高同型半胱氨酸血症大鼠MMP-2及MMP-3的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用蛋氨酸负荷建立大鼠高同型半胱氨酸(hyperhomoeysteine, HHcy)血症模型,测定建模前后血中hcy、基质金属蛋白酶-2及基质金属蛋白酶-3(matrixmetallopoeinases, MMPs)的表达,探讨同型半胱氨酸诱发动脉粥样硬化的相关机制。
     方法:取健康雄性Wistar大鼠30只,随机分为对照组与蛋氨酸组及干预组,每组10只。对照组给予普通饲料,蛋氨酸组普通饲料中添加2%蛋氨酸喂养,干预组普通饲料中添加2%蛋氨酸喂养同时每只鼠每日给予叶酸0.5mg,维生素B12 (VitB12) 25ug灌胃,实验期为8周。第8周末,禁食12h,25%乌拉坦腹腔注射麻醉,颈总动脉取血5mL,3000r/min,离心10min,分离血清,-20℃冻存,采用ELISA法批量测定指标,所得数据进行组间比较。用HE染色法对颈总动脉进行病理学检查。
     结果:(1)蛋氨酸组中Hcy (20.57±4.34μmol/L)、MMP-2(5470.77±1023.11pg/ml)比对照组Hcy (11.63±4.36μmol/L) MMP-2 (3227.87±746.66pg/ml)浓度升高,P<0.001,差异有统计学意义。MMP-3(2.91±0.46ng/ml)也较对照组中MMP-3浓度(2.03±0.51ng/ml)升高,P<0.05,差异有统计学意义。
     (2)干预组中Hcy (16.21±4.41 umol/L)、MMP-2(4030.96±848.32pg/ml)及MMP-3浓度(2.46±0.39ng/ml)比蛋氨酸组降低,P<0.05,差异有统计学意义。
     (3)镜下观蛋氨酸组颈总动脉中膜平滑肌细胞增生排列紊乱,弹力纤维融合。干预组与对照组颈总动脉血管壁未见异常。结论:(1)在蛋氨酸饮食喂养8周后,大鼠血清Hcy浓度比正常饮食时升高,颈动脉切片可见标本镜下观察平滑肌层明显厚于对照组,并侵入内皮下间隙,表明高同型半胱氨酸血症大鼠模型制作成功。
     (2)蛋氨酸组中Hcy、MMP-2及MMP-3的浓度较正常饮食时升高,结合蛋氨酸组血管镜下表现,说明高同型半胱氨酸血症可以影响血清基质金属蛋白酶的表达,从而促使细胞外基质降解及血管壁重塑,进而促进了动脉粥样硬化。
     (3)干预组中Hcy、MMP-2及MMP-3蛋氨酸组浓度降低,说明可以通过补充VitB12和叶酸来有效改善高同型半胱氨酸血症,从而预防动脉粥样硬化。
Objective:To establish a rat model of hyperhomoeysteine (Hhcy) and investigate the expression of blood homoeysteine (Hcy)、matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-3(MMP-3) before and after modelling to explore how Hhcy induces atherosclerosis.
     Methods:30 healthy male Wistar rats were selected and randomly divided into three groups: control group、methionine group and intervention group. Control group was fed on ordinary feeding. Methionine group was fed on ordinary feeding plus 2% methionine. Intervention group was fed on ordinary feeding plus 2% methionine, as well as 0.5 mg folic acid and 25ug vitamin B12 (VitB12) by gastric perfusion every day. The rats were treated for 8 weeks. At the end of 8 weeks, absolute diet for 12h was given to the rats and subject to intraperitoneal injection with 25% urethane.5ml blood was extracted from common carotid artery and centrifuged at 3000r/min for 10 minutes. The serum was collected and stored in-20℃. We measured the concentration of Hcy、MMP-2 and MMP-3 by enzyme-linked immuno sorbent assay (ELISA), then compared these data. HE staining was performed to observe the pathology of common carotid artery.
     Results:
     (1) The levels of Hcy and MMP-2 in methionine group were 20.57±4.34μmol/L and 5470.77±102 3.11pg/ml, which were significantly higher than those in control group, P<0.001 (Hcy:11.63±4.36μmol/L and MMP-2:3227.87±746.66 pg/ml). The level of MMP-3 in methionine group was 2.91±0.46ng/ml, which was significantly higher than that in control group, P<0.05(MMP-3:2.03±0.51ng/ml).
     (2) The levels of Hcy、MMP-2 and MMP-3 in intervention group were 16.21±4.41μmol/L, 4030.96±848.32pg/ml and 2.460.39ng/ml respectively. The differences of the three data in interven-tion group and methionine group were statistically significant, P<0.05.
     (3)The proliferation of the smooth muscle cells was observed by microscope and was found that in midlayer of common carotid artery in methionine group were irregularly organized, and the elastic fiber was fusied. The common carotid artery walls in intervention group and control group were normal.
     Conclusion:
     (1) The level of Hcy in rats fed on methionine feed for 8 weeks is higher than that on ordinary feeding. Smooth muscle layer is much thicker in rats with methionine feeding than those in control group, which suggests that the model of rats with Hhcy is successful.
     (2) The levels of Hcy、MMP-2 and MMP-3 in rats fed on methionine feeding are were higher than those on ordinary feeding. In addition, We conclud that Hhcy can promote atherosclerosis by influencing the expression of MMP to cause the degradation of extracellular matrix and the remodelling of blood vessel wall.
     (3) The levels of Hcy、MMP-2 and MMP-3 in intervention group are lowerer than those in methionine group, suggesting that VitB12 and folic acid could prevent atherosclerosis by reducing the level of Hcy.
引文
[1]Boushey CJ.A quantitative assessment of plasma homocysteine as a risk factor for vascular disease:probable benefits of increasing folic acid intakes.[J].JAMA.1996,275(9):681—683.
    [2]Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocys2 teinemia and its role in the development of atherosclerosis [J]. Clin Biochem,2003,36 (6):4312441.
    [3]YaoJ, XiongS, KlosK, et al..MultiPle signaling pathways involved in activation of matrix metalloproteinase29(MMP29)by heregulin2betal in human breast cancer cells. Oneogene, 2001,20(56):8066-8074
    [4]ReynoldsM A, Kirchick H J, Dahlen J R, etal. Early biomarkers of stroke.[J]. Clin Chem, 2003,49 (10):1733-1739.
    [5]KalelaA, Koivu TA, Sisto T, et al. Serum matrixmetalloproteinase-9 concentration in angiographically assessed coronary artery disease [J]. Scand J Clin Lab Invest,2002,62 (5):337-342.
    [6]孟冬梅 孙根义 同型半肤氨酸对人血管内皮细胞基质金属蛋白酶表达的影响:[硕士学位论文].天津:天津医科大学,2006
    [7]黎明,陈健,李裕舒等,叶酸降低高同型半胱氨酸血症大鼠主动脉单核细胞趋化蛋白-1的表达.[J]中国病理生理杂志2007,23(4):678-68
    [8]MalinowMR, Bostom AG, KraussRM. Homocysteine, diet ancardiovascular diseases:a statenent for healthcare professionafrom theNutrition Committee, American HeartAssociation[J].Circulation,1999,99(2):178-182.
    [9]苏化庆,杨期明,杨期东.高同型半胱氨酸血症与脑血管病发病机制研究进展[J].脑与神经疾病杂志,2005,13(5):397.
    [10]Guthikonda S, Haynes W G. Homocysteine as a novel risk factor for atherosclerosis [J]. Curr Opin Cardiol,1999,14(4):283.
    [11]Morita T, Mitsialis SA, KoikeH, et a.l Carbon monoxide con-trols the proliferation of hypoxic vascular smooth muscle cells[J]. J BiolChem,1997,272(52):32804-32809.
    [12]Kuzuya M,Lguchi A.Role of matrix metalloproteinases in vascular remodeling.[J] Atheroscler Thromb,2003,10:275-282
    [13]AIMES R T, QUIGLEY J P. Matrixmetalloproteinase-2 is an intersti-tial collagenase. Inhibitor-free enzyme catalyzes the cleavage ofcollagenfibrils and soluble native type I collagen generating the specific 3/4-and 1/4-length fragments[J]. JBiolChem,1995,270(11):5872-5876.
    [14]GROTE K, FLACH I, LUCHTEFELD M,et al. Mechanical stretchenhancesmRNA expression and proenzyme release ofmatrix metallo-proteinase-2 (MMP-2) viaNAD(P)H oxidase-derived reactive oxygenspecies[J]. Circ Res,2003,92(11):e80-e86.
    [15]ISHIKAWA Y, ASUWA N, ISHIIT,etal. Collagen alteration in vas-cular remodeling by hemodynamic factors[J]. VirchowsArch,2000,437(2):138-148.
    [16]YoshiyamaY,AsahinaM,HattoriT.Selectivedistribution omatrixmetalloproteinase-3 (MMP-3) in Alzheimer's diseasebrain[J]. ActaNeuropathol (Berl),2000,99(2):91-95.
    [17]BondM, ChaseA J, BakerAH, eta.l Inhibition of transcrip-tion factor NF-kappaB reduces matrix metalloproteinase-1,-3and-9 production by vascular smooth muscle cells[J].Cardiovasc Res,2001,50(3):556-565.
    [18]Gomis-Ruth F X, Maskos K, BetzM, et a.l Mechanism ofinhibition of the humanmatrixmetalloproteinase stromelysin-1byTIMP-1[J]. Nature,1997,389(6646):77-81.
    [19]Rosenberg GA, Navratil M,Barone F,et al. Proteolytic cascade en-zymes increase in focal cerebral ischemia in rats. J Cereb Blood Flow Metab,1996,16(3):360-366
    [20]ReynoldsM A, Kirchick H J, Dahlen J R, et al. Early biomarkers of stroke[J]. Clin Chem, 2003,49 (10):1733-1739.
    [21]KalelaA, Koivu TA, Sisto T, et al. Serum matrixmetalloproteinase-9 concentration in angiographically assessed coronary artery disease [J]. Scand J Clin Lab Invest,2002,62 (5):337-342.
    [22]任立群,王金凤,李永梅等,同型半胱氨酸对血管平滑肌细胞基质金属蛋白酶1及金属蛋白酶组织抑制剂1的影响.[J].中国组织工程研究与临床康复.2007,11(27):5455-5457
    [23]Rabinovitich M. It all begins with EVE(endogenous vascular elastase) 1996.[J]Isr J Med Sci,32(10),803-808
    [24]Ueda T,Guo H,Lee JD,et al.Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells.Circ J.2006 Jan;70(1):141-6
    [1]Rosenberg GA, Estrada EY, Dencoff JE. Matrixmetalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke,1998,29:2189~2195
    [2]Robert V,Nagase H.Matrix metalloproteinases and tissue inhibitors of metalloproteina ses:structure,function and biochemistry.Circ Res,2003,92:827-839
    [3]Kuzuya M,Lguchi A.Role of matrix metalloproteinases in vascular remodeling.J Atheroscler Thromb,2003,10:275-282
    [4]Pasterkamp G,Schoneveld AH,Hijnen DJ,et al.Atherosclerotic ar-terial remodeling and the localization of macrophages and matrixmetalloproteinases 1,2 and 9 in the human coronary artery.Atherosclerosis,2000,150:245-253
    [5]任冰稳.动脉粥样硬化与基质金属蛋白酶[J].中国循环杂志.2002,17(1):73-74.
    [6]杨彬,马颖哲,等.基质金属蛋白酶与动脉粥样硬化[J].吉林大学学报(医学版).2004,30(5):831-834.
    [7]Schoeuhagen P,Ziada KM,Kapadia SR,et al.Extent and direction ofarterial remodeling in stable versus unstable coronary syndromes:anintracoronaryultrasoundstudy.Circulation, 2000,101:598-603
    [8]Pyo R,Lee JK,Shipley JM,et al.Targeted gene disruption of matrixmetalloproteinase-9 (gelatinase B)suppresses development of exper-imental abdominal aortic aneurysms.J Clin Invest,2000,105:1641-1649
    [9]Silence J,Collen D,Lijnen HR.Reduced atherosclerotic plaque butenhanced aneurysm formation in mice with inactivation of the tissueinhibitor of metalloproteinase-1(TIMP-1) gene.Circ Res,2002,90:897-903
    [10]Lemaitre V,Soloway PD,D'Armiento.Increased medial degradationwith pseudo-aneurysmformation in apolipoprotein E-knockout micedeficient in tissue inhibitor of metalloproteinase-1.Circulation,2003,107:333-338
    [11]Lemaitre V,O'Byrne TK,Borczuk AC,et al.ApoE knockout miceexpressing human matrix metalloproteinase-1 in macrophages haveless advanced atherosclerosis.J Clin Invest,2001,107:1227-1234
    [12]Brown DL,Hibbs MS,Kearney M,et al.Identification of 92-kdgelatinase in human coronary atherosclerotic lesions:association ofactive enzyme synthesis with unstable angina.Circulation,1995,91:2125-2131
    [13]ZengB,Prasan A,FungKC,et al.Elevated circulating levels of ma-trimetalloproteinase-9 and-2 in patients with symptomatic coro-naryarterydisease.Intern Med J,2005,35:331-335
    [14]Higo S,Uematsu M,Yamagishi M,et al.Elevation of plasma matrixmetalloproteinase-9 in the culprit coronaryarteryin patients with a-cute myocardial infarction. Circ J,2005,69:1180-1185
    [15]Romanic AM, White RF, ArlethAJ,et al.Matrixmetalloproteinase expressio increases after cerebral focal ischemia in rats. Inhibition ofma-trix metalloproteinase-9 reduces infarct size. Stroke,1998,29 (8):1020~1030
    [16]Rosenberg GA,NavratilM. Metalloproteinase inhibition blocks edema inintracerebral hemorrhage in the rat. Neurology,1997,48:921~926
    [17]Bruno G, Todor R, Lewis I,et al. Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg,1998,89:431~440
    [18]Kim S, Singh M, Huang J,et al. Matrix metalloproteinase-9 in cere-bral aneurysms. Neurosurgery,1997,41:642~647
    [19]Todor DR, Lewis I, Bruno G,et al.Identification of a serumgelatinaseassociated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2Stroke,1998,29:1580~1583
    [20]Newman KM, Jean-Claude J, Li H,et al. Cellular localization of matrixmetalloproteina ses in the abdominal aortic aneurysm wall. J VascSurg,1994,20:814~820
    [21]金霞,张健慧.基质金属蛋白酶基因多态性的研究进展[J].国外医学遗传学分册.2005,28(2):76-79.
    [22]Romanic AM, Madri JA. Extracellular matrix-degrading proteinases inthe nervous system. Brain Pathol,1994,4:145~156
    [23]Rosenberg GA, Navratil M,Barone F,et al. Proteolytic cascade en-zymes increase in focal cerebral ischemia in rats. J Cereb Blood FlowMetab,1996,16(3):360~366
    [24]Clark AW, Krekoski CA, Bou SS,et al. Increased gelatinase A(MMP-2) and gelatinase B (MMP-9) activities in human brain after fo-cal ischemia. Neurosci Lett,1997,238(1-2):53~56
    [25]武国、时德.基质金属蛋白酶及其抑制剂与血管再狭窄[J].中华普通外科杂志,2007,22(5):398-400.
    [26]Unemori EN, Bouhana KS, Werb Z. Vectoral secretion of extracellularmatrix proteins, matrix-degrading proteinases, and tissue inhibitor ofmetalloproteinases by endothelial cells. J Biol Chem,1990,265:445~451
    [27]任冰稳.动脉粥样硬化与基质金属蛋白酶[J].中国循环杂志.2002,17(1):73-74.
    [28]杨彬,马颖哲,等.基质金属蛋白酶与动脉粥样硬化[J].吉林大学学报(医学版).2004,30(5):831-834.
    [29]Matresian LM. The matrix-degrading metalloproteinases Bioessays.,1992,14:455~463
    [30]WillH, Atkinson SJ, Butler GS,et al. The soluble catalytic domain ofmembrane type 1 matrixmetalloproteinase cleaves the propeptide of pro-gelatinase Aand initiates autoproteolytic activation:regulation byTIMP-2 and TIMP-3. J Biol Chem,1996,271:17119~17123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700