吗啡引起伏隔核抗坏血酸释放的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吗啡(morphine)对中枢神经系统产生广泛而复杂的作用。抗坏血酸(ascorbic acid, AA)具有抗氧化以及酶的辅助因子等多种作用,并且在中枢神经系统中发挥着重要的神经调质作用。调节AA的释放可能是成瘾性药物的共同特征。我们研究发现大鼠伏隔核(nucleus accumbens, NAc)透析给予吗啡与全身给予吗啡时引起NAc内AA释放的结果不同,提示不同方式给予吗啡引起NAc中AA的释放存在不同的调节机制。基于此,本文从神经生化、行为学和分子生物学等多个水平研究吗啡引起NAc内AA释放的作用机制,以期为吗啡中枢作用机制研究提供理论依据。
     首先采用脑微透析结合高效液相色谱-电化学检测和高效液相色谱-荧光检测方法考察了局部NAc透析给予吗啡引起NAc内AA、谷氨酸(glutamate, Glu)、γ-氨基丁酸(γ-aminubutiric acid, GABA)释放的影响。随之考察阿片受体拮抗剂纳洛酮对吗啡作用的影响。结果表明,吗啡(100μM,1mM)能够剂量依赖性地增加NAc内AA和GABA的释放,降低Glu的释放。给予纳洛酮能够显著抑制吗啡引起NAc内AA释放的增加,同时能够抑制吗啡引起的GABA释放的升高,但不影响吗啡引起的Glu的降低。提示吗啡至少是部分通过作用于阿片受体,尤其是NAc内p受体,而产生的对AA和GABA释放的一系列作用。
     进一步采用海人藻酸(kainic acid, KA)损毁NAc考察其对吗啡作用的影响。结果表明,NAc损毁抑制了吗啡引起NAc内AA和GABA释放的增加,但不影响吗啡引起的Glu释放降低。提示,KA损毁可能导致了NAc内主要的GABA神经元的缺失从而产生一系列效应。为了验证上述推测,又采用NAc局部注射GABAA受体激动剂muscimol考察其对NAc损毁后吗啡作用的影响。结果表明,muscimol能够逆转KA损毁NAc引起的吗啡对AA和GABA释放的抑制作用,提示NAc内GABA能系统在一定程度上参与了吗啡引起的NAc内AA的释放。
     此外,采用KA损毁NAc的方法,考察其在影响吗啡引起生化水平改变的同时,是否会对吗啡引起的行为学改变产生影响。结果表明,KA损毁NAc能够增加单次吗啡引起的大鼠水平和垂直运动次数;能够部分地阻断大鼠急性成瘾时的戒断症状;强化吗啡对小鼠的镇痛作用;不影响吗啡诱导的小鼠行为敏化的形成,但能阻断吗啡诱导的小鼠行为敏化表达。提示NAc作为中脑边缘重要核团,在吗啡引起的相关行为学中发挥着重要作用。
     NAc接受来自其他脑区的神经投射。本文进一步考察了前额叶皮层Glu能系统和腹侧被盖区(ventral tegmental area, VTA)对伏隔核的神经投射对吗啡引起AA释放的影响。结果表明,前额叶皮层-NAc的Glu能神经投射降低NAc内的Glu基础释放,不影响GABA基础释放,进一步确证了前额叶皮层-NAc的谷氨酸能神经投射不是参与吗啡作用的主要因素。VTA内注射GABAA受体拮抗剂bicuculine和激动剂muscimol影响NAc中AA的基础释放,muscimol不影响吗啡的作用,但bicuculine能够拮抗吗啡引起的NAc中AA和GABA释放的增加;同时,VTA内注射bicuculine显著升高多巴胺(dopamine, DA)的基础释放,降低NAc中GABA的基础释放,而muscimol作用与之相反。提示VTA到NAc的神经投射可能参与了吗啡引起的NAc中AA释放过程。
     已知脑内AA主要是通过Na+依赖的AA转运体(SVCT2)转运入脑和神经元从而发挥作用的,并且能够逆浓度梯度在细胞内聚集AA。本文进一步采用RT-PCR、Western blot的方法,考察了上述研究过程中吗啡对脑内AA转运体表达的影响。结果表明,全身给予吗啡能够剂量依赖性地增加纹状体中SVCT2 mRNA和蛋白的表达;NAc透析给予吗啡能够增加NAc内SVCT2 mRNA和蛋白的表达;NAc给予纳洛酮和VTA给予bicuculine能够拮抗吗啡引起的NAc中SVCT2 mRNA和蛋白表达的增加。提示,在吗啡通过作用于受体及神经系统等引起NAc内AA水平改变的过程中,SVCT2可能发挥着重要作用。
     综上,NAc内的GABA能神经系统参与了吗啡引起的NAc中AA的释放;KA损毁NAc不但改变吗啡的神经生化水平作用,还影响吗啡镇痛和行为敏化的行为学作用;前额叶皮层-NAc的Glu能神经通路在吗啡引起NAc内AA释放过程中可能不发挥主要作用,而VTA-NAc的DA能神经通路参与了吗啡的作用。在吗啡引起AA释放的同时,对SVCT2的表达也产生影响。上述研究不仅有助于深入了解吗啡对NAc内AA释放的调节机理,同时也为进一步了解吗啡中枢作用提供依据。
Administrated with morphine can produce many complex neurobiological effects in the central nervous system (CNS). In recent years, increasing evidence shows that ascorbic acid (AA) is a potent neuromodulator in the central nervous system to modulate some nervous activities. Drugs, such as morphine, induce AA release in the nucleus accumbens (NAc) after acute administration, suggesting that AA release in NAc might be a common feature in response to addictive drugs. Previous studies have shown the different effects of morphine on AA level following local infusion. The phenomenon indicates the existence of different regulating mechanisms of morphine in this nuclear. To further understand the neuromechanisms underlying morphine, in the present study we investigated the pharmacological, neuroanatomical, neurobiochemical and molecular alterations in the NAc following morphine administration.
     Firstly, the roles of the NAc glutamatergic pathways in local infusion of morphine-induced AA, glutamate (Glu) andγ-aminobutyric acid (GABA) release were studied by using microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection and HPLC with fluorescent detection. The results show that morphine (100μM,1 mM) dose-dependently increases the levels of AA and GABA, and decreases the level of Glu in the NAc. However, the effects of morphine on AA and GABA release could be reversed by naloxone. The results indicate that opioid receptor was involved in morphine-induced AA release in the NAc.
     To further investigate the effects of morphine, the method of NAc lesioned by kainic acid (KA) was used in this study. KA lesions eliminated the effects of morphine on the increasing level of AA and GABA in the NAc, but not the Glu. KA is thought to destroy the GABAergic neuronal cells. The muscimol (100 ng) was administrated to the NAc to prove the hypothesis. It was shown that muscimol could reverse the effect of KA lesion on morphine-induced AA and GABA release, indicating that GABAergic system in the NAc is involved in the morphine-induced AA release.
     In the present study, we also investigated the effects of KA lesion on morphine induced behavioral sensitivity. In the test of locomotor activity, lesions of NAc affected the locomotor activity of horizontal movement induced by morphine. Meanwhile, NAc lesions enhanced the pain threshold induced by morphine (5 mg/kg). In the behavioral sensitization tests, lesions of NAc blocked the induction of behavioral sensitization by repeated morphine, but not the hyperactivity by acute morphine and the induction of behavioral sensitization.
     With the consideration of the neuron projection in the limbic midbrain, we also examine the effects of medial prefrontal cortex (mPFC) and ventral tegmental area (VTA)-projection to the NAc on the AA release induced by morphine. Undercutting the mPFC could cut down the glutamatergic cortico-accumbens pathways. While the results showed it did not affect morphine-induced AA release in the NAc. Bicuculline (150 ng), the GABAA receptor antagonist, could inactivate GABAA receptors located on GABA interneurons, inhibit their activity and then, in turn, disinhibit the activity of DA cells, and increase the dopamine (DA) release in the NAc, which finally was related to the effects of blocking the AA release induced by morphine in the NAc. It was indicated that the effect of morphine on AA release in the NAc is partically regulated by the GABAA receptor-mediated action of DA afferents from the VTA.
     AA is transported into the brain and neurons via the sodium-dependent vitamin C transporter 2 (SVCT2), which causes accumulation of AA within cells against the concentration gradient. In this study, we also investigate the effects of morphine on the mRNA and protein expression of SVCT2. The results show that morphine (i.p.) significantly increase the expression of SVCT2 in the striatum, but not the NAc, while, morphine (1mM) significantly increased the expression of SVCT2 in the NAc. Naloxone (0.4 mM) and bicuculine (150 ng) could block the effect of morphine on the SVCT2, indicating an important role of SVTC2 in the AA release.
     In conclusion, the NAc is a key nuclear involved in the morphine-induced AA release, as well as the behavioral activity induced by morphine. The mediation may be related to the GABAergic system in the NAc, which may be contributed to the morphine-induced release of AA and GABA in the NAc. Moreover, this action of morphine in the NAc is regulated by the GABAA receptor mediated action of DA afferents from the VTA. In addition, the level of SVCT2 was correspondly changed during the procedure of morphine-induced AA release. Accordingly, several mechanisms are involved in the morphine-induced AA release in the NAc, which might be a potential target for treatment of the neurological disorders induced by morphine-like compounds.
引文
Alaei ZH, Nasimi A, Amini H, Ahmadiani A. Ascorbate reduces morphine-induced extracellular DOPAC level in the nucleus accumbens:A microdialysis study in rats. Brain Res.2005,1053: 62-66
    De Angeli L. Ascorbic acid and a typical antipsychotic drugs:modulation of aminopeptine-induced behavior in mice. Brain Res.1995,670:303-307
    Angelow S, Haselbach M, Galla HJ. Functional characterisation of the active ascorbic acid transport into cerebrospinal fluid using primary cultured choroids plexus cells. Brain Res. 2003,988:105-113
    Aono Y, Saigusa T, Mizoguchi N, Iwakami T, Takada K, Gionhaku N, Oi Y, Ueda K, Koshikawa N, Cools AR. Role of GABAA receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freelymoving rats. Eur J Pharmacol. 2008,580:87-94
    Astuya A, Caprile T, Castro M, Salazar K, Garcia MD, Reinicke K, Rodriguez F, Vera JC, Millan C, Ulloa V, Low M, Martinez F, Nualart F. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. J Neurosci Res.2005,79:146-156
    Atlante A, Gagliardi S, Minervini GM, Ciotti MT, Marra E, Calissano P. Glutamate neurotoxicity in rat cerebellar granule cells:a major role for xanthine oxidase in oxygen radical formation. J Neurochem.1997,68:2038-2045
    Bano S, Parihar MS. Reduction of lipid peroxidation in different brain regions by a combination of a-tocopherol and ascorbic acid. J Neural Transm.1997,104:1277-1286
    Basbaum AI, Fields HL. Endogenous pain control system:Brainstem spinal pathway and endorphin circuity. Annu Rev Neurosci.1984,7:309-338
    Baliki MN, Geha P Y, Fields HL, Apkarian AV. Predicting Value of Pain and Analgesia:Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain.2010,66: 149-160
    Basse-Tomusk A, Rebec GV. Corticostriatal and thalamic regulation of amphetamine-induced ascorbate release in the neostriatum. Pharmacol Biochem Behav.1990,35:55-60
    Berger UV, Lu XC, Liu W, Tang Z, Slusher BS, Hediger MA. Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain. J Neurochem.2003,86:896-906
    Berhow MT, Russell DS, Terwilliger RZ, Terwilliger D, Beitner-Johson DW, Lindsay SRM, Nestler EJ. Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience.1995,68:969-979
    Bigelow JC, Brown DS, Wightman RM. Gammaaminobutyric acid stimulates the release of endogenous ascorbic acid from rat striatal tissue. J Neurochem.1984,42:412-419
    Bielski BH, Allen AO, Schwarz HA. Mechanism of disproportionation of ascorbate radicals. J Am Chem Soc.1981,103:3516-3518
    Bird ED, Barnes J, Iversen LL, Spokes EG, MacKay AVP, Shepherd M. Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferaseactivity in schizophrenia and related psychoses. Lancet.1977,310:1157-1159
    Brazell MP, Mitchell SN, Joseph MH, Gray JA. Acute administration of nicotine increases the in vivo extracellular levels of dopamine,3,4- dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat:comparison with caudate-putamen. Neuropharmacology.1990,29:1177-1185
    Brenhouse H, Montalto S, Stellar J. Electrolytic lesions of a discrete area within the nucleus accumbens shell attenuate the long-term expression, but not early phase, of sensitization to cocaine. Behav Brain Res.2006,170:219-223
    Broekkamp CL, Phillips AG. Facilitation of self-administration behavior following intracerebral microinjections of opioids into the ventral tegmental area. Pharmacol Biochem Behav.1979, 11:289-295
    Cadoni C, Di Chiara G. Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and the dorsal caudate putamen in rats sensitized to morphine. Neuroscience. 1999,90:447-455
    Cador, M, Bjijou Y, Stinus L. Evidence of a complete independene of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience.1995,65:385-395
    Cammack J, Ghasemzadeh B, Adams RN. The pharmacological profile of glutamate-evoked ascorbic acid efflux measured by in vivo electrochemistry. Brain Res.1991,565:17-22
    Caprule T, Salazar K, Astuya A, Cisternas P, Silva-Alyarez C, Montecinos H, Millan C, de los Angeles Garcia M, Nualart F. The Na+-dependent L-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids. J Neurochem.2009,108:563-577
    Carboni E, Lmperato A, Perezzani L, Di Chiara G. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience.1989,28:653-661
    Castro M, Caprile T, Astuya A, Millan C, Reinicke K, Vera JC, Vasquez O, Aguayo LG, Nualart F. High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem.2001,78:815-823
    Chang JY, Zhang L, Janak PH, Woodward DJ. Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats. Brain Res.1997, 754:12-20
    Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentration in the mesolimbic system of freely moving rats. PNAS.1988,85:5274-5278
    Cha EY, Mouledous L, Harris JR, Weech MA, Gutstein HB. Nitroglycerin inhibits the development of morphine tolerance and dependence in rats. Pharmacol Biochem Behav.2003, 74:551-557
    Chatterjee IB, Majumder AK, Nandi BK, Subramanian N. Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci.1975,258:24-47
    Cheatwood JL, Corwin JV, Reep RL. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res.2005,1036:90-100
    Chefer VI, Kieffer, BL, Shippenberg TS. Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice. Eur J Neurosci.2003,18:1915-1922
    Chen BT, Rice ME. Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area. J Neurochem.2002,81: 158-169
    Christensen JC, Wang Z, Rebec GV. γ-Aminobutyric acid infusion in substantia nigra pars reticulata in rats inhibits ascorbate release in ipsilateral striatum. Neurosci Lett.2000,280: 191-194
    Churchill L, Dilts RP, Kalivas PW. Autoradiographic localization of gamma-aminobutyric acid-A receptors within the ventral tegmental area. Neurochem Res.1992,17:101-106
    Ciani E, Groneng L, Voltattorni M, Rolseth V, Contestabile A, Paulsen RE. Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res.1996,728:1-6
    Consolo S, Sieklucka M, Fiorentini F, Forloni G, Ladinsky H. Frontal decortication and adaptive changes in striatal cholinergic neurons in the rats. Brain Res.1986,363:128-134
    Cotman CW, Monaghan DT. Anatomical organization of excitatory amino acid receptors and their properties. Adv Exp Med Biol.1986,203:237-252
    Coutinho-Netto J, Abdul-Ghani AS, Bradford HF. Morphine suppression of neurotransmitter release evoked by sensory stimulation in vivo. Biochem Pharmacol.1982,31:1019-1023
    Dai F, Yang JY, Gu PF, Hou Y, Wu CF. Effects of druginduced ascorbic acid release in the striatum and the nucleus accumbens in hippocampus-lesioned rats. Brain Res.2006,1125:163-170
    David V, Durkin TP, Cazala P. Rewarding effects matergic antagonists into the ventral tegmental area revealed by an intracranial self-administration paradigm in mice. Eur J Neurosci.1998, 10:1394-1402
    Deana R, Bharaj BS, Verjee ZH, Galzigna L. Changes relevant to catecholamine metabolism in liver and brain of ascorbic acid deficient guineapigs. Int J Vitam Nutr Res.1975,45:175-182
    Desole MS, Miele M, Enrico P, Esposito G, Fresu L, De Natale G, Miele E. Investigations into the relationship between the dopaminergic system and ascorbic acid in rat striatum. Neurosci Lett.1991,127:34-38
    Desole MS, Miele M, Enrico P, Fresu L, Esposito G, De Natale G, Miele E. The effects of cortical ablation on Damphetamine- induced changes in striatal dopamine turnover and ascorbic acid catabolism in the rat. Neurosci Lett.1992,139:29-33
    Desole MS, Miele M, Enrico P, Fresu L, Esposito G, De Natale G Miele E. The effects of cortical ablation on Damphetamine-induced changes in striatal dopamine turnover and ascorbic acid catabolism in the rat. Neurosci Lett.1992,139:29-33
    Devine DP, Leone P, Pocock D, Wise RA. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release:in vivo microdialysis study. J Pharmacol Exp Ther.1993,266:1236-1246
    Diliberto EJ, Jr, Allen PL. Mechanism of dopamine-beta-hydroxylation:semidehydro ascorbate as the enzyme oxidation product of ascorbate. J Biol Chem.1981,256:3385-3393
    Ding M, Haglid KG, Hamberger A. Quantitative immunochemistry on neuronal loss, reactive gliosis and BBB damage in cortex/striatum and hippocampus/amygdal after systemic kainic acid administration. Neurochem Int.2000,36:313-318
    Dixon SJ, Wilson JX. Adaptive regulation of ascorbate transport in osteoblastic cells. J Bone Miner Res.1992,7:675-681
    Doherty M, Gratton A. Differential involvement of ventral tegmental GABAA and GABAB receptors in the regulation of the nucleus accumbens dopamine response to stress. Brain Res. 2007,1150:62-68
    Echo JA, Lamonte N, Ackerman TF, Bodnar RJ. Alterations of food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area. Physiol Behav. 2002,76:107-116
    Eipper BA, Mains R.E, Glembotski CC. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. PNAS.1983,80:5144-5148
    Elliott K, Hyrmnsky A, Inturrisi CE. Dextromethorphan attenuates and reverses analgesic tolerance to morphine. Pain.1994,59(3):361-368
    Enrico P, Mura MA, Esposito G, Serra P, Migheli R, De Natale G, Desole MS, Miele M, Miele E. Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric acid release in freely moving rats. Brain Res.1998,22: 94-102
    Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction:from actions to habits to compulsion. Nat Neurosci.2005,8:1481-1489
    Fan SF, Yazulla S. Modulation of voltage-dependent K+ currents (IK(Ⅴ)) in retinal bipolar cells by ascorbate is mediated by dopamine D1 receptors. Visual Neurosci.1999,16:923-931
    Ferraro TN, Golden GT, Berrettini WH, Gottheil E, Yang CH, Cuppels GR, Vogel WH. Cocaine Intake by Rats Correlates with Cocaine-Induced Dopamine Changes in the Nucleus Accumbens Shell. Pharmacol Biochem Be.2000,66:397-401
    Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci.2007,30:289-316
    Franken IHA, Jan B, van den Brink W. The role of dopamine in human addiction:From reward to motivated attention. Eur J Pharmacol.2005,526:199-206
    Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Second ed Academic San Diego.1997
    Garcia ML, Salazar K, Millan C, Rodriguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F. Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia.2005,50:32-47
    Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol.2008,75:218-265
    Gear RW, Levine JD. Nucleus accumbens facilitates nociception. Exp Neurology.2011, ⅹⅹⅹ: xxx-xxx (In press)
    Gear RW, Levine JD, Rostral ventral medulla cholinergic mechanism in pain induced analgesia. Neurosci Lett.2009,464:170-172
    Ghasemzadeh B, Cammack J, Adams RN. Dynamic changes in extracellular fluid ascorbic acid monitored by in vivo electrochemistry. Brain Res.1991,547:162-166
    Glass MJ, Lane DA, Colago EE, Chan J, Schlussman SD, Zhou Y, Kreek MJ, Pickel VM. Chronic administration of morphine is associated with a decrease in surface AMPA GluR1 receptor subunit in dopamine D1 receptor expressing neurons in the shell and non-D1 receptor expressing neurons in the core of the rat nucleus accumbens. Exp Neurol.2008,210:750-761
    Glembotski CC. The role of ascorbic acid in the biosynthesis of the neuroendocrine peptides a-MSH and TRH. Ann NY Acad Sci.1987,498:54-62
    Grace AA, Bunney BS. Paradoxical GABA excitation of nigral dopaminergic cells:indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol.1979,59:211-218
    Gray WP, Sundstrom LE. Kainic acid increases the proliferation of Granule cell progenitors in the dentate gyrus of the adult rat. Brain Res.1998,790:52-59
    Groenewegen HJ, Wright Cl, Beijer AV, Voorn P. Convergence and segregation of ventral striatal inputs and outputs. Ann NY Acad Sci.1999,877:49-63
    Gromova EA, Semenova TP, Grishchenko NI. Effect of acute and chronic deprivation of catecholaminergic system activity induced by 6-hydroxydopamine on the behavior of the rat. Zh Vyssh Nerv Deiat Im I Pavlova.1985,35 (60):1133-1141
    Grunewald RA. Ascorbic acid in the brain. Brain Res Rev.1993,18:123-133
    Guan XM, McBride WJ. Serotonin micro infusion into the ventral tegmental area increases accumbens dopamine release. Brain Res Bull.1989,23:541-547
    Gu PF, Wu CF, Yang JY, Shang Y, Hou Y, Bi XL, Dai F. Differential effects of drug-induced ascorbic acid release in the striatum and nucleus accumbens of freely moving rats. Neurosci Lett.2006,399:79-84
    Gu PF, Yang JY, Wu CF, Li W, Shang Y. Frontal decortication eliminates drug-induced ascorbic acid release in the striatum but not the nucleus accumbens of freely moving rats. Brain Res. 2005,1033:194-201
    Hack SP, Vaughan CW, Christie MJ. Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro. Neuropharmacology.2003,45:575-584
    Hao Y, Wu CF, Yang JY. Lesions of the medial prefrontal cortex prevent the induction but not expression of morphine-induced behavioral sensitization in mice. Neurosci Lett.2007,417: 225-230
    Hao Y, Yang JY, Guo M, Wu CF, Wu MF. Morphine decreases extracellular levels of glutamate in the anterior cingulated cortex:an in vivo microdialysis study in freely moving rats. Brain Res. 2005,1040:191-196
    Hao Y, Yang JY, Sun JY, Qi J, Dong YX, Wu CF. Lesions of the medial prefrontal cortex prevent the acquisition but not reinstatement of morphine-induced conditioned place preference in mice. Neurosci Lett.2008,433:48-53
    Hakvoort A, Haselbach M, Galla HJ. Active transport properties of porcine choroid plexus cells in culture. Brain Res.1998,795:247-256
    Harrison FE, May JM. Vitamin C function in the brain:vital role of the ascorbate transporter SVCT2. Free Radical Bio Med.2009,46:719-730
    Harrison FE, Yu SS, Van Den Bossche KL, Li L, May JM, McDonald MP. Elevated oxidative stress and sensorimotor deficits but normal cognition in mice that cannot synthesize ascorbic acid. J Neurochem.2008,106:1198-1208
    Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB Kelley AE. AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core:a context-limited role in the encoding and consolidation of instrumental memory. Learn Memory.2005,12:285-295
    Hillered L, Persson L, Bolander HG, Hallstrom A, Ungerstedt U. Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Neurosci Lett.1988,95:286-290
    Hill KE, Montine TJ, Motley AK, Li X, May JM, Burk RF. Combined deficiency of vitamins E and C causes paralysis and death in guinea pigs. Am J Clin Nutr.2003,77:1484-1488
    Hiroshi T, Yumiko T, Nobuo N, Tetsumei U, Akikazu T. Effects of Nicotine and Footshock Stress on Dopamine Release in the Striatum and Nucleus Accumbens. Brain Res Bull.1998,45: 157-162
    Hoehn SK, Kanfer JN. Effects of chronic ascorbic acid deficiency on guinea pig lysosomal hydrolase activities. J Nutr.1980,110:2085-2094
    Homwitz JM, Tortes G. Cocaethylene:effects on brain systems and behavior. Addict Biol.1999,7: 191-197
    Hooks MS, Jones GH, Hereby SE, Jr Justice JB. Environmental and pharmacological sensitization: effects of repeated administration of systemic or intra-nucleus accumbens cocaine. Psychopharmacol.1993,11:109-116
    Huang NK, Tseng CJ, Wong CG, Tung CS. Effect of acute and chronic morphine on DOPAC and glutamate at subcortical DA terminals in awake rats. Pharmacol Biochem Behav.1997, 56:367-371
    Huda A, Meng F, Devine DP, Watson SJ. Molecular and neuroanatomical properties of endogenous opiate system:implications for treatment of opiate addiction. Seminars in Neurosci.1997,9:70-83
    Huettner JE. Kainate receptors and synaptic transmission. Prog Neurobiol.2003,70:387-407
    Hughes RE, Hurley RJ Jones PR. The retention of ascorbic acid by guinea-pig tissues. Br J Nutr. 1971,26:433-438
    Hyman SE, Malenka RC. Addiction and the brain:the neurobiology of compulsion and its persistence. Nat Rev Neurosci.2001,2:695-703
    Ikemoto S, Murphy JM, Mcbride WJ. Regional differences within the rat ventral tegmental area formuscimol self-infusions. Pharmacol Biochem Behav.1998,61:87-92
    Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior:a unifying interpretation with special reference to reward-seeking. Brain Res Rev,1999,31(1): 6-41
    Iwamoto ET. Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rat:influence of dopaminergic agonists and antagonists. J Pharmacol Exp Ther.1981,217:451-460
    Jackson TS, Xu AM, Vita JA, Keaney JF, Jr. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res.1998,83:916-922
    Jacobs EH, Wardeh G, Smit AB, Schoffelmeer ANM. Morphine causes a delayed increase in glutamate receptor functioning in the nucleus accumbens core. Eur J Pharmacol.2005,511: 27-30
    Johnston PA, Chahl LA. Chronic treatment with ascorbic acid inhibits the morphine withdrawal response in guinea-pigs. Neurosci Lett.1992,135:23-37
    Johnson SW, North RA. Two types of neurones in the rat ventral tegmental area and their synaptic inputs. J Physiol.1992,450:455-468
    Kalivas PW, Duffy P, Eberhardt H. Modulation of A10 dopamine neurons by aminobutyric acid agonists. J Pharmacol Exp Ther.1990,253:858-866
    Kalivas PW. Glutamate systems in cocaine addiction. Curr Opin Pharmacol.2004,4:23-29
    Kalivas PW. Neurotransmitter regulation of dopamine neurons in the VTA. Brain Res Rev.1993, 18:75-113
    Kalivas PW, Sorg BA, Hooks MS. The pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol.1993,4:315-334
    Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev.1991,16:223-244
    Kandel ER, Schwartz JH, Jessell TM. Principle of Neural Science. UAS:Mc-GrawHill Press. 2000:999-1013
    Kelley AE, Berridge KC. The neuroscience of natural rewards:relevance to addictive drugs. J Neurosci.2002,22:3306-3311
    Kelley AE. Ventral striatal control of appetitive motivation:role in ingestive behavior and reward-related learning. Neurosci Biobehav Res.2004,27:765-776
    Kelly PH, Seviour PW, Iversen SD. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res.1975,94: 507-522
    Khanna NC, Sharma SK. Megadoses of vitamin C prevent the development of tolerance and physical dependence on morphine in mice. Life Sci.1983,33:401-404
    Kiyatkin EA. Dopamine in the nucleus accumbens:cellular actions, drug-and behavior-associated fluctuations, and a possible role in an organism's adaptive activity. Behav Brain Res.2002, 137:27-46
    Kiyatkin EA, Rebec GV. Ascorbate modulates glutamate-induced excitations of striatal neurons. Brain Res.1998,812:14-22
    Kolta M, Shreve P, Uretsky N. Effect of pretreatment with amphetamine on the interaction between amphetamine and dopamine neurons in the nucleus accumbens. Neuropharmacol. 1989,28:9-14
    Koob GF. Drugs of abuse:anatomy, pharmacology, and function of reward pathways. Trends Pharmacol Sci.1992,13:177-84
    Koo GF. Drugs of abuse:Anatomy, pharmacology, and function of reward pathways. Trends Pharmacol Sci.1992,13:177-184
    Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science.1988,242: 715-723
    Korkok J, Yan R, Siushansian R, Dixon SJ, Wilson JX. Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter. Brain Res.2000,881:144-151
    Koshiishi I, Mamura Y, Liu J, Imanari T. Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation. Biochim Biophys Acta.1998,1425:209-214
    Kovachich GB, Mishra OP. The effect of ascorbic acid on malonaldehyde formation, K+, Na+, andwater content of brain slices. Exp Brain Res.1983,50:62-68
    Koyama Y, Sugimoto T, Shigenaga Y, Baba A, Iwata H. A morphological study on glutamate-induced swelling of cultured astrocytes:involvement of calcium and chloride ion mechanisms. Neurosci Lett.1991,124:235-238
    Kratzer U, Spanagel R, Schmidt WJ. The effect of acamprosate on the development of morphine-induced behavioral sensitization in rats. Behav Pharmacol.2003,14:351-356
    Kratzing CC, Kelly JD, Kratzing JE. Ascorbic acid in fetal rat brain. J Neurochem.1985,44: 1623-1624
    Kuo CH, Hata F, Yoshida H, Yamatodani A, Wada H. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci.1979,24:911-915
    Lane DA, Reed B, Kreek MJ, Pickel VM. Differential glutamate AMPA-receptor plasticity in subpopulations of VTA neurons in the presence or absence of residual cocaine:Implications for the development of addiction. Neuropharmacology.2011. (in Press)
    Laviolette SR, van der Kooy D. GABAA receptors in the ventral tegmental area control bidirectional reward signaling between dopaminergic and nondopaminergic neural motivational systems. Eur J Neurosci.2001,13:1009-1015
    Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH. Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res. 2003,73:156-165
    Lee L, Kang SA, Lee HO, Lee BH, Jung IK, Lee JE, Hoe YS. Effect of supplementation of vitamin E and vitamin C on brain acetylcholinesterase activity and neurotransmitter levels in rats treated with scopolamine, an inducer of dementia. J Nutr Sci Vitaminol.2001,47: 323-328
    Leite-Moris KA, Fukudome EY, KAPLAN GB. Opiate-induced motor stimulations regulated by gamma-aminobutyric acid type B receptors found in the ventral tegmental area in mice. Neurosci lett.2002,317:1119-1122
    Leone P, Pocock D, Wise RA. Morphine- dopamine interaction:ventral tegmental morphine increases nucleus accumbens dopamine release. Pharmacol Biochem Behav.1991,39: 469-472
    Lerma J. Kainate receptor physiology. Curr Opin Pharmacol.2006,6:89-97
    Levine M, Asher A, Pollard H, Zinder O. Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem.1983,258:13111-13115
    Li JX, Zhang Q, Liang JH. Valproate prevents the induction, but not the expression of morphine sensitization in mice. Behav Brain Res.2004,152:251-257
    Li Yanfei, He Lihua, Chen Qin, Zhou Yifeng. Changes of μ-opioid receptors and GABA in visual cortex of chronic morphine treated rats. Neurosci Lett.2007,428:11-16
    Li Y, Wolf ME. Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav Brain Res.1997,84:285-289
    Li Z, Wu CF, Pei G, Guo YY, Li X. Antagonistic effect of pseudoginsenoside-F 11 on the behavioral actions of morphine in mice. Pharmacol Biochem Behav.2000,66:595-601
    Libby AF, Stone L, The hypoascorbemia-kwashiorkor approach to drug addiction therapy:a pilot study. J Orthomol Psychiatry.1977,6:300-308
    Lino Becerra, David Borsook. Signal valence in the nucleus accumbens to pain onset and offset. Eur J Pain.2008,12:866-869
    Liu J, Wu CF, Liu Wen, Zhang HL, Li CL. Involvement of the corticostriatal glutamatergic pathway in ethanol-induced ascorbic acid release in the rat striatum. Addiction Bio.1999,4: 273-281
    Liu W, Wu CF, Huang M, Xiao K. Opposite effects of sulpiride and SCH 23390 on ethanol-induced striatal ascorbic acid release in intact and 6-hydroxydopamine lesioned rats. Brain Res.2000,869:31-38
    Lonnrot K, Metsa-Ketela T, Molnar G, Ahonen JP, Latvala M, Peltola J, Pietila T, Alho H. The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity. Free Radic Biol Med.1996,21:211-217
    Lothman EW, Collins RC. Kainic acid-induced limbic motor seizures:metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res.1981,218:299-318
    Luo SH, Wang ZY, Kansara V, Pal D, Mitra AK. Activity of a sodium-dependent vitamin C transporter (SVCT) in MDCK-MDR1 cells and mechanism of ascorbate uptake. Int J Pharm. 2008,35:168-176
    Lumper L, Schneider W, Staudinger H. Untersuchungen zur Kinetik der mikrosomalen NADH: Semidehydroascorbat-Oxydoreduktase. Hoppe Seylers Z Physiol Chem.1967,348:323-328
    Mackay AV, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Synder SH. Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiat.1982,39: 991-997
    Majewska MD, Bell JA. Ascorbic acid protects neurons from injury induced by glutamate and NMDA. Neuroreport.1990,1:194-196
    Majewska MD, Bell JA, London ED. Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res.1990,537:328-332
    Ma QP, Han JS. Neurochemical and morphological evidence of antinociceptive neural pathway from nucleus raphe dorsalis to nucleus accumbens in the rabbit. Brain Res Bull.1992,28: 931-936
    Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature.1996,383:819-823
    May JM, Li L, Hayslett K, Qu ZC. Ascorbate transport and recycling by SHSY5Y neuroblastoma cells:response to glutamate toxicity. Neurochem Res.2006,31:785-794
    May JM, Qu ZC, Cobb CE. Extracellular reduction of the ascorbate free radical by human erythrocytes. Biochem Biophys Res.2000,267:118-123
    May JM, Qu ZC, Mendiratta S. Protection and recycling of a-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys.1998,349:281-289
    McNulty AL, Vail TP, Kraus VB. Chondrocyte transport and concentration of ascorbic acid is mediated by SVCT2. BBA-Biomembraines.2005,1712:212-221
    Mefford IN, Oke AF, Adams RN. Regional distribution of ascorbate in human brain. Brain Res. 1981,212:223-226
    Meena H, Nakhate KT, Kokare DM, Subhedar NK. GABAA receptors in nucleus accumbens shell mediate the hyperphagia and weight gain following haloperidol treatment in rats. Life Sci. 2009,84:156-163
    Mefford IN, Oke AF, Adams RN. Regional distribution of ascorbate in human brain. Brain Res. 1981,212:223-226
    Meredith GE. The synaptic framework for chemical signaling in nucleus accumbens. Ann NY Acad Sci.1999,877:140-156
    Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN. Shell and core in monkey and human nucleus accumbens identified with antibodies to cabindin-D28k. J Comp Neurol.1996,365 (4):628-639
    Michaeli A, Yaka R. Dopamine inhibits GABAA currents in ventral tegmental ager dopamine neurons via activation of activation of presynaptic G-protein coupled inwardly-rectifying potassium channels. Neuroscience.2010,165:1159-1169
    Miele E, Miele M, Effects of morphine treatment and withdrawal on striatal and limbic monoaminergic activity and ascorbic acid oxidation in the rat. Brain Res.1996,723: 154-161.
    Miele M, Boutelle MG, Fillenz M, The physiologically-induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience.1994,62: 87-91
    Miele M, Enrico P, Esposito G, Fresu L, Migheli R, De Natale G, Desole MS. Cortical ablation and drug-induced changes in striatal ascorbic acid oxidation and behavior in the rat. Pharmacol Biochem Be.1995,50:1-7
    Miele M, Fillenz M. In vivo determination of extracellular brain ascorbate. J Neurosci Met.1996, 70:15-19
    Miele M, Miele E. Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric acid release in freely moving rats. Brain Res.1998,797:94-102
    Miller BT, Cicero TJ. Ascorbic acid enhances the release of luteinizing hormone-releasing hormone from the mediobasal hypothalamus in vitro. Life Sci.1986,39:2447-2454
    Mitchell R. A novel GABA receptor modulates stimulusinduced glutamate release from cortico-striatal terminals. Eur J Pharmacol.1980,67:119-122
    Mohammad-Reza Zarrindast, Bibi-Nasrin Azami, Parvin Rostami, Ameneh Rezayof. Repeated administration of dopaminergic agents in the nucleus accumbens and morphine-induced place preference. Behav Br Res.2006,169:248-255
    Mogenson GJ, Jones DL, Yim CY. From motivation to action:Functional interface between the limbic system and the motor system. Prog Neurobiol.1982,14:69-97
    Mogenson GJ. Limbic-motor integration. Prog Physiol Psychol.1987,12:117-170
    Mora F, Segovia G, Del Arco A. Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res Rev.2008,58:340-353
    Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YI, Oh SH, Kim JG, Hwang DH, Shin DH, Lee WJ. Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. J Neurosci Res.2006,83: 919-928
    Do Nascimento JL, Ventura AL, Paes-de-Carvalho R. Veratridine- and glutamate-induced release of [3H]-GABA from cultured chick retina cells:possible involvement of a GAT-1-like subtype of GAB A transporter. Brain Res.1998,798:217-222
    Nathaniel TI, Panksepp J, Huber R. Effects of a single and repeated morphine treatment on conditioned and unconditioned behavioral sensitization in Crayfish. Behav Brain Res.2010, 207:310-320
    Nauta WJH, Smith GP, Faull RLM, Domesick VB. Efferent connections and nigral afferent s of the nucleus accumbens septi in the rat. Neurosci.1978,3:385-401
    Nestler EJ. Undersiege:the brain on opiates. Neuron.1996,16:897-900
    Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psy.2004,12: 305-320
    Niki E, Noguchi N, Tsuchihashi H, Gotoh N. Interaction among vitamin C, vitamin E, and p-carotene. Am J Clin Nutr.1995,62:1322-1326
    Oke AF May L, Adams RN. Ascorbic acid distribution patterns in human brain:a comparison with nonhuman mammalian species. Ann N Y Acad Sci.1987,498:1-12
    Olmstead MC, Franklin KBJ. The development of a conditioned place preference to morphine: effects on lesions of various CNS sites. Behav Neurosci.1997,111:1313-1323
    Olney JW, Rhee V, Ho OL. Kainic acid:a powerful neurotoxic analogue of glutamate. Brain Res. 1974,77:507-512
    O'Neill RD, Grunewald RA, Fillenz M, Albery WJ. The effect of unilateral cortical lesions on the circadian changes in rat striatal ascorbate and homovanlilic acid levels measured in vivo using volatammery. Neurosci Lett.1983,42:105-110
    O'Neill RD. The measurement of brain ascorbate in vivo and its link with excitatory amino acid neurotransmission. Neuromethods.1995,27:221-268
    O'Neill RD, Fillenz M, Sundstrom L, Rawlins JN. Voltammetrically monitored brain ascorbate as an index of excitatory amino acid release in the unrestrained rat. Neurosci Lett.1984,52: 227-233
    Patel M, McIntosh L, Bliss T, Ho D, Sapolsky R. Interactions among ascorbate, dehydroascorbate and glucose transport in cultured hippocampal neurons and glia. Brain Res. 2001,916:127-135
    Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, compact third edn. Orlando FL USA:Academic Press.1997
    Peakman MC, Colby C, Perrotti LI. Inducible brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine. Brain Res.2003, 70:73-86
    Perry TL, Buchanan J, Kish, SJ, Hansen S. Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet.1979,313:237-239
    Pierce RC, Clemens AJ, Shapiro LA, Rebec GV. Reeated treatment with ascorbate or haloperidol, but not clozapine, elevates extracellular ascorbate in the neostriatum of freely moving rats. Psychopharmacol.1994,116:103-109
    Pierce RC, Duffy P, Kalivas PW. Changes in excitatory amino acid transmission in the nucleus accumbens associated with behavioral sensitization to cocaine during early withdrawal. Neurosci Net.1996-008
    Pierce RC, Kalivas PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev.1997,25:192-216
    Pierce RC, Kalivas PW. Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J Pharmacol Exp Ther.1995,275:1019-1029
    Pierce RC, Rebec GV. Atimulation of both D1 and D2 dopamine receptor increase behavioral activation and ascorbate release in the neostriatum of freely moving rats. Eur J Pharmacol. 1990,191:295-302
    Podet A, Lee MJ, Swarnn AC, Dafny N. Nucleus accumbens lesions modulate the effects of methylphenidate. Brain Res Bull.2010,82:293-301
    Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. PNAS.1995,92:12304-12308
    Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci.2002.25:319-325
    Portugal CC, Miya VS, Calaza KC, Santos RA, Paes-de-Carvalho R. Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells. J Neurochem.2009.108:507-520
    Pourpak Z, Ahmadiani A, Alebouyeh M. Involvement of interleukin beta in systemic morphine effects on paw oedema in a mouse model of acute inflammation. Scand J Immunol.2004,59: 273-277
    Qiao H, May JM. Development of ascorbate transport in brain capillary endothelial cells in culture. Brain Res.2008,1208:79-86
    Qiu S, Li L, Weeber EJ, May JM. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res.2007,85:1046-1056
    Rada P, Moreno SA, Tucci S, Gonzalez LE, Harrison T, Chau DT, Hoebel BG, Hernandez L. Glutamate release in the nucleus accumbens is involved in behavioral depression during the porsolt swim test. Neurosci.2003,119:557-765
    Rahman S, Zhang J, Engleman EA, Corrigall WA. Neuroadaptive changes in the mesoaccumbens dopamine system after chronic nicotine self-administration:A microdialysis study. Neurosci. 2004,129:415-424
    Rajaei Z, Alaei H, Nasimi A, Amini H, Ahmadiani A. Ascorbate reduces morphine-induced extracellular DOPAC level in the nucleus accumbens:A microdialysis study in rats. Brain Res.2005,1053:62-66
    Ray M, Mediratta PK, Mahajan P, Sharma KK. Evaluation of the role of melatonin in formalin-induced pain response in mice. Indian J Med Sci.2004,58 (3):122-130
    Rebec GV. Ascorbate:an antioxidant and extracellular neuromodulator. In:Connor JR, ed. Metals and Oxidative Damage in Neurological Disorders. New York:Plenum Press.1997,149-173
    Rebec GV, Pierce CP. A vitamin as neuromodulator:ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol.1994, 43:537-565
    Rebec GV, Witowski SR, Sandstrom MI, Rostand RD, Kennedy RT. Extracellular ascorbate modulates cortically evoked glutamate dynamics in rat striatum. Neurosci Lett.2005,378: 166-170
    Rebec GV, Wang Z. Behavioral activation in rats requires endogenous ascorbate release in striatum. J Neurosci.2001,21:668-675
    Riba-Bosch A, Perez-Clausell. Response to kainic acid injections:changes in staining for zinc, FOS, cell death and glial response in the rat forebrain. Neuroscience.2004,125:803-818
    Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci.2000,23: 209-216
    Reiber H, Ruff M, Uhr M. Ascorbate concentration in human cerebrospinal fluid (CSF) and serum: intrathecal accumulation and CSF flow rate. Clin Chim Acta.1993,217:163-173
    Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci.2000,23: 209-216
    Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neurosci.1998,82:1213-1223
    Robinson TE, Berridge KC. The neural basis of drug craving:an incentive-sensitization theory of addiction. Brain Res Rev.1993,18:247-291
    Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacol.2004,47:33-46
    De Rover M, Lodder JC, Schoffelmeer ANM, Brussaard AB. Intermittent morphine treatment induced a long-lasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats. Synapse.2005,55:17-25
    Sahraei H, Amiri YA, Haeri-Rohani A, Sepehri H, Salimi SH, Pourmotabbed A, Ghoshooni H, Zahirodin A, Zardooz H. Different effects of GABAergic receptors located in the ventral tegmental area on the expression of morphine-induced conditioned place preference in rat. Eur J Pharmacol.2005,524:95-101
    Sandstrom MI, Rebec GV. Extracellular ascorbate modulates glutamate dynamics:role of behavioral activation. BMC Neurosci.2007,8:32
    Saponjic R M, Mueller K, Krug D, Kunko PM. The effects of haloperidol, scopolamine, and MK-801 on amphetamine-induced increases in ascorbic and uric acid as determined by voltammetry in vivo. Pharmacol Biochem Behav.1994,48:161-168
    Sato K, Saito H, Katsuki H. Synergism of tocopherol and ascorbate on the survival of cultured brain neurones. Neuroreport.1993,4:1179-1182
    Savini I, Catani MV, Arnone R, Rossi A, Frega G, Del Principe D, Avigliano L. Translational control of the ascorbic acid transporter SVCT2 in human platelets. Free Radic Biol Med. 2007,42:608-616
    Schenk JO, Miller E, Gaddis R, Adams RN. Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res.1982,253:353-356
    Self DW. Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacol.2004,47:242-255
    Semenova S, Danysz W, Bespalov A. Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. Eur J Pharmacol,1999, 378:1-8
    Semenza GL. HIF-1,O(2), and the 3 PHDs:how animal cells signal hypoxia to the nucleus. Cell. 2001,107:1-3
    Sepulveda J, Oliva P, Contreras E. Neurochemical changes of the extracellular concentrations of glutamate and aspartate in the nucleus accumbens of rats after chronic administration of morphine. Eur J Pharmacol.2004,483:249-258
    Seregi A, Schaefer A, Komlos M. Protective role of brain ascorbic acid content against lipid peroxidation. Experientia.1978,34:1056-1057
    Shimizu N, Matsunami T, Onishi S. Histochemical demonstration of ascorbic acid in the locus coeruleus of the mammalian brain. Nature.1960,186:479-480
    Siushansian R Dixon SJ, Wilson JX. Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J Neurochem.1996,66:1227-1233
    Sotiriou S, Gispert S, Cheng J, Wang YH, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH, Nussbaum RL. Ascorbic-acid transporter Slc23al is essential for vitamin C transport into the brain and for perinatal survival. Nat Med.2002,8:514-517
    Spanagel R, Welss F. The dopamine hypothesis of reward:past and current status. Trends Neurosci. 1999,22:521-527
    Spector R. Vitamin homeostasis in the central nervous system. N Engl J Med.1977,296: 1393-1398
    Spector R, Lorenzo AV. Ascorbic acid homeostasis in the central nervous system. Am J Physiol. 1973225:757-763
    Stamford JA, Kruk ZL, Millar J. Ascorbic acid does not modulate stimulated dopamine release:in vivo voltammetric data in the rat. Neurosci Lett.1985,60:357-362
    Stamford JA, Kruk ZL, Millar J. Regional differences in extracellular ascorbic acid in the brain determined by high speed cycle voltammetry. Brain Res.1984,299:289-295
    Staub F, Peters J, Kempski O, Schneider GH, Schurer L, Baethmann A. Swelling of glial cells in lactacidosis and by glutamate:significance of Cl(-)- transport. Brain Res.1993,610:69-74
    Steffensen SC, Taylor SR, Horton ML, Barber EN, Lyle LT, Stobbs SH, Allison DW. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels. Eur J Neurosci.2008,28:2028-2040
    Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM. μ-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J Neurosci.1997,17:2585-2594
    Swanson CJ, Kalivas PW. Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J Pharmacol Exp Ther. 2000,292: 406-414
    Takanaga H, Mackenzie B, Hediger MA. Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch.2004,447:677-82
    Todtenkopf MS, Carreiras T, Melloni Jr RH, Stellar JR. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization. Behav Brain Res.2002,131:9-16
    Tolbert BM, Ward JB. Dehydroascorbic acid. In:Seib, P. A., Tolbert, B. M. eds. Ascorbic Acid: Chemistry, Metabolism, and Uses. Washington, DC:Am Chem Soc.1982:101-123
    Trujillo KA, Akil H. Inhibition of opiate tolerance by non-competitive N-methyl-D-aspartate receptor antagonists. Brain Res.1994,633:178-188
    Truong W, Cheng C, Xu QG,Li XQ, Zochodne W. Mu opioid receptors and analgesia at the site of a peripheral nerve injury. Ann Neurol.2003,53:366-375
    Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang YX, Brubaker RF, Hediger MA. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature.1999,399: 70-75
    Tzschentke TM, Schmidt WJ. Glutamatergic mechanisms in addiction. Mol Psychiatry.2003,8: 373-382
    Vanderschuren LJMJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization:a critical review of preclinical studies. Psychopharmacol.2000,151:99-120
    VanDuijn MM, Tijssen K, VanSteveninck J, van den Broek PJA, Van der Zee J. Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J Biol Chem.2000,275:27720-27725
    Vanegas H, Schaible HG. Descending control of persistent pain:inhibitory or facilitatory? Brain Res. Brain Res Rev.2004,46:295-309
    Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci.2005,8: 555-560
    Wakefield LM, Cass AE, Radda GK. Electron transfer across the chromaffin granule membrane: use of EPR to demonstrate reduction of intravesicular ascorbate radical by the extravesicular mitochondrial NADH:ascorbate radical oxidoreductase. J Biol Chem.1986,261:9746-9752
    Wang W, Liu Z, Jiang WG, Wang SP, He SS. Modification of HPLC assay for four amino acid neurotransmitter content in brain tissue and cerebrospinal fluid. Acta Univ Med Tongji.1999, 28:92-93
    Wells WW, Xu DP. Dehydroascorbate reduction. J Bioenerg Biomembr.1994,26:369-377
    Westerink BHC, Kwint HF, Devries JB. The pharmacology of mesolimbic dopamine neuron; a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci.1996,16:2605-2611
    White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend.1998,51:141-153
    White LK, Carpenter M, Block M, Basse-Tomusk A, Gardiner TW, Rebec GV. Ascorbate antagonizes the behavioral effects of amphetamine by a central mechanism. Psychopharmacology.1988,94:284-287
    Wilson JX. Regulation of vitamin C transport. Annu Rev Nutr.2005,25:105-125
    Wilson JX, Jaworski EM, Kulaga A, Dixon SJ. Substrate regulation of ascorbate transport activity in astrocytes. Neurochem Res.1990,15:1037-1043
    Wilson JX, Peters CE, Sitar SM, Daoust P, Gelb AW. Glutamate stimulates ascorbate transport by astrocytes. Brain Res.2000,858:61-66
    Wilson RL, Kamata K, Bigelow JC, Rebec GV, Wightman RM. Crus cerebri lesions abolish amphetamine-induced ascorbate release in the rat neostriatum. Brain Res.1986,370:393-396
    Wise RA. Brain reward circuitry:insights from unsensed incentives. Neuron.2002,36:229-240
    Wise RA. Drug-activation of brain reward pathways. Drug Alcohol Depen.1998,51:13-22
    Wu CF, Bertorelli R, Sacconi M, Pepeu G, Consolo S. Decrease of brain acetylcholine release in aging freely-moving detected by microdialysis. Neurobiol Aging.1988,9:357-361
    Wu CF, Zhang HL, Liu W. Potentiation of ethanol-induced loss of the righting reflex by ascorbic acid in mice:interaction with dopamine antagonists. Pharmacol Biochem Behav.2000,66: 413-418
    Xi ZX, Fuller SA, Stein EA. Dopamine release in the nucleus accumbens during heroin self-administration is modulated by k opioid receptors:an in vivo fast-cyclic voltammetry study. J Pharmacol Exp Ther.1998,284:151-161
    Xi ZX, Stein EA. Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release, J Pharmacol Exp Ther.1999,290:1369-1374
    Xi ZX, Stein EA. Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors-an in vivo electrochemical study. Brain Res.1998,798:156-165
    Yan J, Studer L, McKay RDG. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J. Neurochem.2001, 76:307-311
    Yoon IS, Kim HS, Hong JT, Lee MK, Oh KW. Inhibition of muscimol on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity, Pharmacol.2002,65:204-209
    Yoon SS, Kim JA, Lee BH, Choic KH, Shimd I, Choi SH, Hwang M, Yang CH. Role for GABA agonists in the nucleus accumbens in regulating morphine self-administration. Neurosci Lett. 2009,462:289-293
    Yoon SS, Lee BH, Kim HS, Choi KH, Yun J, Jang EY, Shim I, Kim JA, Kim MR, Yang CH. Potential roles of GABA receptors in morphine self-administration in rats. Neurosci Lett. 2007,428:33-37
    Yusa T. Increased extracellular ascorbate release reflects glutamate re-uptake during the early stage of reperfusion after forebrain ischemia in rats. Brain Res.897:2001,104-113
    Znamensky V, Echo JA, Lamonte N, Christian G, Ragnauth A, Bodnar RJ.γ-Aminobutyric acid receptor subtype antagonists differentially alter opioid-induced feeding in the shell region of the nucleus accumbens in rats. Brain Res.2001,906:84-91
    Zarebkohan A, Javan M, Satarian L, Ahmadiani A. Effect of chronic administration of morphine on the gene expression level of sodium-dependent vitamin C transporters in rat hippocampus and lumbar spinal cord. J Mol Neurosci.2009,38:236-242
    Zarrindast MR, Ahmadi S, Haeri-Rohani A, Rezayof A, Jafari MR, Jafari-Sabet M. GABAA receptors in the basolateral amygdala are involved in mediating morphine reward. Brain Res. 2004,1006:49-58
    Zarrindast MR, Babapoor-Farrokhran S, Babapoor-Farrokhran S, Rezayof A. Involvement of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala in anxiety-related behavior. Life Sci.2008,82:1175-1181.
    刁秋霞,李积胜.阿片依赖相关神经递质研究进展.武警医学院学报.2008,17:152-154
    韩济生.针刺镇痛及其有关的神经通路和神经介质.生理科学进展.1984,15:294-300
    李云庆.中脑边缘镇痛环路.中国疼痛医学杂志.2000,6(2):104-108
    许艳,徐满英.伏核注射γ-氨基丁酸对大鼠伏核痛反应神经元放电的影响.中国疼痛医学杂志.2005,11(6):30-33
    张秀娟,徐满英.伏隔核功能的研究进展.哈尔滨医科大学学报.2002,36(4):334-336
    张秀娟,徐满英,吕宁等.谷氨酸对伏隔核痛反应神经元放电的影响.哈尔滨医科大学学报.2002,12(36):26-29
    赵晶,徐贵丽,苏国丽.N-硝基-L-精氨酸对吗啡依赖小鼠催促戒断反应的治疗作用及对吗啡耐受性的影响.解放军药学学报.1999,15:31-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700