宽频带高增益天线的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于微带天线具有很多诱人的特性,比如体积小、重量轻、易加工等。然而,普通的微带天线有一些诸如窄带宽和低效率的主要缺点。在详细研究天线展宽频带和提高增益的原理和实现手段的基础上,本文重点对双层弧形缝隙微带天线、L型探针馈电的开缝微带天线、宽带EBG结构及介质谐振器天线进行了研究分析,在此基础上提出了三款宽频带高增益的天线,并对其中的两款进行了加工,测试结果表明这些天线都有良好的带宽、增益和方向图。
     论文共分为五个部分。首先,论文说明了研究宽频带高增益天线的意义和现状,并介绍了所使用的数值计算方法以及三维仿真软件。
     其次,提出了一款新型的带有弧形缝隙的微带天线,这款天线主要用来拓展微带天线的带宽。然后,这款天线与双层结构相结合,成为一款宽带高增益的微带天线。通过仿真软件仿真、优化设计了一款普通的微带天线,用来与本文所提出的天线做比较。测试结果表明:本文所设计的双层天线,具有较宽的带宽和较高的增益。
     接着,论文采用L型探针馈电,使用空气填充介质的贴片结构以及贴片开缝等技术,设计了一款小面积、宽带、高增益、结构紧凑的天线。测试结果表明,这款天线可以达到27.3%的带宽(中心频率为2.6 GHz ),最大增益可达8.4 dB。
     然后,论文分析了电磁带隙结构的等效电路,研究了展宽电磁带隙的方法,提出了一种宽带电磁带隙(EBG)结构,并将这种结构用于提高介质谐振器天线的增益。仿真结果表明,这种宽带EBG结构使介质谐振器天线的增益在180MHz的频带范围内高于8dB,比文献[53]中的环形EBG结构具有更好的效果。
     最后,论文总结了全部工作,并对未来相关研究工作做了展望。
There is considerable interest in the use of microstrip antennas because of its many attractive features, such as low profile, light weight, easy manufacture. However, classical microstrip antenna has major drawbacks such as narrow bandwidth and low efficiency. On the basis of analysis of broadband antennas and high-gain antennas, this thesis focuses on the analysis of a stacked curved slotted microstrip antenna, a L-probe fed slotted microstrip antenna, broadband EBG structures and dielectric resonator antennas. Three kinds of broadband and high gain antennas are proposed, two of which are fabricated and measured. The test results show that these antennas have good characteristics of bandwidth, gain, and radiation pattern.
     This thesis is divided into five parts. First of all, the paper introduces the significance and status of broadband and high gain antennas, and discusses the used numerical calculus method and 3D simulation software.
     Secondly, a new kind of microstrip antenna with curved slots which is used to broaden the bandwidth is proposed. Then, this antenna is combined with a two-layer structure, becoming a broadband high-gain microstrip antenna. By using the 3D numerical simulation software, an ordinary rectangular microstrip patch antenna is simulated, optimized and compared with the proposed one. This antenna is fabricated and measured. The measured results indicate that the stacked antenna has a wider bandwidth and higher gain than an ordinary one.
     Thirdly, a kind of L-probe fed slotted microstrip patch antenna is analyzed. The design adopts contemporary techniques: L-probe feeding, patch structure with air-filled dielectric, and slotted patch. The composite effect of integrating these techniques and by using the slotted patch, offer a low profile, broadband, high gain, and compact antenna element. Simulated results indicate that a 27.3% fractional impedance bandwidth is achieved with respect to the centre frequency of 2.6 GHz and the maximum achievable gain is 8.4 dB.
     Next, The equivalent circuit model for electromagnetic band-gap structure is analyzed, and also the methods of broadening the bandwidth of band-gap are studied. A broadband EBG structure is proposed and used to increase the gain of a dielectric resonator antenna. The simulation results show that this kind of broadband EBG structure increases the gain of the dielectric resonator antenna up to 8dB in a frequency range of 180MHz,which is better than the circular EBG structure proposed in [53].
     Finally, the thesis summarizes the entire work and the future prospect of the relevant research work.
引文
[1]张玉发,刘春恒,吕跃广,孙晓泉,一种宽带贴片天线的设计与仿真,电子对抗, 2007年第5期, 39-43.
    [2]钟顺时,微带天线理论与应用,西安电子科技大学出版社, 1991.
    [3]刘学观,郭辉萍,微波技术与天线,西安电子科技大学出版社, 2001.
    [4]康行健,天线原理与设计,北京理工大学出版社, 1993.
    [5]沈楠,郭陈江,胡楚锋,一种大带宽高增益微带天线的研究与设计,电子测量技术,2007年第30卷第一期, 49-51.
    [6] K.C.Gupta,Multiport network modeling approach for computer-aided design of microstrip patches and arrays, IEEE AP-S Int, Symp, Digest, 1987, 12: 786-789.
    [7] C.Wu.Modeling of coaxial-fed microstrip patch antenna by finite difference time domain method, Electronics Letters, 1991, 27 (9): 1091-1092.
    [8]孙玉发,微带天线技术及其发展,无线电工程, 1998, 28 (4):13-15.
    [9]陈雅娟,龙云亮,小型宽带微带天线的研究进展, 2000, 22(7):20-24.
    [10] Chih-Yu Huang, Jian-Yi Wu, Cheng-Fu Yang and Kin-Lu Wong, Gain-enhanced compact broadband microstrip antenna, Electronics Letters 1998, 34, (2), pp: 138-139.
    [11] Monika, Kamaszuk, Gain enhancement methods for microstrip patch antennas, IEEE Proceeding of First European Conference on 2006, 1-6.
    [12] Sang-Hyuk Wi, Yong-Shik Lee, and Jong-Gwan Yook, Wideband microstrip patch antenna with U-shaped parasitic elements, IEEE Trans. Antenna Propag., vol.55, no.4, pp:1196-1199, 2007.
    [13] Norbahiah Misran, Mohammad Tariqul Islam, Mohammed Nazmus Shakib, and Baharudin Yatim, Design of broadband multi-slotted microstrip patch antenna for wireless system, IEEE International Conference on Microwave, pp: 23-25, 2008.
    [14] Shi-Chang Gao, Le-Wei Li, Senior Member, Mook-Seng Leong, Senior Member, and Tat-Soon Yeo, Senior Member, Wide-band microstrip antenna with an H-shaped coupling aperture, IEEE Transactions on Vehicular Technology, vol. 51, no.1, pp:17-27, 2002.
    [15] Tayeb A. Denidni, Larbi Talbi, High gain microstrip antenna design for broadband wireless applications, Wiley Periodicals, Inc. pp:511-517, 2003.
    [16] Mohammad Tariqul Islam, Mohammed Nazmus Shakib, Norbahiah Misran, and Baharudin Yatim, Analysis of broadband slotted microstrip patch antenna, Proceeding of 11th International Conference on Computer and Information Technology, pp: 25-27, 2008.
    [17] Yong-Xin Guo, Kwai-Man Luk, Kai-Fong Lee, L-probe fed thick substrate patch antenna mounted on a finite ground plane, IEEE Trans. Antenna Propag., vol.51, no.8, pp:1955-1963, 2003.
    [18]谢拥军,王鹏等, Ansoft HFSS基础及应用,西安电子科技大学出版社, 2007.
    [19]张敏, CST微波工作室用户全书(卷一/卷二),电子科技大学, 2004.
    [20]王一平,郭宏福,电磁波,西安电子科技大学出版社, 2006.
    [21] John D. Kraus, Ronald J. Marhefka, Antennas (章文勋译),电子工业出版社, 2006.
    [22] Pradeep Kumar, G.Singh, S.Bhooshan, T.Chakravarty, Gap-coupled microstrip antennas, IEEE-ICCIMA, 2007.
    [23] Tayeb A. Denidni, Martin Hotton, Experimental investigations of broadband microstrip antenna for PCS applications, IEEE 1999.
    [24] Lin Peng, Cheng-li Ruan, and Yun Zhang, A novel compact broadband microstrip antenna, IEEE Proceeding of Asia-pacific microwave conference 2007.
    [25] Steven Weigand, Greg H. Huff, Kankan H. Pan, Jennifer T. Bernhard, Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas, IEEE transaction on antennas and propagation, vol. 51, no.3, 2003.
    [26] Wang hongjian Lijing Zhang shengwei Liuheguang Jiang jingshan, Broadband double cross-shaped microstrip-fed slot antenna, IEEE-MAPE, 2005.
    [27] Aliakbar Dastranj, Ali Imani, Mohammad Naser-Moghaddasi, printed wide-slot antenna for wideband applications, IEEE transactions on antennas and propagation, vol. 56, no.10, 2008.
    [28] Y. J. Wang, W. J. Koh, J. H. Tan, P. T. Teo, and P. C. Yeo, A compact and broadband microstrip patch antenna, IEEE 2001.
    [29]徐勤,一种宽频带微带天线的设计,雷达与对抗,2004年,第2期。
    [30] N. G. Alexopoulos and D. R. Jackson, Fundamental superstrate (cover) effects on printed circuit antennas, IEEE Transactions and propagation, AP-32, 8, 1984, pp: 807-816.
    [31] D. R. Jackson and N. Alexopoulos, Gain enhancement methods for printed circuit antennas, IEEE Transactions on antennas and propagation, AP-33, 9, 1985, pp: 976-987.
    [32] T. Tsugawa, Y. Sugio, and T. Makimoto, Experimental study of gain enhancement of dielectric loaded antennas with a ground plane, IEEE International symposium on antennas and propagation digest, 3, 1989, pp: 1368-1371.
    [33] Weihua Tan, Zhongxiang Shen, and Zhenhai Shao, Radiation of high-gain cavity-backed slot antennas through a two-layer superstrate, IEEE Antennas and propagation magazine, vol. 50, no. 3, 2008.
    [34] Hussein Attia, Leila Yousefi, Mohammed M. Bait-Suwailam, Muhammed S. Boybay, and Omar M. Ramahi, Enhanced-gain microstrip antenna using engineered magnetic superstrates, IEEE Antennas and wireless propagation letters, vol. 8, 2009.
    [35]李琴芳,吴迪,Ku波段高增益微带天线的研究,全国无线电应用与管理,2007(11), 1-5.
    [36] Q. F. Li, B. Yu, D. Wu, K. Seo, CPW-fed high-gain microstrip antenna, IEEE 2008.
    [37] S. K. Pavuluri, C. H. Wang and A. J. Sangster, A cavity based high gain MEMS antenna for microwave and millimeter wave applications, IEEE Antennas and propagation, 2007.
    [38]温熙森等,光子/声子晶体理论与技术,科学出版社,2005.
    [39] Nasimuddin and Karu P. Esselle, A low-profile compact microwave antenna with high gain and wide bandwidth, IEEE Transactions on antennas and propagation, vol. 55, no. 6, 2007.
    [40]汪涛,矩形微带天线的设计及FDTD分析,山西电子技术,2007年第6期.
    [41] Assailly. S., Terret. C., and Daniel, J. P., Some results on broadband microstrip antenna with low-cross polar and high gain, IEEE Trans., 1991, AP-39, (3), PP: 413-415.
    [42] M. Eimo, K. Mahdjoubi, A. Sharaiha, C. Terret, Simple circuit model for coax-fed stacked rectangular microstrip patch antenna, IEEE Proceedings, 1997.
    [43] Girish Kumar, K. P. Ray, stached gap-coupled multi-resonator rectangular microstrip antennas, IEEE 2001, pp: 514-517.
    [44] C. L. Mak, K. M. Luk, and K. F. Lee, Wideband L-strip fed microstrip antenna, Proc. IEEE Antennas and Propagation Society Int. Symp., Orlando, FL, July 1999, pp:1216-1219.
    [45] Jongkuk Park, Hyung-gi Na, Seung-hun Baik, Design of a modified L-probe fed microstrip patch antenna, IEEE Antennas and wireless propagation letters, vol. 3, 2004, pp: 117-119.
    [46] Mohammad Tariqul Islam, Mohammed Nazmus Shakib, Norbahiah Misran, Baharudin Yatim, Analysis of L-probe fed slotted microstrip patch antenna, IEEE ICCS, 2008, pp: 380-383.
    [47]杨华,L型探针馈电宽频带微带贴片天线的设计,青岛远洋船员学院学报,2008年第4期,vol. 29, no. 4.
    [48] K. M. Luk and K. W. Leung, Dielectric Resonators Antennas, Hertfordshire, U.K.: Research Studies, 2002.
    [49] R. BEKERS and J. SMITS, Mobile telecommunication:standards, regulations, andapplication, Artech house publishers, chapt. 2, 1999.
    [50] K. T. LO, Miniature aperture-coupled microstrip antenna of very high permittivity, Electron. Lett., 33, pp: 9-10, 1997.
    [51] R. CHATTERJEE, Dielectric and dielectric-loaded antennas, Research Studies Press, Lechworth, UK, 1985.
    [52] Y. SHIAU, Dielectric rod antennas for millimeter-wave integrated circuits, IEEE Trans. Microwave Theory Tech., 24, pp: 869-872, 1976.
    [53] Tayeb A. Denidni, Yacouba Coulibaly, Halim Balim Boutayeb, Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement, IEEE Transactions on antennas and propagation, vol. 57, no. 4, 2009, pp: 1043-1029.
    [54] Yablonovitch E. Photonic band-gap structures. J Opt Soc Amer. B, 1993, (10): 283-295.
    [55] Liu Zhengyou Liu, Zhang Xixiang, Mao Yiwei, et al. Locally resonant sonic materials. Science, 2000, (9): 1734-1736.
    [56] Dan Sievenpiper et al, High-impedance electromagnetic surface with a forbidden frequency band, IEEE Trans. On Microwave Theory and Techniques, 1999, 47: 2059-2074.
    [57]樊明延,等,二维电磁带隙结构研究的新方法[J],红外与毫米波学报, 2003, 22(2):127-131.
    [58] Wei Zhang, Chang-Hong Liang, Tong-Hao Ding, A novel broadband EBG using multi-via cascaded mushroom-like structure, IEEE 2009.
    [59] Keith R Carver, James W Mike, Microstrip Antenna Technology, IEEE Trans. Antenna and Propaganitions, 1981, 29(1), 2-24.
    [60]张韦敏,杜正伟,王蔷,龚克,一种展宽电磁带隙结构的带隙带宽的新方法,电子学报,vol. 35 no. 6A, 2007, pp:74-77.
    [61] Yuan Yao, et al. A novel dual-band compact electromagnetic bandgap (EBG) structure and its application in multi-antennas [A]. IEEE Antennas and propagation Society International Symposium 2006[C], pp:1943-1946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700