蓝藻光合作用光系统Ⅱ的蛋白质工程与调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用细菌双杂交技术,研究了在Synechocystis sp. PCC 6803基因组中与藻胆体核膜连接蛋白ApcE有相互作用的蛋白,结果发现糖基化转移酶S111466与ApcE有强相互作用。
     将sll1466在Synechocystis sp. PCC 6803体内敲除,并对所构建的突变体⊿sll1466进行了生理、代谢、遗传和光合作用等方面的研究,比较其与野生型(WT) Synechocystis sp. PCC 6803在上述功能方面的差异。研究结果表明:slll466在体内是单独转录的,与其他相邻基因没有共转录现象,sll1466的缺失不会引起藻内的其他极性效应;在缺乏sll1466的⊿sll1466中,ApcE的转录水平明显降低,使得藻胆体与光合作用中心的能量传递受阻,ApcE的表达量明显降低也使得⊿sll1466中藻胆体与类囊体膜的衔接不及WT中的紧密,从而导致⊿sll1466中藻胆体在类囊体膜上的移动速率较WT快;S111466的缺乏,也使得⊿sll1466中的聚β羟基丁酸酯和羧酶体的含量明显比WT中少,肝糖含量也不及WT,导致⊿sll1466的生长速率低于WT;sll1466的缺失使得藻对光的敏感性增强,在LL条件下,⊿sll1466对光的利用效率明显高于WT,其生长速率也较WT高,而⊿sll1466对HL的耐受能力则不及WT,生长速率也远不及WT,但我们发现Sll1466的缺乏并不影响藻的光状态转换和光系统的电子传递,只是⊿sll1466的状态转换速率要较WT快;在对藻的不同膜组分的糖基化检测中,我们发现通常在WT的细胞外膜和周质膜中起糖类转运作用的OprB孔蛋白Slr1908和S1r1841,在⊿sll1466中的类囊体膜上被检测出来,可见S1l1466对藻细胞内的糖类运输及代谢合成起着重要的作用;在对藻的不同膜组分的磷酸化检测中,作为藻胆体连接多肽的CpcG1蛋白在⊿sll1466的类囊体膜上清中被检测出来,而在WT的同样组分中未被检测到,可见⊿sll1466中的藻胆体更容易从类囊体膜上被洗脱下来;在对类囊体膜脂质的分析中,我们惊奇的发现,⊿sll1466中DGDG的含量较WT中有明显降低,该不饱和脂肪酸含量的显著降低,也是促使⊿sll1466中藻胆体与光合作用中心的能量传递受阻、对HL及高温的耐受能力不及WT、藻胆体在类囊体膜上的移动速率较WT快的重要因素;在缺乏S111466的条件下,藻对BG11中的一些离子和必要元素的需求量降低,其中以CO32-、Cu2+缺乏的培养条件尤为明显,从在缺乏CO32-的条件下⊿sll1466的生长速率高于WT我们推断⊿sll1466固定CO2的能力比WT强。
     在对Anabaena sp. PCC 7120的别藻蓝蛋白ApcE与ApcF的体内重组光谱及细菌双杂交验证两者相互作用的研究中,我们发现:在提纯前,PCB-ApcE/PCB-ApcF的吸收及荧光光谱峰与PCB-ApcF的峰位置一致,而提纯后,PCB-ApcE/PCB-ApcF的吸收及荧光光谱峰与PCB-ApcE的峰位置一致,表明ApcE与ApcF不能形成复合物。pBT-apcF与pTRG-apcE的共转化细胞能在无3-氨基-1,2,4三氮唑(3-AT)的非选择性培养基上的生长,而不能在有3-AT的选择性培养基上生长,说明在转化过程中未产生能抗3-AT的HIS3报告基因,进一步证实ApcE与ApcF间没有相互作用。
     在对Anabaena sp. PCC 7120藻胆体核亚基ApcD结合色素PCB的体内重组中,发现色素蛋白在提纯前后最大吸收和荧光峰发生了红移,从提纯前的605nm及633nm变为提纯后的650nm及665nm。为了研究该现象的原因,构建了ApcD的八个突变体,重组结果显示:突变体ApcD (Y88I)色素蛋白在提纯后的吸收和荧光光谱较提纯前均多出一个峰,分别为668nm和690nm;ApcD (W59Q)、ApcD (Y73A)、ApcD (W87E)色素蛋白在提纯前后的吸收和荧光光谱一致;ApcD (M126S)、ApcD(Y116S)、ApcD(M160T)色素蛋白在提纯前后的吸收光谱一致,而提纯后的荧光峰位置较提纯前分别红移了5nm、7nm和10nm;ApcD (M1151)色素蛋白在提纯前后的吸收和荧光光谱均发生了红移,从提纯前的605nm和633nm变为提纯后的638nm和655nm.这些色素蛋白在酸性尿素溶液变性条件下的最大吸收峰始终在662nm,表明辅基色素仍然是藻蓝胆素;在对PCB-ApcD、PCB-ApcD(Y116S)及PCB-ApcD(M160T)的圆二色谱分析发现,该两个氨基酸的突变均对脱辅基蛋白所连接的色素的构象产生了一定的影响,而对重组蛋白的二级结构没有影响。
In Synechocystis sp. PCC 6803, a glycosyl transferase homologue Sll1466 was found to interact with the loop domain of phycobilisome core-membrane linker ApcE via BacterioMatchⅡTwo-Hybrid System.
     We focus on the physiology, metabolism, genetics and photosynthesis ofΔsll1466, in which the gene sll1466 was knocked out. The results show that:since no co-transcript with sll1466 was detected via the analyses of the transcription of the genes around sll1466, the mutation would not result in the polar effect. InΔsll1466 lacking S111466, the transcription of apcE decreased remarkably, and the integrality of PBSs was damaged, the PBSs inΔsll1466 moved more rapid, resulting in the inhibition of the energy transfer from phycobiliproteins to PSII; InΔsll1466, there was less amounts of the inclusions of carboxysomes, glycogen granules and poly-P-hydroxybutyrate than WT, indicating the less capacity of the metabolisms, which would also bring about in the lower growth; The shortage of sll1466 made the mutant more sensitive to light, and in LLΔsll1466 grew even better, while the mutant was less tolerant to HL, which would bring about in the lower growth; The loss of Sll1466 could not disable the state transition, the more rapid movement of the PBSs inΔsll1466 could be correlated to the more remarkable state transition and the more rapid relaxing rate back to the state transitionⅡ; In the isolation of the thylakoid membrane ofΔsll1466, the two OprB proteins Slr1841 and Slr1908 that are the carbohydrate-selective outer membrane porin, important to the transportation of carbohydrates, were detected to be glycosylated, indicating the importance of Sll1466 to the transportation of carbohydrates;InΔsll1466, CpcGl could be phosphorylated that was detected in the supernatant of thylakoid membrane, but in WT could not, which would upregulate the dismantling of PBSs; It was surprisingly discovered in the analysis of the lipid of thylakoid, DGDG decreased remarkably inΔsll1466. The variation of the contents of DGDG and related glycolipids would result in the phenotypes ofΔsll1466:the more rapid movement of PBSs, and the higher sensitivity to HL and temperature;Δsll1466 was more tolerant to the shortage of a series of essential ions in culture, e.g. the mutant grew better on the shortage of CO32- or Cu2+, implicating that it has the higher capacity of concentrating CO2.
     With the results of allophycocyanin proteins ApcE and ApcF from Anabaena sp. PCC7120 bound PCB in E. coli and two-hybrid bacteria system of ApcE and ApcF, we found that:theλmax of absorption and fluorescence spectra of PCB-ApcE/PCB-ApcF were the same as the Xmax of PCB-ApcF before purification, and the same as theλmax of PCB-ApcE after purification, indicating that ApcE and ApcF could not be complexed;The cells that transformed together with pBT-apcF and pTRG-apcE could grow in the non-selective growth medium, but could not grow in the selective growth medium containing 3-amino-1,2,4-triazole (3-AT), the HIS3 reporter gene was not transcribed and expressed, indicating that there were not interactions between ApcE and ApcF.
     Absorption and fluorescence spectra of the chromoprotein changed during the ApcD of phycobilisome core subunit from Anabaena sp. PCC 7120 bound PCB with reconstitution in E.coli, theλmax of absorption and fluorescence spectra were 605nm and 633nm before purification, while theλmax of absorption and fluorescence spectra were 650nm and 665nm after purification. To study the phenomenon above, eight mutants were constructed. It is indicated with reconstitution in E. coli that:the mutant ApcD (Y88I) had one more absorbance and fluorescence peaks after purification, theλmax of absorption and fluorescence spectra were 668 nm and 690 nm. The spectra of ApcD (W59Q), ApcD (Y73A), ApcD (W87E) had no change during the purification. The absorption spectra of ApcD (M126S), ApcD (Y116S), ApcD (M160T) had no change during the purification, but the fluorescence spectra had red shifts by 5nm,7nm, and lOnm after purification, respectively. Theλmax of absorption and fluorescence spectra of ApcD (M1151) had changed from 605nm and 633nm to 638nm and 655nm. Under acidic urea conditions, those chromoproteins had maximal absorption at 662nm, indicating that they had PCB chromophore. With the study of CD spectra of PCB-ApcD, PCB-ApcD (Y116S) and PCB-ApcD (M160T), it indicated that the mutations influenced the conformation of chromophore that bound with apoprotein, but did not affect the secondary structure of the reconstituted proteins.
引文
[1]Mullineaux C. W. Excitation energy transfer from phycobilisomes to photosystem Ⅰ in a cyanobacterium. Biochim. Biophys. Acta,1992,1100:285-292.
    [2]Grossman A. R., Schaefer M. R., Chiang G. G., and Collier J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev.1993,57:725-749.
    [3]Finazzi G., and Forti G. Metabolic flexibility of the green alga Chlamydomonas reinhardtii as revealed by the link between state transitions and cyclic electron flow. Photosynth. Res.,2004,82:327-338.
    [4]Liu J. Y., Jiang T., Zhang J. P. and Liang D. C. Crystal structure of Allophycocyanin from red algae Porphyra yezoensis at 2.2 A resolution. J. Biol. Chem.,1999,274:16945-16952.
    [5]Padyana A. K., Bhat V. B., Madyastha K. M. and Rajashankar K. R. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Com.,2001,282:893-898.
    [6]Nield J., Rizkallah P. J., Barber J. and Chayen N. E. The 1.45A three-dimension structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J. Struct. Biol.,2003,141:149-155.
    [7]Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W. and KrauB N. Three-dimensional structure of cyanobacterial photosystem Ⅰ at 2.5 A resolution. Nature,2001,411:909-917.
    [8]Zouni A., Witt H. T., Kern J., Fromme P., KrauB N., Saenger W. and Orth P. Crystal structure of photosystem Ⅱ from Synechococcus elongatus at 3.8 A resolution. Nature,2001,409:739-743.
    [9]Kamiya N. and Shen J. Crystal structure of oxygen-evolving photosystem Ⅱ from Thermosynechococcus vulcanus at 3.7 A resolution. Proc. Natl. Acad. Sci. USA, 2003,100:98-103.
    [10]Ferreira K. N., Iverson T. M., Maghlaoui K., Barber J. and Iwata S. Architecture of the photosysthetic oxygen-evolving center. Science,2004,303:1831-1838.
    [11]Biesiadka J., Loll B., Kern J., Irrgang K. D. and Zouni A. Crystal structure of cyanobacterial photosystem Ⅱ at 3.2 A resolution:A closer look at the Mn-cluster. Phys. Chem. Chem. Phys.,2004,6:4733.
    [12]Loll B., Kern J., Saenger W., Zouni A. and Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem Ⅱ. Nature,2005,438: 1040-1044.
    [13]Kaneko T., Nakamura Y., Wolk C. P., Kuritz T., Sasmoto S., Watanabe A., Iriquchi M., Ishikawa A. and Tabata S. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res.,2001,8: 205-213.
    [14]Nakamura Y., Kaneko T., Sato S., Ikeuchi M., Katoh H., Sasamoto S., Watanabe A., Iriquchi M. and Tabata S. Complete genome structure of the thermohhilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res.,2002,9: 123-130.
    [15]Palenik B., Brahamsha B., Larimer F. W., Land M., Hauser L., Chain P., Lamerdin J., Regala W., Allen E.E., McCarren J., Paulsen I., Dufresne A., Partensky F., Webb E. A. and Waterbury J. The genome of a motile marine Synechococcus. Nature,2003,424:1037-1042.
    [16]Van der Plas J., Oosterhoff-Teertstra R., Borrias M. and Weisbeek P. Identification of replication and stability functions in the complete nucleotide sequence of plasmid pUH24 from the cyanobacterium Synechococcus sp. PCC 7942. Mol. Microbiol.,1992,6:653-664.
    [17]Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M. and Tabata S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocustis sp. strain PCC 6803. Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 1996,3:109-136.
    [18]Akiyama H., Kanai S., Hirano M. and Miyasaka H. Nucleotide sequence of plasmid pAQ1 of marine cyanobacterium Synechococcus sp. PCC 7002. DNA Res., 1998,5:127-129.
    [19]Palenik B., Ren Q., Dupont C. L., Myers G. S., Heidelberg J. F., Badger J. H., Madupu R., Nelson W. C., Brinkac L. M., Dodson R. J., Durkin A. S., Daugherty S. C., Sullivan S. A., Khouri H., Mohamoud Y., Halpin R. and Paulsen I. T. Genome sequence of Synechococcus sp. PCC 9311:Insights into adaptation to a coastal environment. Proc. Natl. Acad. Sci. USA,2006,103:13555-13559.
    [20]Sugita C., Ogata K., Shikata M., Jikuya H., Takano J., Furumichi M., Kanehisa, T. Omata M., Sugiura M. and Sugita M. Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongates PCC 6301 chromosome:gene content and organization. Photosynth, Res.,2007, PMID: 17211581.
    [21]Glazer A. N. Phycobilisomes. A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta,1984,768:29-51.
    [22]Glazer A. N. Light guides:directional energy transfer in a photosynthetic antenna. J.Biol.Chem.,1989,264:1-4.
    [23]Piven I., Ajlani G.. and Sokolenko A. Phycobilisome Linker Proteins Are Phosphorylated in Synechocystis sp. PCC 6803. J. Biol. Chem.,2005,280: 21667-21672.
    [24]Elmorjani K., Thomas J.C. and Sebban P. Arch. Microbiol.,1986,146:186-191.
    [25]Capuano V., Braux A. S., Tandeau de Marsac N. and Houmard J. J. Biol. Chem., 1991,66:7239-7247.
    [26]Joshua S., Mullineaux C. W. The rpaC gene product regulates phycobilisome-photosystem Ⅱ interaction in cyanobateria interaction in cyanobacteria. Biochim. Biophys. Acta,2005,1709:58-68.
    [27]Ajlani G., Vernotte C., DiMagno L. and Haselkorn R. Phycobilisome core mutants of Synechocystis PCC 6803. Biochim. Biophys. Acta,1995,1231:189-196.
    [28]Shen G., Boussiba S. and Vermaas W. F. J. Synechocystis sp. PCC 6803 strains lacking photosystem I and phycobilisome function. Plant Cell,1993,5:1853-1863.
    [29]Kondo K., chiai Y. O, Katayama M. and Ikeuchi M. The Membrane-Associated CpcG2-Phycobilisome in Synechocystis A New Photosystem I Antenna. Plant Physiol.,2007,144:1200-1210.
    [30]Grossman A. R., Schaefer M. R., Chiang G. G. and Collier J. L. The Phycobilisome, a Light-Harvesting Complex Responsive to Environmental Conditions. Microbiol. Reviews,1993,57:725-749.
    [31]Belknap W. R. and Haselkorn R. EMBO J.,1987,6:871-884.
    [32]de Lorimier R. M., Smith R. L. and Stevens S. E. Plant Physiol.,1991,98: 1003-1010.
    [33]Grossman A. R., Schaefer M. R., Chiang G. G. and Collier J. L. J. Bacteriol., 1993,175:575-582.
    [34]Pojidaeva E., Zinchenko V., Shestakov S. V. and Sokolenko A. J.Bacteriol.,2004, 186:3991-3999.
    [35]Kern J. and Renger G. Photosystem Ⅱ:structure and mechanism of the water: plastoquinone oxidoreductase. Photosyn. Res.,2007,94:183-202.
    [36]Loll B., Kern J., Saenger W., Zouni A. and Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem Ⅱ. Nature,2005, 438:1040-1044.
    [37]Ferreira K. N., Iverson T. M., Maghlaoui K., Barber J. and Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science,2004,303:1831-1838.
    [38]Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A. and Saenger W. Cyanobacterial photosystem Ⅱ at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nature Struct. Biol. and Mol. Biol.,2009,16:334-342.
    [39]Stewart D. H. and Brudvig G. W. Cytochrome b559 of photosystem Ⅱ. Biochim. Biophys. Acta,1998,1367:63-87.
    [40]Golbeck J. H. Biochim. Biophys. Acta,1987,895:167-204.
    [41]Lagoutte B. and Mathis P. Photochem. Photobiol.,1989,49:833-844.
    [42]Duysens L. and Sweers H. Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. Plant Physiol.,1963,353-372.
    [43]Gorkom H. J. Identication of the reduced primary electron acceptor of photosystem Ⅱ as a bound semiquinone anion. Biochim. Biophys. Acta,1974,347:439-442.
    [44]Krause G. H. and Weiss E. Chlorophyll fluorescence and photosynthesis:the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1991,42:313-349.
    [45]Horton P. and Ruban A.V. Regulation of photosystem Ⅱ. Photosynth. Res.,1992, 34:375-385.
    [46]Owens T. G. Processing of excitation energy by antenna pigments. Photosynth. Environ.,1996,1-23.
    [47]Prasil O., Adir N. and Ohad I. Dynamics of photosystem Ⅱ:mechanism of photoinhibition and recovery processes, photosystems:structure, function mol. biol.,1992,295-348.
    [48]Aro E. M., Virgin I. and Andersson B. Photoinhibition of Photosystem Ⅱ. Inactivation, protein damage and turnover. Biochim. Biophys. Acta,1993,1143: 113-134.
    [49]Murata N. Control of exitation transfer in photosynthesis. Ⅰ. Light induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim. Biophys. Acta, 1969,172:242-251.
    [50]Murata N. Control of excitation transfer in photosynthesis. Ⅳ. Kinetics of chlorophyll a fluorescence in Porphyrayezoensis. Biochim. Biophys. Acta,1970, 205:379-389.
    [51]Bonaventura C. and Myers J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. Biophys. Acta,1969,189:366-383.
    [52]Williams P. and Allen J. F. State 1/State 2 changes in higher plants and algae. Photosynth. Res.,1987,13:19-45.
    [53]Biggins J. and Bruce D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res.,1989,20:1-34.
    [54]Allen J. F. Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta,1992,1098:275-335.
    [55]Ley A. C. and Butler W. L. Energy distribution in the photochemical apparatus of Porphyridium cruentum in State 1 and State 2. Biochim. Biophys. Acta,1980,592: 349-363.
    [56]Bruce D., Biggins J., Steiner T. and Thewalt M. Mechanism of the light-state transition in photosynthesis. Ⅳ. Picosecond fluorescence spectroscopy of Anacystis nidulans and Porphyridium cruentum in State 1 and State 2 at 77 K. Biochim. Biophys. Acta,1985,806:237-246.
    [57]Olive J., M'Bina I., Vernotte C., Astier C. and Wollman F.A. Randomization of the EF particles in thylakoid membranes of Synechocystis PCC 6714 upon transition from state Ⅰ to state Ⅱ. FEBS Lett.,1986,208:308-312.
    [58]Vernotte C., Astier C. and Olive J. State 1-state 2 adaptation in the cyanobacteria Synechocystis PCC 6714 wild type and Synechocystis PCC 6803 wild-type and phycocyanin-less mutant. Photosynth. Res.,1990,26:203-212.
    [59]Allen J. F., Sanders C. E. and Holmes N. G. Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301. FEBS Lett,1985,193:271-275.
    [60]Sanders C. E. and Allen J. F. The 18.5 kDa phosphoprotein of the cyanobacterium Synechococcus 6301:A component of the phycobilisome. Photosynth. Res.,1987, 761-764.
    [61]Mullineaux C. W. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim. Biophys. Acta,1992,1100:285-292.
    [62]Mullineaux C. W. and Holzwarth A. A proportion of photosystem Ⅱ core complexes are decoupled from the phycobilisome in light-state 2 in the cyanobacterium Synechococcus 6301. FEBS Lett.,1990,260:245-248.
    [63]Mullineaux C. W. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem Ⅱ. Biochim. Biophys. Acta,1994, 1184:71-77.
    [64]Mullineaux C. W., Tobin M. J. and Jones G. R. Mobility of photosynthetic complexes in thylakoid membranes. Nature,1997,390:421-424.
    [65]Olive J., Ajlani G., Astier C., Recouvreur M. and Vernotte C. Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim. Biophys. Acta,1997,1319:275-282.
    [66]Schluchter W., Shen G., Zhao J. and Bryant D. Characteriza-tion of psal and psaL mutants of Synechococcus sp strain PCC 7002:A new model for state transitions in cyanobacteria. Photochem. Photobiol.,1996,64:53-66.
    [67]Yang S., Zhang R., Hu C., Xie J. and Zhao J. The dynamic behavior of phycobilisome movement during light state transitions in cyanobacterium Synechocystis PCC 6803. Photosynth. Res.,2009,99:99-106.
    [68]Maxwell K. and Johnson G. N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot.,2000,345:659-668.
    [69]Nelson N. and Ben-Shem A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol.,2004,5:971-982.
    [70]Somerville C., Browse J., Jaworski J. G.. and Ohlrogge J. B. Biochemistry and Molecular Biology of Plants. Am. Society Plant Physiol.,2000, MD:456-527.
    [71]Loll B., Kern J., Saenger W., Zouni A. and Biesiadka J. Lipids in photosystem Ⅱ: interactions with protein and cofactors. Biochim. Biophys. Acta,2007,1767: 509-519.
    [72]Loll B., Kern J., Saenger W., Zouni A. and Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem Ⅱ. Nature,2005,438: 1040-1044.
    [73]Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W. and Krau N. Three dimensional structure of cyanobacterial photosystem Ⅰ at 2.5 A. Nature,2001,411: 909-917.
    [74]Awai K., Watanabe H., Benning C. and Nishida I. Digalactosyldiacylglycerol is Required for Better Photosynthetic Growth of Synechocystis sp. PCC6803 Under Phosphate Limitation. Plant Cell Physiol.,2007,48:1517-1523.
    [75]Mizusawa N., Sakurai I., Sato N., Wada H. Lack of digalactosyldiacylglycerol increases the sensitivity of Synechocystis sp.PCC 6803 to high light stress. FEBS Lett.,2009,583:718-722.
    [76]Sarcina M., Tobin M. J. and Mullineaux C. W. Diffusion of Phycobilisomes on the Thylakoid Membranes of the Cyanobacterium Synechococcus 7942. J. Biol. Chem., 2001,276:46830-46834.
    [77]Sakurai I., Mizusawa N., Ohashi S., Kobayashi M. and Wada H. Effects of the Lack of Phosphatidylglycerol on the Donor Side of Photosystem Ⅱ. Plant Physiol., 2007,144:1336-1346.
    [78]Laczko-Dobos H., Ughy B., Toth S. Z. and Gombos Z. Role of phosphatidylglycerol in the function and assembly of Photosystem Ⅱ reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC 6803 that lacks phycobilisomes. Biochim. Biophys. Acta,2008,1777: 1184-1194.
    [79]Srivastava R., Battchikova N., Norling B. and Aro E. M. Plasma membrane of Synechocystis PCC 6803:a heterogeneous distribution of membrane proteins. Arch Microbiol.,2006,185:238-43.
    [80]Huang F., Hedman E., Funk C. and Norling B. Isolation of Outer Membrane of Synechocystis sp. PCC 6803 and Its Proteomic Characterization. Mol.& Cellular Proteomics.,2004,585-595.
    [81]Peschek G. A., Hinterstoisser B., Wastyn M., Kuntner O., Pineau B., Missbichler A. and Lang J. Chlorophyll precursors in the plasma membrane of a cyanobacterium Anacystis nidulans. Characterization of protochlorophyllide and chlorophyllide by spectrophotometry and chlorophyllide by spectrophotometry, spectrofluorimetry, solvent partition, and high performance liquid chromatography. J. Biol. Chem., 1989,264:11827-1832.
    [82]Neisser A., Fromwald S., Schmatzberger A. and Peschek G. A. Immunological and functional localization of both F-type and P-type ATPases in cyanobacterial plasma membranes. Biochem. Biophys. Res. Commun.,1994,200:884-892.
    [83]Peschek G. A., Czerny T., Schmettrer G. and Nitschmann W. H. Transmembrane proton electrochemical gradients in dark aerobic and anaerobic cells of the cyanobacterium (blue-green alga) Anacystis nidulans. Plant Physiol.,1985,79: 278-284.
    [84]Erber W. W. A., Nitschmann W. H., Muchl R. and Peschek G. A. Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans:ATPase-independent efflux of H+ and Na+ from respiring cells. Arch. Biochem. Biophys.,1986,247:28-39.
    [85]Waditee R., Hossain G. S., Tanaka Y., Nakamura T., Shikata M., Takano J. and Takabe T. Isolation and functional characterization of Ca2+/H+antiporters from cyanobacteria. J. Biol. Chem.,2004,279:4330-4338.
    [86]Hinterstoisser B., Cichna M., Kuntner O. and Peschek G. A. Cooperation of plasma and thylakoid membranes for the biosynthesis of chlorophyll in cyanobacteria:the role of the thylakoid centers. J. Plant Physiol.,1993,142:407-413.
    [87]Norling B., Zak E., Andersson B. and Pakrasi H.2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett.,1998,436:189-192.
    [88]Huang F., Perry I., Nilsson F., Parson A. L., Pakrasi H. B, Andersson B. and Norling B. Proteomics of Synechocystis sp. strain PCC 6803:identification of plasma membrane proteins. Mol. Cell Proteomics,2002,1:956-966.
    [89]Kobayashi M., Okada K. and Ikeuchi M. A Suppressor Mutation in the a Phycocyanin Gene in the Light Glucosesensitive Phenotype of the psbK-disruptant of the Cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol.,2005,46: 1561-1567.
    [90]Grigorieva G. and Shestakov S. Transformation in the cyanobacterium Synechocystis sp.6803. FEMS Microbiol Lett.,1982,13:367-370.
    [91]Rippka R., Deruelles J., Waterbury J. B., Herdman M. and Stanier R. Y. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol.,1979,111:1-61.
    [92]Williams J. G. K. Construction of specific mutations in Photosystem Ⅱ photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol,1988,167:766-778.
    [93]Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M. and Tabata S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803.Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res.,1996,3:109-136.
    [94]Dove S. L. and Hochschild A. Conversion of the ω subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev., 1998,12:745-754.
    [95]Tooley A. J. and Glazer A. N. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunit in a heterologous host. J. Bacteriol.,2002,184(17):4666-671.
    [96]Zhao K., Su P., Bohm S., Song B., Zhou M., Bubenzer C. and Scheer H. Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim. Biophys. Acta,2005,1706:81-87.
    [97]Evans I. M. and Bosmann H. B. Glycosyltransferase activity in developing sea-urchin embryos. J. Cell Sci.,1977,25:355-366.
    [98]Kikuchi N., Kwon Y., Gotoh M. and Narimatsu H. Comparison of glycosyltransferase families using the profile hidden Markov model. Biochem. and Biophys. Res. Com.,2003,310:574-579.
    [99]Franco O. L. and Rigden D. J. Fold recognition analysis of glycosyltransferase families further members of structural superfamilies. Glycobiology,2003,13: 707-712.
    [100]Shao M., Zheng H., Hu Y. and Huang H. The GAOLAOZHUANGREN1 Gene Encodes a Putative Glycosyltransferase that is Critical for Normal Development and Carbohydrate Metabolism. Plant Cell Physiol.,2004,45(10):1453-1460.
    [101]OECD. Eutrophication of Waters. Monitoring, Assessment and Control. Final Report, OECD Cooperative Program on Monitoring of Inland Waters (Eutrophication Control). Environ. Directorate,1982.154.
    [102]Huang Y. P. Contamination and Control of Aquatic Environment in Lake Taihu, Beijing. Science Press,2001.
    [103]Oliver R. L. and Ganf G.. Freshwater blooms, In:Whitton, B. A. and M. Pottseds. The Ecology of Cyanobacteria, The Netherlands:Kluwer Academic Publishers, 2000,149-94.
    [104]Sokolenko A., Pojidaeva E., Zinchenko V. and Shestakovlav S. V. The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr. Genet.,2002,41:291-310.
    [105]Katoh A., Sonoda M., Katoh H. and Ogawa T. Absence of Light-Induced Proton Extrusion in a cotA-Less Mutant of Synechocystis sp. Strain PCC 6803. J. Bacteriol.,1996,178:5452-5455.
    [106]Jensen A. Chlorophyll a and carotenoids. In:Helebust J A, Carigie T S, eds. Handbook of physiological and biochemical method. New York:Cambridge University Press,1978.59-70.
    [107]Bennett A. and Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol.,1973,58:419-435.
    [108]Valladares A., Maldener I., Muro-Pastor A. M., Flores E. and Herrero A. Heterocyst Development and Diazotrophic Metabolism in Terminal Respiratory Oxidase Mutants of the Cyanobacterium Anabaena sp. Strain PCC 7120. J. Bacteriol.,2007,189:4425-4430.
    [109]Barker M., de Vries R., Nield J. and Nixon P. J. The Deg Proteases Protect Synechocystis PCC 6803 during Heat and Light Stresses but Are Not Essential for Removal of Damaged D1 Protein during the Photosystem Two Repair Cycle. J. Biol. Chem.,2006,281:30347-30355.
    [110]Inoue N., Taira Y., Emi T. and Yamane Y. Acclimation to the Growth Temperature and High Temperature Effects on Photosystem Ⅱ and Plasma Membranes in a Mesophilic Cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol.,2001,42(10):1140-1148.
    [111]Sakuragi Y., Maeda H., DellaPenna D. and Bryant D. A. Tocopherol Plays a Nonantioxidant Role in in Photosynthesis and Macronutrient Homeostasis of the Cyanobacterium Synechocystis sp. PCC 6803. That Is Independent of Its Antioxidant Function. Plant Physiol.,2006,141:508-521.
    [112]Eisenhut M., von Wobeser E. A., Jonas L. and Hagemann M. Long-Term Response toward Inorganic Carbon Limitation in Wild Type and Glycolate Turnover Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Physiol.,2007,144:1946-1959.
    [113]Tu C., Shrager J., Burnap R. L. and Postier B. L. Consequences of a Deletion in dspA on Transcript Accumulation in Synechocystis sp. Strain PCC 6803. J. Bacteriol.,2004,186:3889-3902.
    [114]Wang Y., Lechno-Yossef S., Gong Y. and Xu X. Predicted Glycosyl Transferase Genes Located outside the HEP Island Are Required for Formation of Heterocyst Envelope Polysaccharide in Anabaena sp. Strain PCC 7120. J. Bacteriol.,2007, 189:5372-5378.
    [115]Wang T., Shen G., Balasubramanian R. and Golbeck J. H. The sufR Gene (sll0088 in Synechocystis sp. Strain PCC 6803) Functions as a Repressor of the suf BCDS Operon in Iron-Sulfur Cluster Biogenesis in Cyanobacteria. J. Bacteriol.,2004,186:956-967.
    [116]Norlinga B., Zak E., Andersson B. and Pakrasi H.2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett,1998,436:189-192.
    [117]Ajlani G., Vernotte C., DiMagno L. and Haselkorn R. Phycobilisome core mutants of Synechocystis PCC 6803. Biochim. Biophys. Acta.,1995,1231: 189-196.
    [118]Sakurai I., Mizusawa N., Wada H. and Sato N. Digalactosyldiacylglycerol is for stabilization of the Oxygen-Evolving Complex in Photosystem II. Plant Physiol., 2007,145:1361-1370.
    [119]Wada H. and Murata N. Synechocystis PCC6803 Mutants Defective in Desaturation of Fatty Acids. Plant Cell Physiol.,1989,30(7):71-978.
    [120]Inatsugi R., Nakamura M. and Nishida I. Phosphatidylcholine Biosynthesis at Low Temperature:Differential Expression of CTP:Phosphorylcholine Cytidylyltransferase Isogenes in Arabidopsis thaliana. Plant Cell Physiol.,2002, 43(11):1342-1350.
    [121]Pappachan A., Savithri H. S. and Murthy M. R. N. Structural and functional studies on a mesophilic stationary phase survival protein (SurE) from Salmonella typhimurium. FEBS Journal.,2008,275:5855-864.
    [122]Sato S., Shimoda Y., Muraki A. and Kohara M. A Large-scale Protein-protein Interaction Analysis in Synechocystis sp. PCC 6803. DNA Research.,2007,14: 207-16.
    [123]Hirose Y., Shimada T., Narikawa R., Katayama M. and Ikeuchi M. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc. Natl. Acad. Sci. USA.,2008,105: 9528-533.
    [124]Singh A. K. and Sherman L. A. Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. J. Bacteriol.,2005,187(7):2368-76.
    [125]Wilson A., Boulay C., Kerfeld C. A. and Kirilovsky D. Light-Induced Energy Dissipationin Iron Starved Cyanobacteria Roles of OCP and IsiA Proteins. Plant Cell,2007,19:656-672.
    [126]He Q. F., Dolganov N., Bjoerkman O. and Grossman A. R. The high light-inducible polypeptides in Synechocystis PCC 6803, expression and function in high light. J. Biol. Chem.,2001,276:306-314.
    [127]Silva P., Thompson E., Bailey S., Kruse O. and Nixon P. J. FtsH is involved in the Early Stages of Repair of Photosystem Ⅱ in Synechocystis sp. Strain PCC 6803. Plant Cell,2003,15:2152-2164.
    [128]Stirnberg M., Fulda S., Huckauf J., Hagemann M., Kramer R. and Marin K. A membrane bound FtsH protease is involved in osmoregulation in Synechocystis sp. PCC 6803 the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis. Mol. Microbiol.,2007,63(1):6-102.
    [129]Wylie J. L. and Worobec E. A. The OprB Porin Plays a Central Role in Carbohydrate Uptake in Pseudomonas aeruginosa. J. Bacteriol.,1995,177: 3021-3026.
    [130]Liu L., Chen X., Zhang Y. and Zhou B. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae An overview. Biochim. Biophys. Acta.,2005,1708:133-142.
    [131]Kondo K., Ochiai Y., Katayama M. and Ikeuchi M. The Membrane-Associated CpcG2-Phycobilisome in Synechocystis A New Photosystem I Antenna. Plant Physiol.,2007,144:1200-1210.
    [132]Vieler A., Wilhelm C., Goss R., S"uβ R. and Schiller J. The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chemistry and Physics of Lipids,2007,150:143-155.
    [133]Csabai P. and Joo F. Reactivity of the individual lipid classes in homogeneous catalytic hydrogenation of model and biomembranes detected by MALDI-TOF mass spectrometry. Cataly. Commun.,2003,4:275-280.
    [134]Li H., Yan X., Xu J. and Zhou C. Precise identification of photosynthetic glycerolipids in microalga Tetraselmis chuii by UPLC-ESI-Q-TOF-MS. Sci. China Ser. C-Life Sci.,2008,51:1101-1107.
    [135]McConnell M. D., Koop R., Vasil'ev S. and Bruce D. Regulation of the Distribution of Chlorophyll and Phycobilin-Absorbed Excitation Energy in Cyanobacteria A Structure-Based Model for the Light State Transition. Plant Physiol.,2002,130:1201-1212.
    [136]Wilson A., Ajlani G., Verbavatz J. M., Vass I., Kerfeld C. and Kirilovsky D. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell,2006,18:992-1007.
    [137]Ma W., Ogawa T., Shen Y. and Mi H. Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochim. Biophys. Acta,2007,1767: 742-749.
    [138]Yang S., Su Z., Li H. and Zhao J. Demonstration of phycobilisome mobility by the time-and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim. Biophys. Acta,2007,1767:15-21.
    [139]Volkmer T., Schneider D., Berna't G. and Ro"gner M. Ssr2998 of Synechocystis sp. PCC 6803 Is Involved in Regulation of Cyanobacterial Electron Transport and Associated with the Cytochrome b6f Complex. J. Biol. Chem.,2007,282: 3730-3737.
    [140]Hung C., Huang J., Chiu Y. and Chu H. Site-directed mutagenesis on the heme axial-ligands of cytochrome b559 in photosystem Ⅱ by using cyanobacteria Synechocystis PCC 6803. Biochim. Biophys. Acta,2007,1767:686-693.
    [141]Islam M. R., Aikawa S., Midorikawa T. and Koike H. Slr1923 of Synechocystis sp. PCC6803 is Essential for Conversion of 3,8-Divinyl(proto)chlorophyll(ide) to 3-Monovinyl(proto)chlorophyll(ide). Plant Physiol.,2008,148:1068-1081.
    [142]Adewoye L. O. and Worobec E. A. Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa. Can. J. Microbiol.,1999,45:1033-1042.
    [143]Zhang L., Yang H., Cui S., Hu J. and Huang F. Proteomic Analysis of Plasma Membranes of Cyanobacterium Synechocystis sp. Strain PCC 6803 in Response to High pH Stress. J. Proteome Res.,2009,8:2892-2902.
    [144]Srivastava R., Pisareva T. and Norling B. Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics,2005,5:4905-4916.
    [145]Cannon G. C., Bradburne C. E., Aldrich H. C. and Shively J. M. Microcompartments in prokaryotes:carboxysomes and related polyhedra. Appl. Environ. Microbiol.,2001,67:5351-5361.
    [146]Zhao K., Haessner R., Cmiel E. and Scheer H. Type Ⅰ reversible of phycoerythrocyanin involves Z/E-isomerization of 284 phycoviolobilin chromophore. Biochim. Biophys. Acta,1995,1228:235-243.
    [147]Tooley A. J., Cai Y. A., Glazer A. N. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-α subunit in a heterologous host. Proc. Natl. Acad. Sci. USA, 2001,98:560-10565.
    [148]Zhao K., Su P., Li J., et al. Chromophore Attachment to Phycobiliprotein β-Subunits Phycocyanobilin:Cysteine-β84 phycobliliprotein Lyase activity of CpeS-like protein from Anabaena sp. PCC 7120. J. Biol. Chem.,2006,281(13): 8573-8581.
    [149]Migita C. T., Zhang X. and Yoshida T. Expression and characterization of Cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Eur. J. Biochem.,270:687-698,2003.
    [150]Frankenberg N. and Lagarias J. C. Phycocyanobilin:Ferredoxin Oxidoreductase of Anabaena sp. PCC 7120. J. Biol. Chem.,2003,3(14):9219-9226.
    [151]Landgraf F. T., Forreiter C., et al. Recombinant holophytochrome in E coli.. FEBS Letters,2001,508:459-462.
    [152]Gindt Y. M., Zhou J., Bryant D. A. and Sauer K. Core mutants of Synechococcus sp. PCC 7002 phycobilisomes:A spectroscopic study. J. Photochem. Photobiol. B. Biol.,1992,15:75-89.
    [153]Gindt Y. M., Zhou J., Bryant D. A. and Sauer K. Spectroscopic studies of phycobilisomes subcore preparations lacking key core chromophores:assignment of excited stated energies to the LCM,18 and ApcB chromophores. Biochim. Biophys. Acta,1994,1186:153-162.
    [154]Karimova G., Pidoux J., Ullmann A., et al. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA,1998, 95:5752-5756.
    [155]Joung J. K., Ramm E. I. and Pabo C. O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA,2000,97:7382-7387.
    [156]Glazer A. N. Light-harvesting by phycobilisomes. Ann. Rev. Biophys. Chem., 1985,14:47.
    [157]Migita C. T., Zhang X. H., Yoshida T., et al. Expression and characterization of Cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Eur. J. Biochem.,2003,270:687-698.
    [158]Frankenberg N., Lagarias J. C. Phycocyanobilin:Ferredoxin Oxidoreductase of Anabana sp. PCC 7120. J. Biol. Chem.,2003,3(14):9219-9226.
    [159]Landgraf F. T., Forreiter C., et al. Recombinant holophytochrome in E coli.. FEBS Letters,2001,508:459-462.
    [160]Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques,1990,8(4):404-407.
    [161]Shim C. M., Yang J. Y., Kang S. S., et al. Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph. Biochemistry,2000,39: 6349-6356.
    [162]宋波,朱菁萍,周明,等.藻蓝蛋白和藻红蓝蛋白β亚基半胱氨酸的定点突变及体外重组研究.水生生物学报,2004,28(4):344-348
    [163]Altschul S. F., Madden T. L., Schaffer A. A., et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic. Acids Res.,1997,25:3389-3402.
    [164]Thompson J. D., Higgins D. G., Gibson T. J., et al. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res.,1994, 22(22):4673-4680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700