干旱—复水条件下玉米侧根发育的可塑性及其调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以高产、稳产、多抗玉米新品种郑单958为试验材料,采用PEG6000处理模拟干旱胁迫-复水的方法,研究了干旱胁迫-复水后玉米侧根发育的可塑性和调控机制,得出以下主要结论:
     1、在三个水势梯度(-0.4MPa、-0.8MPa、-1.2MPa)和两个时间梯度(干旱胁迫12h后复水和干旱胁迫24h后复水)下研究干旱胁迫对侧根发育的影响,发现轻度(-0.4MPa)胁迫能够促进玉米侧根的发生和延伸生长,而中、重度(-0.8MPa和-1.2MPa)胁迫使侧根生长发育受到不同程度的抑制,水势越低,胁迫时间越长抑制效果越显著;复水后玉米侧根出现了不同程度的补偿生长现象,尤其在-0.8MPa干旱胁迫-复水条件下玉米侧根补偿生长最显著。
     2、在-0.8MPa水势梯度下研究了干旱胁迫-复水诱导玉米侧根补偿生长的机制。发现(Ⅰ)干旱胁迫下玉米根系中水孔蛋白表达量比正常水分条件下低,复水后玉米根系中水孔蛋白表达量急剧增加,而且表达量超过了正常生长条件下的表达量;正常生长条件下水孔蛋白均匀分布在根皮层组织上,干旱胁迫以及干旱胁迫复水后水孔蛋白主要分布在根的外皮层和内皮层细胞上,而且胁迫程度越大,复水后表现越明显。用水孔蛋白抑制剂HgCl2初步证明了水孔蛋白介导了此过程中侧根的发生。(Ⅱ)干旱胁迫下玉米根系中NO含量低于正常生长条件下的含量,复水后NO含量高于正常条件下的含量,其含量的变化与侧根发育规律相一致,进一步用药理学试验证明了NO与干旱胁迫-复水诱导玉米侧根的发育有着密切的关系。(Ⅲ)H_2O_2能够在一定程度上促进玉米侧根的生长发育,由此可见干旱-复水过程中玉米侧根发育的可塑性可能受水孔蛋白、NO和H_2O_2等诸多因素的影响和调控。
Using Zhengdan-958 new maize variety of high-quality, high-yield and multi-resistance as material, the compensation of lateral roots development and regulation mechanism were studied by re-watering after draught stress in maize. The results were as follows:
     Under water stress and re-watering, lateral root system dynamic development were studied.Lateral root growth and development was promoted under low-level water stress(-0.4MPa).Lateral root growth and development was restrain with water potential decreased; lateral roots development of maize have high plasticity with the change of water condition.The effect of lateral roots development were studied with three water potential gradient(-0.4MPa、-0.8MPa、-1.2MPa)and two time gradient(re-watering after draught stress 12h and re-watering after draught stress 12h).Lateral root growth and development was promoted under low-level (-0.4MPa) water potential (-0.4MPa) but restrained with hight-level(-0.8 MPa) and middle level (-1.2MPa) water potential .This phenomenon was more significant whih the lower of water potential. The compensation growth of lateral roots promoted root water uptake after re-watering especially under re-watering by -0.8MPa.
     Study on the molecular mechanism of compensatory growth under water stress and re-watering Induced the follow results: (Ⅰ)Aquaporin expression in the roots reduced under water stress. expression of aquaporin which distributed in exodermis and endodermis increased rapidly under water stress. Pharmacological experiment of HgCl2 verified that the increased of aquaporin expression stimulated lateral roots emergence;(Ⅱ)The level of NO expression under water stress lower than normal level in the roots,but the level of NO expression under re-watering higher than normal level. The results showed that the level of NO expression had intimated relationship with compensation growth of lateral root under re-watering;(Ⅲ)Pharmacological experiment of H_2O_2 verified that exterior H_2O_2 stimulated lateral roots emergence,so the exterior H_2O_2 had intimated relationship with compensation growth of lateral root.
引文
[1]李广敏与关军锋主编.作物抗旱生理与节水技术研究.2001.北京:气象出版社
    [2] Bray EA.Plant responses to water deficit. Trends Plant Sci.1997,2 (2):1360-1385
    [3] Wang SC,lchii M,Taketa S,Xu LL,Xia K,Zhou X.Lateral root formation in rice(Oryza sativa):promotion effects ofjasmonic acid.J.Physiol.2002,159:827-832
    [4] Baker CJ,Orlandi E w. Active oxygen in plant pathogenesis. Annu Rev Phytopathol.1995,33:299-322
    [5] Malamy J.E.and Banfey P.N. Down and out in Arabidopsis:the formation of lateral roots. Trends Plant Sci.1997.2:390-396
    [6]张云贵,谢永红.PEG在模拟植物干早胁迫和组织培养中的应用亚热带植物通讯.1994,23(2):61-64
    [7]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报.1999.16(5): 555-560.
    [8] Casimiro I,Beeckman T,Graham N,Bhalerao R,Zhang H,Casero p,Sandberg G, Bennett MJDissecting Arabidopsis lateral root development.Trends in plant science ,2003.8:165-171
    [9] Malamy JE Intrinsic and envionmental response pathways that regulate root system architecture. Plant, Cell and Environment ,2005,28:67-77
    [10] De Veyder L, De Almeida Engeler J, Burssens S, Manevski A, Lescure B, Van Montagu M, Engler G, Inze D A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta,1999, 208:453-462
    [11] Himanen K, Vuylsteke M, Vercruysse S ,Boucheron E,Alard P, Chriqui D,Van Montagu M,Inze D, Beeckman T Transcript profiling of early lateral root initiation. Proceedings of the National Academy of sciences of USA ,2004,101;5146-5151
    [12] Benkova E, Michniewicz M, Sauer M, Tcichmann T, Seifertova D, Jurgens G, Friml J Local ,effux-dependent auxin gradients as a common module for plant organ formation. Cell,2003,115:591-602
    [13] Marchant A, Bhalerao R, Casimrio I, Eklof J, Casero PJ. Bennett M, Sandberg G AUX1 promotes lateral root formation by facilitaing Indole-3-Acetic Acid distribution between sink and source in the arabidopsis seedlings. Plant Cell ,2002.14:589-597
    [14] Reed RC, Brady SR, Mudy GK Inhibiton of auxin movement form the shoot into the root inhibits lateral root development in Arabidopsis, Plant Physiol ,1998,118:1369-1378
    [15] Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM Formation of lateral root meristem is a two-stage process. Development ,1995,121:3303-3310
    [16] Celenza JL, Grisafi PL, Fink GR A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev,1995, 9:2131-2142
    [17] Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant Jounal,2004, 38:203-214
    [18] Werner T, Motyka V, Laucou V, Smens R, Oncklen HV, Schmulling T Cytokinin-deficient transgenic Arabidopsis Plants show multiple developmental alterations indcating opposite function of cyokinins inthe regulation of shoot and root meristen activity. Plant Cell,2003,15:2532-2550
    [19] Li X, Mo X, Shou H, Wu P Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell physiol (online) ,2006.
    [20] Finkelstin RR, GaMPala SSL, Rock CD Abscisic acid signalling in seeds and seedlings. Plant Cell ,2002, S15-S45
    [21] Smet ID, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H An abscisic acid-sensitive checkpoint inlateral root development of Arabidopsis. Plant Journal,2003,33:543-555
    [22] Brady SM, Sarkar SF, Bonetta D, Mccourt P The abscisic acid insensitive gene is modulates by farnesylation and is involoved in auxin signalling and lateral root development in Arabidopsis. Plant Journal ,2003,34:67-75
    [23] Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J Regulation of gene expression programs during Arabidopsis seed development: role of the ABI3 locus of endogenous Abscisic Acid. Plant Cell,1994,6:1567-1582
    [24] Suzuki M, Kao CY, Cocciolone S, Mcc DR Maize VP1 complements Arabidopsis ABI3 and confers a novel ABA/auxin interaction in roots. Plant Journal,2001,28:409-418
    [25] Ma Z, Baskin TI, Brown KM, Lynch JP. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol,2003, 131:1381-1390
    [26] Borch K, Bouma TJ, Lynch JP, Brown KM. Ethylene: a regulator of root architectural responder to soil phosphorus availability. Plant Cell Environ, 1999, 22: 425-431.
    [27] Lorbiecke R and Sauter M. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol, 1999, 119: 21-29
    [28] Dordes C,et al Permeability and channel mediated transport of Doric acid across plane membrane vesicles isolated , Sci,1995.108:299-310.
    [29] HohB Hinz G Jeong BK et al Protein Storage Vacuoles from denovo during pea cotyledon Development J J cell Sci,1995.108:299-310.
    [30] Koldenhoff R Kolling A Meyers J,et al The Blue light responsive AthH2 gene of Arabidopsisthalianais Primarily Expressed in Expanding aswellas in differentiating Cells and Encodes a Putative Channel Protein of the plasmalemma [J] Plant,1995,71:87-95.
    [31] Delledonme M,Xia Y ,Dixon R A,Lamb C.Nitric oxide functions as a asigrlal in plant diseaseresistance.Nature,1998.394:585-588
    [32] Beligni MV,Lamattina L Nitric oxide stimulates seed germination and de-etiolation,and inhibits Hypocoty elongation,three light-inducible responses inplants.Planta. 2000,210:215-221
    [33] Zhang H,Shen WB,Zhang w,Xu LL.A rapid response ofbeta-amylase to nitric oxide but not GA in wheat seeds during the early stage of germination.Planta.2005,220:708-716
    [34] Beligni MV,Lamattina L Is nitricoxidetoxic orprotective Trends Plant Sci.1999,4:299-310.
    [35] Kelm M , Dahmann R , Wmk D . The nitric oxide/superoxide assay . Insights into the biologicalchemistryoftheNO/O2.-interaction.J Biol Chem.1997,272(15):9922-9932.
    [36] Beligni M.Vand Lamattina L.Nitric oxide in plants:the history is just beginning.Plant cell Environ.2001,24:267-278
    [37] Malamy J.E.and Banfey P.N.Down and out in Arabidopsis:the formation of lateral roots.Trends PlantSci.1997.2:390-396
    [38] Frank S,Kampfer H,Podda M,Identification of copper/zinc superoxide dismulase as a nitricoxide-regulated gene in human(HaCaT)keratinocytes : implications for keratinocyte proliferation.Biochem J.2000,346(3):719-728.
    [39] Beligni Mv,Lamattina L.Nitric oxide stimulates seed germination and de-etiolation,and inhibits hypoeotyl elongation,three light-inducible responses in plants.Planta. 2000, 210:215-221
    [40] Millar AH,Day DA.Nitric oxide inhibits the cytochome oxidase but not the altemtive oxidase of plantmitochondria.FEBS Lett.1996.398:155-158
    [41] Gouvea CMCP,Souze JF,Magalhase ea al.NO-releasing substances that induce growth elongation in maize root segment.Plant Growth Regul .1997,21:183-187
    [42] Corren-Aragunde N,Glaziano M.Nitric oxide plays a central role in determining lateral root development in tomato.Planta.2004,218:900-905
    [43] Malamy JE Intrinsic and environmental response pathways that regulate root system architecture. plant,Cell and Environment,2005,28:67-77
    [44] Zhang H, Jennings AJ, Barlow PW and Forde BG. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA, 1999, 96: 6529–6534.
    [45] Williamson LC, Ribroux SPCP, Fitter AH, Leyser HMD. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882.
    [46] Linkohr BI, Williamson LC, Fitter AH, Leyser O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J, 2002,29:751-760.
    [47] Lopez-Bucio J, Cruz-Ramirez A and Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 2003, 6:280–287
    [48] AL-GHAZl Y, Muller B. et al. Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signaling. Plant Cell Environ, 2003,26:1053~1066.
    [49] Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A and Paz-Ares J. The transcriptional control of plant responses to phosphate limitation. J Exp Bot, 2004, 55(396): 285-293
    [50] Ticconi CA, Delatorre CA, Lahner B, Salt DE and Abel S. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J, 2004,37: 801-814
    [51] Neumann G and Martinoia E. Cluster roots- an underground adaptation for survival in extreme environments. Trends Plant Sci, 2002,7: 162-167
    [52] Zhang HM,Forde BG An Arabidopsis MADS box that controls nutrient-induced changes in root architecture.Science,1998. 279:407-409
    [53] Bonser AM, Lynch J,Snapp S Effect of phosphorus deficiency on growth angle of basal roots in phaseolus vulgars. New phytology ,1996, 132:281-288
    [54] Kang SZ and Zhang J. Controlled alternate partial root-zone irrigation: its physiological consequences and iMPact on water use efficiency. J Exp Bot, 2004, 55: 2437-2446
    [55] North GB, Nobel PS. Changes in root hydraulic conductivity for two tropical Epiphytic acts as soil moisture varies. Amer J Bot, 1994, 1:46-53
    [56] Lo-Gullo MA, Nardini A and Salleo S. Changes in root hydraulic conductance of Olea Oleaster seedlings following draught stress and irrigation. New Phytol, 1998,140:25-31
    [57] Asseng S, Ritchie JT, Smucker AJM and Robertson MJ. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil, 1998, 201: 265–273
    [58] Norwood M, Toldi O, Richter A and Scott P. Investigation into the ability of roots of the poikilohydric plant craterostigma Plantagineum to survive dehydration stress. J Exp Bot, 2003, 54(391): 2313-2321
    [59] van der Weele CM, Spollen WG, Sharo RE and Baskin TI. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot, 2000,51: 1555-1562
    [60] Malamy JE. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ, 2005, 28: 67-77
    [61] Ho MD, McCannon BC and Lynch JP. Optimization modeling of plant root architecture for water and phosphorus acquisition. Journal of Theoretical Biology, 2003, 226: 331-340
    [62] Eapen D, Barroso ML, Ponce G, Campos ME and Cassab GI. Hydrotropism: root growth responses to water. Trends Plant Sci, 2005,10(1): 44-50
    [63] Williamson LC, Ribroux SPCP, Fitter AH, Leyser HMD. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882.
    [64] Romero P, Botia P and Garcia F. Effects of regulated deficit irrigation under subsurface drip irrigation conditions on water relations of mature almond trees. Plant and Soil, 2004, 260: 155-168
    [65]慕自新,等.玉米根系形态性状和空间分布对水分利用效率的调控生态学报.第25卷:第11期
    [66]赵丽英,邓西平,山仑.持续干旱及复水对玉米幼苗生理生化指标的影响研究[J].中国生态农业学报2004.12 (3);59-61
    [67] Liming Xiong, Rui-Gang Wang, Guohong Mao, and Jessica M. Koczan(2006) Identification of Drought Tolerance Determinants by Genetic Analysis of Root Response to Drought Stress and AbscisicAcid1. Plant Physiology 142: 1065–1074
    [68] Karen . Deak and Jocelyn Malamy Osmotic regulation of root system architecture. The Plant Journal ,2005,43, 17–28
    [69] Katrin Woll, et al.Isolation, Characterization, and Pericycle-Specific Transcriptome Analyses of the Novel Maize Lateral and Seminal Root Initiation Mutant rum1.Plant Physiology,2005,139:1255–1267
    [70] Nadine Hoecker,Barbara Keller,Hans-Peter PiephoFrank Hochholdinger.Manifestation of heterosis during early maize (Zea mays L.) root development.Theor Appl Genet,2006, 112: 421–429
    [71]梁宗锁,康绍忠,邵明安.土壤水分变化对根系生长及其生理功能的调节[M].见:邵明安主编,黄土高原土壤侵蚀与旱地农业西安:陕西科学技术出版社,1999,266-275
    [72]山仑.植物水分利用效率和半干旱地区农业用水.植物生理学通讯.1994.30(1):61-65
    [73]山仑.植物抗旱生理研究与发展半旱地农业田.干旱地区农业研究, 2007,25:1-5
    [74] Diana Dembinsky ,Katrin Woll ,Muhammad Saleem ,Yan Liu ,Yan Fu,Lisa A.Borsuk,Tobias Lamkemeyer,Claudia Fladerer,Johannes Madlung,Brad Barbazuk,Alfred Nordheim, Dan Nettleton,Patrick S.Schnable,and Frank Hochholdinger. Transcriptomic and Proteomic Analyses of Pericycle Cells of the Maize Primary Root. Plant Physiology,2007,145:575-588
    [75] Richards R A,Passioura J B.Seminal root morphology and water use of wheat [J].Genetic variation Crop Sci,1981,21:253-255
    [76] Leshem Y, Wills RBH. Evidence for the function of the free radical gas nitric oxide (NO) as anendogenous regulating factor in higher plants. Plant Physiol Biochem, 1998, 36:825–33
    [77] Yamasaki H. The NO world for plants: achieving balance in an open system. Plant Cell Environ, 2005, 28: 78-84
    [78] Lamattina L, Garcia-Mata C, Graziano M, and Pagnussat G. Nitric Oxide: The versatility of an extensive signal molecule. Annu Rev Plant Biol, 2003, 54:109–3
    [79] Pagnussat GC, Simontacchi M, Puntarulo S, and Lamattina L. Nitric Oxide is required for root organogenesis. Plant Physiol, 2002, 129: 954–956
    [80] Pagnussat GC, Lanteri ML, and Lamattina L. Nitric Oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol, 2003, 132:1241–1248
    [81] Correa-Aragunde N, Graziano M and Lamattina L. Nitric Oxide plays a central role in determining lateral root development in tomato. Planta, 2004,218: 900-905
    [82] Hu XY, Neill SJ, Tang ZC and Cai WM. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol, 2005, 137: 663-670
    [83] Stoèhr C and Ullrich WR. Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot, 2002,53: 2293-2303
    [84] Charles Hachez, Menachem Moshelion,Enric Zelazny,Damien Cavez,Francois Chaumont.Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers.Plant Mol Biol, 2006,62:305-323
    [85] Francisco J. Corpas,Juan B. Barroso Alfonso Carreras,Raquel Valderrama, JoseM. Palma Ana M. Leon ,Luisa M. Sandalio,Luis A del Rio.Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development.Planta ,2006,224:246–254
    [86] Qiu-Ying Tian, Dong-Hua Sun, Min-Gui Zhao and Wen-Hao Zhang.Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos.New phytologist,2007,174:322-331
    [87]王宪业.外源一氧化氮缓解旱害小麦幼苗的氧化伤害与促进侧根生长的研究.南京农业大学博士论文.2006.12
    [88] Correa-Aragunde N,Graziano M.Nitric oxide plays a central role in determining lateral root development in tomato.Planta.2004,218:900-905.
    [89] Wang SC, lehii M, Taketa S, Xu LL, Xia K, Zhou X. Lateral root formation in rice(Oryza sativa): promotion effects ofjasmonic acid.JPhysio1.2002,159:827-832.
    [90] Zhu CH,Gan LJ,Shen zG Xia K.Interactions between jasmonates and ethylerle in the regulation of root hair development inArabidopsis.J Exp Bot.2006,57(6):1299-1308.
    [91] Boyer J S.Water transport[J].Ann Rev Plant Physiol,1985 36:473-516
    [92] Steudle E,Frensch J.Water transport in plants;role of the apoplast[J].Plant and Soil,1996,187:67-79
    [93] Anja Liszkay, Esther van der Zalm, and Peter Schopfer.Production of Reactive Oxygen Intermediates (O2?-, H2O2, and ?OH) by Maize Roots and Their Role in Wall Loosening and Elongation Growth.Plant Physiology,2004,136:3114–3123
    [94] Carpita NC Structure and biogenesis of the cell walls of grasses.Annu Rev Plant Physiol Plant Mol Biol,1996,47: 445–476
    [95] Chen S-X, Schopfer P Hydroxyl radical production in physiological reactions. A novel function ofperoxidase. Eur J Biochem,1999, 260: 726–735
    [96] Edwards KL, Scott TK Rapid growth responses of corn root segments: effect of pH on elongation. Planta,1974, 119: 27–37
    [97] Evans MLA new sensitive root auxanometer. Preliminary studies of the interaction of auxin and acid pH in the regulation of intact root elongation. Plant Physiol,1976, 58: 599–601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700