonance. IEEE Trans. Cir & Sys.Ⅱ-Analog and digital signal Processing, 1999,46(9): 1215-1224
    [79] P. Arena, R. Caponetto, L. Fortuna, et.al. Noise-supported wavefronts in cellular neural networks based circuits. IEEE Trans. Cir & Sys.-I: Fundmental theory and Application, 2001,48(3): 360-363
    [80] L. Gammaitoni, P. Hanggi, P. Jung, et.al. Stochastic resonance. Rev. Mod. Phys., 1998, 70(1): 223-285
    [80] J.F. Lindner, B.K. Meadows, W.L. Ditto. Array enhanced stochastic resonance and spatiotemporal synchronization. Phys. Rev. Lett., 1995, 75(1): 3-6
    [82] M.E. Inchiosa, A.R. Bulsara. Signal detection statistics of stochastic resonators. Phys. Rev. E, 1996,53(3): R2021-2024
    [83] T.R. Albert, A.R. Bulsara, G. Schmera, et.al. An evaluation of the stochastic resonance phenomenon as a potential tool for signal processing. Signals, Systems and Computers, Cnnference Record of The Twenty-Seventh Asilomar Conference on, 1993,1: 583-587
    [84] Y. Zhang, G. Hu, L. Gammaitoni. Signal transmission in one-way coupled bistable System: noise effect. Phys. Rev. E, 1998, 58(3): 2952-2956
    [85] M.F. Carusela, R.P.J. Perazzo, L. Romanelli. Stochastic resonance memory storage device. Phys. Rev. E, 2001, 64(3): 031101
    [86] J.D. Neff, G.N. Patel, B.K. Meadows, et.al. Spatiotemporal dynamics of a stochastic VLSI array. Circuits and systems, ISCAS'98, Proceedings of the 1998 IEEE International Symposium on, 1998,3: 542-545
    [87] D.E. Postnov, O.V. Sosnoytseva. Stochastic synchronization of coupled coherence resonance oscillators. Int. J. Bifurcation & Chaos, 2000, 10(1): 2541-2550
    [88] V.I. Sbitney, M.A. Pustovoit. Stochastic resonance in 2D coupled map lattice model of field-like neural tissue. Int. J. Bifurcation & Chaos, 2000, 10(8): 1961-1971
    [89] G. Mato. Stochastic resonance using noise generated by a neural netwok. Phys. Rev. E, 1999, 59(3): 3339-3343
    [90] B. Lindner, L. Schimansky-Geier. Transmission of noise coded versus additive signal through a neuronal ensemble. Phys. Rev. Lett., 2001, 864: 2934-2937
    [91] D Liley, P Cadusch, J Wright. Continuum theory of electro-cortical activity. Neurocomputing, 1999, 26-27: 795
    [92] N.G. Stocks, N.D. Stein, P.V.E. McClintocK. Stochastic resonance in monostable systems. J. Phys. A: Math. Gen., 1993,26: L385-390
    [93] J.M.G. Vilar, J.M. Rubf. Divergent signal-noise ratio and stochastic resonance in monostable systems. Phys. Rev. Lett., 1996, 77(14): 2863-2866
    [94] A.N. Grigorenko, S.I. Nikitin, G.V. Roschepkin. Stochastic resonance at higher harmonics in monostable systems. Phys. Rev. E, 1997, 56(5): R4907-4910
    [95] I.K. Kaufman, D.G. Luchinsky, et al. High-frequency stochastic resonance in SQUIDs. Phys. Lett. A, 1996:219-223
    [96] S. Matyjaskiewicz, A. Krawiecki, et al. Stochastic multiresonance in a chaotic map with fractal basins of attraction. Phys. Rev. E, 2001, 63, 026215: 1-10
    [97] K. Loerincz, Z. Gingl, et al. Higher order stochastic resonance in a level-crossing detector. Phys. Lett. A, 2000, 254: 154-157
    [98] T. Kapitaniak. Stochastic resonance in chaotically forced systems. Chaos, Soliton & Fractals, 1993, 3(4): 405-410
    [99] V.S. Anishchenko, M.A. Safonova, L.O. Chua. Stochastic resonance in Chua's circuit. Int. J. Bifurcation & Chaos, 1992, 2(2): 397-401
    [100] H. Cheng, X Shi. A simple and effective histogram equalization approach to image enhancement. Digital Signal Processing, 2004, 14(2): 158-170
    [101] G. Hu, L. Pivka, A.L. Zheleznyak. Synchronization of a one-dimensional array of Chua's circuits by feedback control and noise. IEEE Trans. Cir. & Sys.-Ⅰ: Fundamental theory and Application, 1995,42(10): 736-740
    [102] S. Mizutani, T. Sano, T. Uchiyama. Numerical studies of resonance in a sinusoidally driven chaotic neuron model and its network. Neural Netwok, Int. Confer. On, 1997, 663-668
    [103] J.Y. Ko, K. Otsuka, T. Kubota. Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback. Phys. Rev. Lett., 2001, 86(18): 4025-4028
    [104] 鲁瑞华,杨明,定阀值Wiener滤波在子波域图像去噪中的应用.系统工程与电子技术, 2005,27(10): 1705-1707
    [105] V.N. Chizhevsky, R. Vilaseca, R. Corbalan. Amplification of near-resonant signals via stochastic resonance in a chaotic CO2 laser. Phys. Rev. Lett., 2000, 61(6): 6500-6505
    [106] P. Jung. Stochastic resonance and optimal design of threshold detectors. Phys. Lett. A, 1995, 207(1-2): 93-104
    [107] A.R. Bulsara, L. Gammaitoni. Tuning in to noise. Phys. Tod., Mar., 1996: 39-45
    [108] B. Xu, F. Duan, R. Bao, J. Li. Stochastic resonance with tuning system parameters: The application of bistable systems in signal processing. Chaos, Solitons & Fractals, 2002, 13: 633-644
    [109] T. Ditzinger, M. Stadler, et al. Noise improve three-dimensional Perception: Stochastic resonance and other impacts of noise to the Perception of autostereograms. Phys. Rev. E, 2000, 62(2):2566-2575
    [110] M. Stemmler. A single spike sufices: the simplest form of stochastic resonance in model neurons. Network: Comput. Neural Sys., 1996, 7:687-716
    [111] J.S. Anderson, I. Lampl, et al. The contribution of noise to contrast invariance of orientation tuning in eat visual cortex. Science, 2000, 290:1968-1972
    [112] R.R. Morse, E.F. Evans. Enhancement of vowel coding for cochlear implants by addition of noise. Nat. Med., 1996,2:928-932
    [113] R.R. Morse, E.F. Evans. Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation. Hearing Research, 1999, 133:107-119
    [114] R.P. Morse, G.F. Meyer. The practical use of noise to improve speech coding by analogue cochlear implants. Chaos Solitons & Fractrals, 2000, 11: 1885-1894
    [115] R.P. Morse, P. Roper. Enhanced coding in a cochlear-implant model using additive noise: Aperiod stochastic resonance with tuning. Physical Review Letters, 2000, 61(5): 5683-5692
    [116] A.J. Matsuoka, J.T. Rubinstein, et al. The efects of interpulse interval on stochastic properities of electrical stimulation: Models and Measurements. IEEE Trans. Biomedical Eng., 2001, 48(4):416-424
    [117] J.T. Rubinstein, B.S. Wilson, et al. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 1999, 127: 108-118
    [118] K.R. Henry, E.R. Lewis. Cochlear nerve acoustic envelope response detection is improved by the addition of random-phased tonal stimuli. Hearing Research, 2001, 155: 91-102
    [119] F.C. Zeng, Q.J. Fu, R. Morse. Human hearing enhanced by noise. Brain Res., 2000, 869: 251-253
    [120] S. Bahar, F. Moss. Stochastic phase synchronization in the crayfish mechanoreceptor / photoreceptor system. Chaos, 2003, 13(1): 138-144
    [121] R. Dutta, A. Das, N. G. Stocks, D. Morgan. Stochastic resonance-based electronic nose: A novel way to classify bacteria. Sensors and Actuators B: Chemical, 2006, 115(1): 17-27
    [122] D. Russell, L. Wilkens, F. Moss. Use of behavioral stochastic resonance by paddlefish for feeding. Nature, 1999,1402:291-294
    [123] A. Hyvrinen. Survey on independent component analysis. Neural Computing Surveys, 1999, 2(4): 94-128
    [124] D.F. Russell, L.A. Wilkens, F. Moss. Use of behavioural stochastic resonance by paddle fish for feeding. Nature, 1999,402(6759): 291-294
    [125] F. Gabbiani, W. Metzner, et al. From stimulus encoding to feature extraction in weakly electric fish. Nature, 1996, 384(6215):564-567
    [126] P.E. Greenwood, L.M. Ward, et al. Stochastic resonance enhances the electrosensory information available to paddlefish prey capture. Physical Review Letters, 2000, 84(20): 4773-4776
    [127] Y.M. Nanns. In a fly's ear. Nature, 2001, 410: 644-645
    [128] L. Glass. Synchronization and rhythmic processes in physiology. Nature, 2001,410: 277-284
    [129] V. Schulte-Frohlinde, Y Ashkenazy, P.Ch. Ivanov. Noise efects on the complex patterns of abnormal heartbeats. Physical Review Letters, 2001, 87(6): 8104-8112
    [130] J.J. Collins, A.A. Priplata, et al. Noise-enhanced human sensorimotor function. Engineering in Medicine and Biology Magazine, IEEE, 2003, 22(2): 76-83
    [131] M. Riani, E. Simonotto. Stochastic resonance in the perceptual interpretation of ambiguous figures: Aneural network model. Phys. Rev. Lett., 1994, 72(19): 3120-3123
    [132] D.R. Chialvo, A.V. Apkarian. Modulated noisy biological dynamics: three examples. J. Stat. Phys., 70(1/2): 375-390
    [133] M. Kawaguchi, H. Mino, D.M. Durand. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location. Conf Proc IEEE Eng Med Biol Soc., 2007: 6661-6664
    [134] S. Bahar, F. Moss. Stochastic resonance and synchronization in the crayfish caudal photoreceptor. Math Biosci. 2004, 188:81-97
    [135] F. Moss, L.M. Ward, W.G. Sannita. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004, 115(2):267-81
    [136] R.M. Siegel, H.L. Read. Models of the temporal dynamics of visual Processing. J. Stat. Phys., 1993,70(1/2): 297-308
    [137] M. Piana, M. Canfora, M. Riani. Role of noise in image processing by the human perceptive system. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):1104-9
    [138] H. Deng, B. Xiang, X. Liao, S. Xie. A linear modulation-based stochastic resonance algorithm applied to the detection of weak chromatographic peaks. Anal Bioanal Chem., 2006, 386(7-8): 2199-2205
    [139] X. Pei, K. Bachmann, F. Moss. The detection threshold, noise and stochastic resonance in the Fitzhugh-Nagumo neuron model. Physics Letters A, 1995, 206: 61-65
    [140] S Lee, A Neiman, S Kim. Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E, 1998, 57:3292-3297
    [141] H. Hasegawa. Responses of a hodgkin-huxley neuron to various spike-train inputs. Phys Rev E, 2000,61:718-726
    [142] 韩晓鹏,刘军,童勤业.双层Hodgkin-Huxley 神经元网络中的随机共振,生物物理学报. 2004,20(05): 74-78
    [143] A Torcini, S Luccioli, T Kreuz. Coherent response of the Hodgkin-Huxley neuron in the high-input regime. Neurocomputing, 2007, 70(10): 1943-1948
    [144] L. Gammaitoni, P. H(?)nggi, P. Jung, et.al. Stochastic resonance. Rev. Mod. Phys., 1998, 70(1): 223-287
    [145] F. Moss, D. Pierson, D. O'Gorman. Stochastic resonance: tutorial and update. International Journal of Bifurcation and Chaos, 1994,4(6): 1383-1397
    [146] T. Kanamaru, T. Horita, Y. Okabe. Stochastic resonance for the superimposed periodic pulse train. Physics Letters A, 1999, 255(1-2): 23-30
    [147] T. Kanamaru, Y. Okabe. Stochastic resonance in a pulse neural network with a propagational time delay. Biosystems, 2000, 58(1-3): 101-107
    [148] P.L. Gong, J.X. Xu, S.J. Hu. Resonance in noise-driver exitable neuron model. Chaos, Solitons and Fractals, 2002, 13:885-895
    [149] H.C. Tuckwell, F.Y.M. Wan, R. Rodriguez. Analytical determination of firing times in stochastic nonlinear neural models. Neurocomputing, 2002, 48(1-4): 1003-1007
    [150] E.V. Pankratova, A. V. Polovinkin, B. Spagnolo. Suppression of noise in FitzHugh-Nagumo model driven by a strong periodic signal. Physics Letters A, 2005, 344(1): 43-50
    [151] T. Zhang, J. Wang, X.Y. Fei, B. Deng. Synchronization of coupled FitzHugh - Nagumo systems via MIMO feedback linearization control. Chaos, Solitons and Fractals, 2007, 33: 194-202
    [152] J. Wang, T. Zhang, B. Deng. Synchronization of FitzHugh-Nagumo neurons in external electrical stimulation via nonlinear control. Chaos, Solitons and Fractals, 2007, 31: 30-38
    [153] J. Wang, Z. Zhang, H.Y. Li. Synchronization of FitzHugh-Nagumo systems in EES via H~∞ variable universe adaptive fuzzy control. Chaos, Solitons and Fractals, 2008, 36: 1332-1339
    [154] H. Hasegawa. Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and or multiplicative noises. Physica D, 2008, 237: 137-155
    [155] A. Patel, B. Kosko. Mutual-Information Noise Benefits in Brownian Models of Continuous and Spiking Neurons. 2006 International Joint Conference on Neural Networks, 2006, July 16-21:1368-1375
    [156] D. Wu, S.Q. Zhu. Stochastic resonance in FitzHugh-Nagumo system with time-delayed feedback. Physics Letters A, 2008, 372(32): 5299-5304
    [157] K. Wiesenfeld, D.Pierson. Stochastic resonance on a circle. Phys. Rev. Lett., 1994, 72(14): 2125-2129
    [158]L.Gammaitoni, F. Marchesoni, E. Menichella-Saetta, et al. Multiplicative stochastic resonance. Phys. Rev. E, 1994, 49(6): 4878-4881
    [159] I. Kosinska. Stochastic resonance in discrete kinetics with delay. Physica A: Statistical Mechanics and its Applications, 2003, 325(1-2): 116-123
    [160] M. Gitterman. Classical harmonic oscillator with multiplicative noise. Physica A: Statistical and Theoretical Physics, 2005, 265(1-2): 189-196
    [161] C.J. Tessone, Radl Total. System size stochastic resonance in a model for opinion formation. Physica A: Statistical and Theoretical Physics, 2005, 351(1): 106-116
    [162] S. Fauve, F. Heslot. Stochastic resonance in a bistable system. Phys. Lett., 1983, 97A(1-2): 5-7
    [163] A.R. Bulsara, L.Gammaitoni. Tuning in to nosie. Phys.Tod., 1996, 49(3):39-45
    [164] Y.G. Yu, W. Wang, J.F. Wang, F. Liu. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Physical Review E, 2001, 63(2): 021907-1-021907-12
    [165] Y.G. Yu, F. Liu, W. Wang. Frequency sensitivity in Hodgkin-Huxley systems. Biological Cybernetics, 2001, 84(3): 227-235
    [166] J.J. Collins, C.C. Chow, A.C. Capela, et al. Aperiodic stochastic resonance. Physics Review E, 1996, 54(5): 5575-5584
    [168] P. Dayan, L.F. Abbott. Theoretical neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge (Massachusetts, USA): The MIT Press, 2001: Chapter 4
    [169] S. Strong., R. Koberle, R. Steveninck, et al. Entropy and information in neural spike trains. Physics Review Letter, 1998,80(1): 197-200
    [170] S. Lia, T. Oertzenb, U. Lindenberger. A neuro computational model of stochastic resonance and aging. Neurocomputing, 2006, 69(13): 1553-1560
    [171] M. Barbi, A. Garbo, F Barbi. Stochastic resonance in two simple compare-and-fire models. Biosystems, 2007, 89(1): 58-62
    [172] F. Veiga, M. Tragtenberg. A very stochastic resonant neuron model, Neurocomputing, 2001, 38: 423-431
    [173] D. Nozaki, Y. Yamamoto. Enhancement of stochastic resonance in a FitzHugh-Nagumo neuronal model driven by colored noise. Physics Letters, A, 1998, 243: 281-287
    [174] W.S. McCullough, W. Pitts. A logical calculus of ideas immanent in nervous activity. Bull Math Biophys, 1943,5: 115-133
    [175] S. Boll. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, Vol.2: 113-120
    [176] A. Rezayee, S. Gazor. An adaptive KIT approach for speech enhancement. IEEE Transactions on Speech and Audio Processing, 2001, 9(2): 87-95
    [177] Y. Ghanbari, M. Karami. A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets. Speech Communication, 2006, 48(8): 927-940
    [178] 陶智,赵鹤鸣,龚呈卉.基于听觉掩蔽效应和Bark子波变换的语音增强.声学学报,2005, 30(4):367-372
    [179] N.G. Stocks, D. Allingham, R.P. Morse. The application of suprathreshold stochastic resonance to cochlear implant coding. Fluct Noise Lett 2002, 2: 169-181
    [180] A. Das, N. Stocks, E. Hines. Enhanced coding for exponentially distributed signals using suprathreshold stochastic resonance. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 223-232
    [181] T Aihara, K Kitajo, D Nozaki, et. al. Internal noise determines external stochastic resonance in visual perception. Vision Research, 2008, 48(14): 1569-1573
    [182] H. Sasaki, S. Sakane, T. Ishida, et. al. Subthreshold noise facilitates the detection and discrimination of visual signals. Neuroscience Letters, 2008, 436(2): 255-258
    [183] E Manjarreza, I Mendeza, L Martinez. Effects of auditory noise on the psychophysical detection of visual signals: Cross-modal stochastic resonance. Neuroscience Letters, 2007, 415(3): 231-236
    [184] R.C. Gonzalez, R.E. Woods. Digital Image Processing. Second Edition.Being: Publishing House of Electronics Industry, 2007: 175-220
    [185] S. Stefan, D. Val(?)rie, N. Mike, et.al. Histogram-based fuzzy colour filter for image restoration, Image and Vision Computing, 2007, 25(9): 1377-1390
    [186] A. H(?)ctor, G. Jorge. A non-parametric filter for digital image restoration using cluster analysis, Pattern Recognition Letters, 2004, 25(8): 841-847
    [187] S. Chickerur, A. Kumar. A Robust Cluster Based Approach for Image Restoration, Congress on Image and Signal Processing, 2008, 1:370-374
    [188] A. Khireddine, K. Benmahammed, W. Puech. Digital image restoration by Wiener filter in 2D case. Advances in Engineering Software, 2007, 38(7): 513-516
    [189] K. Charles, J. Wang. Wavelet-based minimal-energy approach to image restoration, Applied and Computational Harmonic Analysis, 2007, 23(1):114-130
    [190] O. Shacham, O. Haik, Y. Yitzhaky. Blind restoration of atmospherically degraded images by automatic best step-edge detection, Pattern Recognition Letters, 2007, 28(15): 2094-2103
    [191] G. Cristobal, R. Navarro. Blind and adaptive image restoration in the framework of a multiscale Gabor representation, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1994, 306 - 309
    [192] I. Kopriva. Approach to blind image deconvolution by multiscale subband decomposition and independent component analysis, J. Opt. Soc. Am. A 24 (2007) 973-983
    [193] I. Kopriva, Q. Du, H. Szu, et. al. Independent component analysis approach to image sharpening in the presence of atmospheric turbulence, Opt. Commun., 2004, 233: 7-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700