基于甲基异腈合成2-酰基吡咯及并环吡咯的多米诺反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吡咯是一类非常重要的杂环化合物,众多药物、天然产物和合成材料中都含有吡咯结构单元,因此,在过去一个世纪以来,吡咯及其衍生物的合成一直是有机合成化学的研究热点。尽管如此,通过使用廉价易得的原料,简洁、高效地构筑结构多样性的吡咯衍生物的新合成策略仍然倍受关注。
     本论文通过发展新颖、高效的多米诺反应,为多取代吡咯、并环吡咯及吲哚里西啶化合物提供新合成策略。所采用的方法具有原料易得、反应条件温和、产物结构多样化、反应步骤经济性高等优点。同时,对反应机理进行了深入细致的研究。
     论文共分六个章节。第一章综述了多米诺反应、基于甲基异腈的杂环化反应及吡咯合成的研究进展。第二章提出了本论文的选题依据。
     第三章研究了在温和条件下,无需过渡金属催化,高效,原子经济性地一步合成多取代环戊烷并吡咯化合物的新合成策略。该多米诺反应首次实现了分子内γ-位碳亲电体捕捉原位生成的亚胺负离子,成功地使异腈的端碳连续发生两次反应,构建了两个C–Cσ键。
     第四章发展了α,β-不饱和酮和对甲苯磺酰基甲基异腈的串联Michael加成/异氰对C–C键插入反应,为多取代2-酰基吡咯化合物提供简洁、高效的合成方法。首次实现了分子内α-位碳亲电体捕捉原位生成的亚胺负离子。
     第五章通过环状α,β-不饱和酮与对甲苯磺酰甲基异腈的串联Michael加成/异氰对C–C键插入反应,在构建吡咯环的同时通过C–C键插入形成苯并吲哚二酮及七/八元并环吡咯化合物。
     第六章,在碱催化下,首次实现了通过非环状前体—-双烯酰基二硫缩烯酮与甲基异腈的新型串联[7+1]环加成/分子内环化反应,高产率、高非对映选择性、高原子经济性地构筑了氮杂八元双环化合物和含有六个相邻手性中心的吲哚里西啶衍生物,实现了在无过渡金属催化条件下的中环化合物的合成。
Pyrroles are an important class of heterocyclic compounds. Many drugs, natural productsand synthetic materials contain pyrrole structural unit. In the past century, therefore, synthesisof pyrrole and its derivatives has been a research focus in organic synthesis. However, newand straightforward methods to access these compounds from simple starting materials arestill highly desirable, in particular the approach has the advantage of being amenable tostructural diversification.
     In this thesis, we have developed novel and efficient domino reactions for the synthesisof polysubstituted pyrroles, fused pyrrole and indolizidine derivatives. These methods haveapparent advantages, such as readily available starting materials, mild reaction conditions,atom and step economy and diversification of product structure. Mechanisms of these newreactions are also investigated in details.
     The thesis is divided into six chapters. In chapter one, the development of tandemreactions, heterocyclization based on methyl isocyanide and pyrrole synthesis in recent yearsare reviewed. The thesis proposal is presented in chapter two.
     Chapter three describes an efficient and atom-economic strategy for the synthesis ofcyclopenta[b]pyrroles under extremely mild and transition metal-free conditions. In thetandem reaction, a new paradigm for trapping of the incipient imidoyl anion by intramolecularγ-carbon electrophile is realized, and two C–C sigma bonds are formed.
     Chapter four shows a tandem Michael addition/isocyanide insertion reaction ofα,β-unsaturated ketone and tosyl methyl isocyanide. A concise and efficient methodology forthe one-pot synthesis of a variety of functionalized2-acylpyrroles is developed. For the fristtime, we have realized the isocyanide insertion into C–C bond reactions.
     In chapter five, a synthetic method of indole-4,7-quinones, seven-andeight-membered-ring fused pyrroles from cyclic α,β-unsaturated ketone and tosyl methylisocyanide, which went through Michael addition/isocyanide insertion into acyl C–C bondprocess, is described. The initial carbon rings are expanded by one-carbon-atom while thepyrrole rings were constructed.
     Chapter six, under catalysis of alkali, we have developed a new tandem [7+1]annulation/intramolecular cyclization reaction from the reaction of ethyl isocyanoacetate with-dialkenoyl ketene dithioacetals. This reaction features high to excellent yields, mildtransition metal-free conditions, high diastereoselectivity and perfect atom-economy.Furthermore, a series of8-azabicyclo[5.2.1]dec-8-enes and tricyclic indolizidine derivativeswith six adjacent stereocenters were synthesized in excellent yields in one-step.
引文
[1](a)罗佗平,有机化学中的多米诺反应[J].大学化学,2001,19(4):53–60.(b)李钦玲,有机合成中的多米诺反应和仿生合成[J].科技信息,2008,2:215–216.
    [2] Tietze L F, Brasche G, Gericke M. Domino Reactions in Organic Synthesis[M]. WILEY-VCH VerlagGmbH&Co KGaA, Weinheim,2006.
    [3](a) Tietze L F, Beifuss U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with aFuture[J]. Angew Chem Int Ed,1993,32(2):131–163.(b) Tietze L F. Domino Reactions in OrganicSynthesis[J]. Chem Rev,1996,96(1):115–136.(c) Padwa A, Scott K, Bur S K. The Domino Way toHeterocycles[J]. Tetrahedron,2007,63(25):5341–5378.(d) Chapman C J, Frost C G. Tandem andDomino Catalytic Strategies for Enantioselective Synthesis[J]. Synthesis,2007(1):1–21.(e) Ender D,Grondal C, Hüttl M R M. Asymmetric Organocatalytic Domino Reactions[J]. Angew Chem Int Ed.2007,46(10):1570–1581.(f) Pellissier H. Asymmetric domino reactions. Part A: Reactions Based onthe Use of Chiral Auxiliaries[J]. Tetrahedron,2006,62(8):1619–1665.(g) Pellissier H. AsymmetricDomino Reactions. Part B: Reactions Based on the Use of Chiral Catalysts and Biocatalysts[J].Tetrahedron,2006,62(10):2143–2173.(h) Clavier H, Pellissier H. Recent Developments inEnantioselective Metal-Catalyzed Domino Reactions[J]. Adv Synth Catal,2012,354:3347–3403.
    [4](a) Sadler I H, Simpson T J.[J]. Magn Reson Chem,1992,30:518.(b) Simpson T J. Biosynthesis ofastellatol, a novel rearranged sesterterpenoid metabolite of Aspergillus variecolor [J]. J Chem SocPerkin Trans1,1994,(21):3055.
    [5] Robinson R L. A Synthesis of Tropinone[J]. J Chem Soc,1917(111):762–768.
    [6] Tietze L F, Stegelmeier H, Harms K, Brumby T. Control of the conformation of transition states inintramolecuar Diels-Alder reactions with inverse electron demand[J]. Angew Chem Int Ed,1982,21:863–864.
    [7] Weber L. The application of multi-component reactions in drug discovery[J]. Curr Med Chem,2002,9(23):2085–2093.
    [8] Cui S L, Lin X F, Wang Y G. Novel and Efficient Synthesis of Iminocoumarins via Copper-CatalyzedMulticomponent Reaction[J]. Org Lett,2006,8:4517–4510.
    [9] Cui S L, Wang J, Wang Y G. Synthesis of Indoles via Domino Reaction of N-Aryl Amides and EthylDiazoacetate[J]. J Am Chem Soc,2008,130:13526–13529.
    [10] Subba Reddy B V, Swain M, Madhusudana Reddy S, Yadav J S, Sridhar B. Gold-Catalyzed DominoCycloisomerization/Pictet–Spengler Reaction of2-(4-Aminobut-1-yn-1-yl)anilines with Aldehydes:Synthesis of Tetrahydropyrido[4,3-b]indole Scaffolds[J]. J Org Chem,2012,77(24):11355–11361.
    [11] Liu X L, Han W Y, Zhang X M, Yuan W C. Highly Efficient and Stereocontrolled Construction of3,3’-Pyrrolidonyl Spirooxindoles via Organocatalytic Domino Michael/Cyclization Reaction[J]. J OrgChem,2013,15(6):1246–1249.
    [12](a) Lu L Q, Cao Y J, Liu X P. A New Entry to Cascade Orgaoncatalysis: Reactions of Stable SulfurYlides and Nitroolefins Sequentially Catalyzed by Thiourea and DMAP[J]. J Am Chem Soc,2008,130(22):6946–6948.(b) Hu X D, Fan C A, Zhang F M. Tandem Semipinacol Rearrangement/-Epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional1,3-Diols[J]. Angew Chem Int Ed,2004,43(13):1702–1705.
    [13] Liu G, Lu X. Palladium(II)-Catalyzed Tandem Reaction of Intramolecular Aminopalladation of AllenylN-Tosylcarbamates and Conjugate Addition[J]. Org Lett,2001,3(24):3879–3882.
    [14] Liu Y, Song F, Guo S. Cleavage of a Carbon Carbon Triple Bond via Gold-Catalyzed CascadeCyclization/Oxidative Cleavage Reactions of (Z)-Enynols with Molecular Oxygen[J]. J Am Chem Soc,2006,128(35):11332–11333.
    [15] Cui S L, Wang J, Wang Y G. Synthesis of Indoles via Domino Reaction of N-Aryl Amides and EthylDiazoacetate[J]. J Am Chem Soc,2008,130(41):13526–13527.
    [16] Ma D, Zhu W. Two-Component Method to Enantiopure Quinolizidinones and Indolizidinones. TotalSynthesis of (-)-Lasubine II[J]. Org Lett,2001,3(24):3927–3929.
    [17] Isocyanides is the name adapted by IUPAC (“Nomenclature of Organic chemistry”, Setion C,1965).
    [18] Gulevich A V, Alexander G Z, Romano V A, Valentine G. N. Isocyanoacetate Derivatives: Synthesis,Reactivity, and Application[J]. Chem Rev,2010,110:5235–5331.
    [19] Hoppe D. α-Metalated Isocyanides in Organic Synthesis. New synthetic methods[J]. AngewChem Int Ed Engl.1974,13:789–804.
    [20] Grigg R, Mark L, Mark T P. Silver Acetate Catalyzed Cycloadditions of Isocyanoacetates[J].Tetrahedron,1999,55(7):2025–2044.
    [21] Panella L, Aleixandre A M, Kruidhof G J, et al. Enantioselective Rh-Catalyzed Hydrogenation ofN-FormylDehydroamino Esters with Monodentate Phosphoramidite Ligands[J]. J Org Chem,2006,71(5):2026–2036.
    [22] Huang W S, Yuan C Y, Wang Z Q. Facile Synthesis of1-Substituted5-TrifluoroMethylimidazole-4-Carboxylates[J]. J Fluorine Chem,1995,74(2):279–282.
    [23] Osipova A, Yufit D S, de Meijere A. Synthesis of New Cyclopropylisonitriles and Their Applicationsin Ugi Four-component Reactions[J]. Synthesis,2007,1,131–139.
    [24] Robinson R. LXXV.-A theory of the Mechanism of the Phytochemical Synthesis of CertainAlkaloids[J]. J Chem Soc,1917,111,876–899.
    [25](a) Ugi I, Meyr R, et al. Neue Darstellungsmethode für Isonitrile[J]. Angew Chem,1958,70(22-23):702–703.(b) Ugi I, Steinbrückner C.über ein neues Kondensations-Prinzip[J]. Angew Chem,1960,72(7-8):267–268.
    [26] See original paper:(a) Kern O T, Motherwell, W B. A novel isocyanide based three componentreaction[J]. Chem Commun,2003,2988–2989.(b) Corrections: Kern O T, Motherwell W B. A novelisocyanide based three component reaction [J]. Chem Commun,2005,1787–1790.
    [27] Maison W, Schlemminger, I Westerhoff O, et al. Multicomponent Synthesis of Novel AminoAcid-nucleobase Chimeras: A Versatile Approach to PNA-monomers[J]. Bioorg Med Chem,2000,8(6):1343–1360.
    [28] Castellano T G, Neo A G, Marcaccini S C, Marcos F. Enols as Feasible Acid Components in the UgiCondensation[J]. Org Lett,2012,14(24):6218–6221.
    [29] Tan J, Xu X X, Zhang L J, Li Y F, Liu Q. Tandem Double Michael Addition/Cyclization/AcylMigration of1,4-Dien-3-ones and Isocyanoacetate: A New Strategy for Stereoselective Synthesis ofPyrrolizidines[J]. Angew Chem Int Ed,2009,48:2868–2872.
    [30] Xu X X, Li Y F, Zhang Y, Liu Q. Direct Synthesis of6-Azabicyclo[3.2.1]oct-6-en-2-ones andPyrrolizidines from Divinyl Ketones and Observation of RemarkableSubstituent Effects[J]. Adv SynthCatal,2011,353(8):1218–1222.
    [31] Li Y F, Xu X X, Tan J, Xia C Y, Zhang D W, Liu Q. Double Isocyanide Cyclization: A SyntheticStrategy for Two-carbon Tethered Pyrrol/Oxazole Pairs[J]. J Am Chem Soc,2011,133:1775–1777.
    [32] Li Y F, Xu X X, Xia C Y, Pan L, Liu Q. Double Nucleophilic Attack on Isocyanide Carbon: ASynthetic Strategy for7-Aza-Tetrahydroindoles [J]. Chem Commun,2012,48(100),12228–12230.
    [33] Ramana Reddy V V. p-Toluenesulfonylmethyl Isocyanide (TosMIC)[J]. Synlett,2005, No.2:363–364.
    [34] Oldenziel O H, van Leusen D, van Leusen A M.[J]. J Org Chem,1977,42,3114–3119.
    [35](a) van Leusen A M, Oomkes P G.[J]. Synth. Commun,1980,10,399–413.(b) Oldenzil O H,Wildeman J, van Leusen A M.[J].Org Synth Coll,1988, VI:41.
    [36](a) van Leusen A M, Hoogenboom B E, Sideriu H L. A novel and efficient synthesis of oxazoles fromtosylmethylisocyanide and carbonyl compounds [J]. Tetrahedron Lett,1972,13(23),2369–2372.(b)Saikachi H, Kitagawa T, van Leusen A M. Chem Pharm Bull,1982,30,4199.
    [37] Murali D h, Shen Z, Fleener C A, Rouleau K A, Barrish J C, Hollenbaug D L, Iwanowicz E J.[J].Bioorg. Med. Chem Lett,2002,12:3305–3309.
    [38] Jeffery M. Atkins and Edwin V. A Two-Stage Iterative Process for the Synthesis of Poly-oxazoles[J].Org Lett,2005,7:3351–3354.
    [39] van Leusen A M, Wildeman J, Oldenziel O H. Chemistry of sulfonylmethyl isocyanides.12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of1,5-disubstituted and1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides[J]. J OrgChem,1977,42:1153–1159.
    [40] Barbara B, Christian A L, Benhard K M.[J]. QSAR Comb,2006,5:527–535.
    [41] van Leusen A M, Hoogenboom B E, Houuking H A. Chemistry of sulfonylmethyl isocyanides.Synthesis of1,2,4-triazoles from tosylmethyl isocyanide and aryldiazonium compounds[J]. J OrgChem,1976,41:711–716.
    [42] Kenner G W. J Am Chem Commi,1973,43.
    [43] Birch A J. The structure of pyoluteorin [J]. J Chem Soc,1964,2641–2644.
    [44] Hancssian S. J Arrr Cliern Soc,1966,88:4509.
    [45]王福东,李谦,彭冬明.莫西沙星的合成方法[J].药学进展,2003,27(4):217–220.
    [46](a) Zhang S F, Zhao X X, Gao W F. Aminopyrrolizinone analogues for anti-inflammation andanalgesia[P]. US:5616604,1997-04-01.(b) Pang J Y, Sun G, Zhang S F. Synthesis andanti-inflammatory and analgesic activities of dihydropyrrolo[1,2-a] pyrazin-1-one[J]. Chinese J ofMed Chem,2002,12(2):82–84.
    [47]于红,王绯,栾洋,李建,张守芳.5-芳基-1,2-二氢-1-吡咯哩嗪酮类化合物的合成及抗炎镇痛作用[J],中国药物化学杂志,2003,13(6):335–338.
    [48]王绯,郑红,张守芳.3-芳基-2-甲基-1-吡咯并[1,2-a]比嗪酮类衍生物的合成和抗炎镇痛作用[J].中国药物化学杂志,2004,14(4):215–218.
    [49]吴学宏,李飞武,张文华,刘鹏飞,郑乐,刘西莉.咯菌腈对西瓜幼苗生长及抗病性相关酶活性的影响[J].植物病理学报,2004,3(6):531–535.
    [50] Diaz A F, Kananzawa K K, Gardini G P, Eleetroehemieal Polymerization of Pyrrle[J]. J Chem SoeChem Commom,1979,635–636.
    [51](a) Souza J E, Dos Santos F L, Barros-Neto B. Polypyrrole thin film gas sensors[J]. Synthetic Metals.,2001,119:383–384.(b) Jun H K, Hoh Y S, Lee B S. Electrical properties of polypyrrole gas sensorsfabricated under various Pretesment conditions[J]. Sensors and Acuators B.,2003,96:576–581.
    [52] Milella E, Penza M. SAW gas detection using Langmuri-Blodgett polypyrrole films[J]. Thin SolidFilms.,1998,237:694–697.
    [53] Sgriski V S, Reut J, Opik A, Idla K. Environmental QCM sensors coted with polypyrrole[J]. Synth.Met.,1999,102:1326–1327.
    [54] Hirsbbcrg Y, Reversible. Reversible Formation and Eradication of Colors by Irradiation at LowTemperatures. A Photochemical Memory Model[J]. J Am Chem Soc,1956,78:2304.
    [55] Zollinger H. Color Chemistry,1987(VCH New York),266.
    [56] Stobbe H B. Die farbigen Anhydride der Butadion-β, γ-dicarbonsauren; ihr Verhalten gegen Licht andWarme[J]. Ber Chem,1904,37:2236.
    [57] Hirsbberg Y. Reversible Formation and Eradication of Colors by irradiation at Low Temperatures: APhotochemical Memory Model[J]. J Am Chem Soc,1956,78:2304–2312.
    [58] Fujii H, Yoshimura T, Kamada H. Regioselective pyrrole synthesis from asymmetric β-diketone andconversion to sterically hindered porphyrin [J]. Tetrahedron Lett,1997,38(8):1427–1430.
    [59] Genevieve B. Pyrrole Syntheses by Multicomponent Coupling Reactions[J]. Angew Chem Int Ed,2004,43:6238–6241.
    [60] Ashwin R, Bharadwaj, Scheidt K A. Catalytic Multicomponent Synthesis of Highly SubstitutedPyrroles Utilizing a One-Pot Sila-Stetter/Paal Knorr Strategy[J]. Org Lett,2004,6(14):2465–2468.
    [61] Behzad K, Pedram J, Bagher E S, Mohammed M H. Novel One-Pot, Three-Component Synthesis ofNew2-Alkyl-5-aryl-(1H)-pyrrole-4-ol in Water[J]. J Org Chem,2008,73:2090–2095.
    [62] Arcadi A, Giuseppe S D, Marinelli F, Rossi E. Conversion of homochiral amines and α-amino esters totheir chiral1,2,3,5-substituted pyrrole derivatives via gold-catalysed amination/annulation reactions of2-propynyl-1,3-dicarbonyl compounds [J]. Tetrahedron. Asymmetry,2001,12(19):2715–2720.
    [63] Lu Y H, Fu X P, Chen H Y, Du X W, Jia X S, Liu Y H. An Efficient Domino Approach for theSynthesis of Multisubstituted Pyrroles via Gold/Silver-Catalyzed Amination/Cycloisomerization of(Z)-2-En-4-yn-1-ols[J]. Adv Synth Catal,2009,351(1-2):129–134.
    [64] Souvik R, Frederic W P, Frank G. Pyrrole Synthesis via Allylic sp3C H Activation of EnaminesFollowed by Intermolecular Coupling with Unactivated Alkynes[J]. J Am Chem Soc,2010,132:9585–9587.
    [65] Gorin D J, Davis N R, Toste F D. Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction[J].J Am Chem Soc,2005,127:11260–11262.
    [66] Huang X, Shyen R W, Zhang T X. Reaction of Allenyl Esters with Sodium Azide: An EfficientSynthesis of E-Vinyl Azides and Polysubstituted Pyrroles[J]. J Org Chem,2007,72:1534–1537.
    [67] Wang Y F, Toh K K, Chiba S, K N. Mn(III)-Catalyzed Synthesis of Pyrroles from Vinyl Azides and1,3-Dicarbonyl Compounds[J]. Org Lett,2008,10(21):5019–5022.
    [68] Yoo C L, Olmstead M M, Tantillo D J, Kurth M J. Synthesis of2H-pyrroles via the1,3-dipolarcycloaddition reaction of nitrile ylides with acrylamides[J]. Tetrahedron Lett.,2006,47(4):477–481.
    [69] Zhang Y, Pan L, Xu X X, Liu Q. An efficient pyrroline annulation of glycine imine with enones[J].RSC Adv,2012,2:5138–5140.
    [70] Barton D H R, Zard S Z. A new synthesis of pyrroles from nitroalkenes[J]. J Chem Soc ChemCommun,1985,(16):1098–1100.
    [71] Takaya H, Kojima S, Murahash S I. Rhodium Complex-Catalyzed Reaction of Isonitriles withCarbonyl Compounds: Catalytic Synthesis of Pyrroles[J]. Org Lett,2001,3(3):421–424.
    [72] Larionov O V, Meijere A D. Versatile Direct Synthesis of Oligosubstituted Pyrroles by Cycloadditionof α-Metalated Isocyanides to Acetylenes [J]. Angew Chem Int Ed,2005,44(35):5664–5667.
    [73] Liu J Q, Fang Z X, Zhang Q, Liu Q, Bi X H. Silver-Catalyzed Isocyanide-Alkyne Cycloaddition: AGeneral and Practical Method to Oligosubstituted Pyrroles[J]. Angew Chem Int Ed,2013,125, ASAP.
    [74] Gao M, He C, Chen H Y, Lei A W. Synthesis of Pyrroles by Click Reaction: Silver-CatalyzedCycloaddition of Terminal Alkynes with Isocyanides[J]. Angew Chem Int Ed,2013,125, ASAP.
    [75] Kamijo S, Kanazawa C, Yamamoto Y. Copper-or Phosphine-Catalyzed Reaction of Alkynes withIsocyanides. Regioselective Synthesis of Substituted Pyrroles Controlled by the Catalyst[J]. J AmChem Soc,2005,127:9260–9266.
    [76] Hiroyasu S, Kunio H. Novel thermal iminocyclopropene rearrangements: regioselectivity in thesynthesis of pyrroles[J]. Tetrahedron Lett,2006,47:5793–5796.
    [77] Lee H S, Kim J M, Kim J N. Synthesis of poly-substituted pyrroles starting from the Baylis–Hillmanadducts[J]. Tetrahedron Lett,2007,48:4119–4122.
    [78] Alcaide B, Almendros P, Carrascosa R, Redondo M C. New Regiocontrolled Synthesis ofFunctionalized Pyrroles from2-Azetidinone-Tethered Allenols [J]. Chem Eur J,2008,14:637–643.
    [79] Yang L, Wang D X, Huang Z T, Wang M X. Cr(III)(salen)Cl Catalyzed EnantioselectiveIntramolecular Addition of Tertiary Enamides to Ketones: A General Access to Enantioenriched1H-Pyrrol-2(3H)-one Derivatives Bearing a Hydroxylated Quaternary Carbon Atom [J]. J Am ChemSoc,2009,131:10390–10391.
    [80] Yang L, Lei C H, Wang D X, Huang Z T, Wang M X. Highly Efficient and Expedient Synthesis of5-Hydroxy-1H-pyrrol-2-(5H)-ones from FeCl3-Catalyzed Tandem Intramolecular Enaminic Additionof Tertiary Enamides to Ketones and1,3-Hydroxy Rearrangement[J]. Org Lett,2010,12(17):3918–3921.
    [81] Zhao Y L, Di C H, Liu S D, Meng J, Liu Q.[3+2]Cycloaddition of Propargylamines anda-AcylketeneDithioacetals: A Synthetic Strategy for Highly Substituted Pyrroles[J]. Adv Synth Catal,2012,354:3545–3550.
    [1] van leusen, A M.[J]. Lect. Heterocyclic Chem.1980,5, S111.
    [2] van leusen, A M, Zwanenburlg, B, Klender, A J. In Perspectives in the Organic Chemistry of sulfur[J].Elsevier: Amsterdam,1987, P.119.
    [3] Di Santo R, Massa S, Artico M.[J]. Farmaco,1993,48:209; Chem Abstr,1993,118:254774r.
    [4] van leusen A M, van leusen D. Encyclopedia of Reagents for Orangic Synthesis[J]. Wiley: New York,1995,7:4973.
    [5] van leusen A M, Oldenziel O H. Synthesis of tosyl-substituted imidazoles from tosylmethylisocyanideand imidoyl chlorides[J]. Tetrahedron Lett,1972,13(23):2373–2374.
    [6] van leusen A M, Siderius H, van leusen D. A new and simple synthesis of the pyrrole ring system fromMichael acceptors and tosylmethylisocyanides [J]. Tetrahedron Lett,1972,13(52):5337–5340.
    [7] Possel O, van leusen A M. Synthesis of Oxazoles, Imidazoles and Pyrroles with the Use ofMono-substituted Tosylmethyl Isocyanides [J]. Heterocycloes,1977,7(1):77–80.
    [8] ten Have R, Leusink F R, van leusen A M.[J]. Sythesis,1996,871.
    [9] Moskal J, van leusen A M. Chemistry of sulfonylmethyl isocyanides.30. A new synthesis of indoles byelectrocyclic ring closure of dialkenylpyrroles. Synthesis of alkenylpyrroles from1-tosylalkenylisocyanides and Michael acceptors [J]. J Org Chem,1986,51(22):4131–4139.
    [10](a) van leusen D, van Echten E, van leusen A M. Chemistry of sulfonylmethyl isocyanides.37.Synthesis of3,4-disubstituted pyrroles bearing substituents of electron-withdrawing and/orelectron-donating nature [J]. J Org Chem,1992,57:2245.(b) van leusen D, Flentge E, van leusen AM. An efficient synthesis of3-nitropyrroles [J]. Tetrahedron,1991,47:4639.
    [11] Hayakawa Y,.Kawakazni K,Seto H, Furihata K. Structure of a new antibiotic, roseophilin[J].Tetrahedron Lett,1992,33:2701–2704.
    [12] Furstner A, Krause H. Flexible Synthesis of MetacycloProdigiosin and Functional DerivativesThereof[J]. J Org Chem,1999,64:8281–8286.
    [13] Kiln S H, Figueroa I, Fuchs P L. Application of the grubbs ring-closing methathesis for theconstruction of a macrocyclic ansa-bridge. Synthesis of the tricyclic core of roseophilin[J].Tetrahedron Lett,1997,38:2601–2604.
    [14] Bamford S J, Luker T, Speckamp W N, Hiemstra H. Enantioselective formal total synthesis ofroseophilin[J]. Org Lett,2000,2:1157–1160.
    [15] Bamford S J, Goubitz K, van Lingen L, Luker T, Schenk H. Formation of medium-size bridge ringsystems via ring-closing metathesis of2,5-disubtitued-2,3-dihydro-1H-pyrroles[J]. J Chem Soc PerkinTrans,2000,1:345–351.
    [16] Furstner A, Gastner T, Weintritt H. A Second Generation synthesis of roseophilin and chromophoreanalogues[J]. J Org Chem,1999,64:2361–2366.
    [17] Harrington P E, Tius M A. Synthesis and Absolute Stereochemistry of Roseophilin[J]. J Am Chem Soc,2001,123:8509–8514.
    [18] Harrington P E, Tius M A. A Formal Total Synthesis of Roseophilin: cyclopentannelation approach tothe macrocyclic core[J]. Org Lett,1999,1:649–651.
    [19] Trost B M, Doherty G A. An Asyxnmetric Synthesis of the tricyclic core and a formal total synthesis ofroseophilin via an enyne methathesis[J]. J Am Chem Soc,2000,122:3801–3810.
    [20] Mochizuki T, Itoh E, Shibata N, Nakatani S, Katoh T, Terashima S. Studies toward the total synthesisof antibiotic roseophilin: A novel synthesis of macrotricyclic part[J]. Tetrahedron Lett,1998,39:6911–6914.
    [21](a) Song C, Knight D W, Whatton M A. The First Examples of Nazarov Cyclizations Leading toAnnulated Pyrroles[J]. Org Lett,2006,8:163–166;(b) Barluenga J, Garcia-Rodriguez J,Suarez-Sobrino A L, Tomas M. Single and Consecutive Cyclization Reactions of Alkynyl CarbeneComplexes and8-Azaheptafulvenes: Direct Access to Polycyclic Pyrrole and Indole Derivatives[J].Chem Eur J,2009,15:8800–8806;(c) OcchiatoE G, Prandi C, Ferrali A, Guarna A. RemoteStereocontrol in the Nazarov Reaction: A New Approach to the Core of Roseophilin[J]. J Org Chem,2005,70:4542–4545.
    [22] Ney J E, Wolfe J P. Selective Synthesis of5-or6-Aryl Octahydrocyclopenta[b]pyrroles from aCommon Precursor through Control of Competing Pathways in a Pd-Catalyzed Reaction[J]. J AmChem Soc,2005,127:8644–8651.
    [23] Onizawa Y, Kusama H, Iwasawa N. Bicyclization of Isocyanides: A Synthetic Strategy for FusedPyrroles[J]. J Am Chem Soc,2008,130:802–803.
    [24] Ye L, Haddadin M J, Lodewyk M W, Ferreira A J, Fettinger J C, Tantillo D J, Kurth M J.Cyclopenta[b]pyrroles from Triazines: Synthetic and Mechanistic Studies[J]. Org Lett,2010,12:164–167.
    [25] For a review on Van Leusen pyrrole synthesis (cyclization between a Michael acceptor andtosylmethyl isocyanides), see: Van Leusen A M, van Leusen D. Org React,2001,57:417.
    [26] Gulevich A V, Zhdanko A G, Orru R V A, Nenajdenko V G. Isocyanoacetate Derivatives: Synthesis,Reactivity, and Application[J]. Chem Rev,2010,110(9):5235–5331.
    [27] Lygin A V, Meijere A de. Isocyanides in the Synthesis of Nitrogen Heterocycles[J]. Angew Chem IntEd,2010,49(48):9094–9124.
    [28] Lalli C, Bouma M J, Bonne D, Masson G, Zhu J P. Exploiting the Divergent Reactivity ofα-Isocyanoacetate: Multicomponent Synthesis of5-Alkoxyoxazoles and Related Heterocycles ChemEur J,2011,17(3):880–889.
    [29](a) Li Y F, Xu X X, Tan J, Xia C Y, Zhang D W, Liu Q. Double Isocyanide Cyclization: A SyntheticStrategy for Two-Carbon-Tethered Pyrrole/Oxazole Pairs[J]. J Am Chem Soc,2011,133:1775–1777.(b) Tan J, Xu X X, Zhang L J, Li Y F, Liu Q. Tandem Double-Michael-Addition/Cyclization/AcylMigration of1,4-Dien-3-ones and Ethyl Isocyanoacetate: Stereoselective Synthesis ofPyrrolizidines[J]. Angew Chem Int Ed,2009,48:2868–2872.(c) Xu X X, Li Y F, Zhang Y, Zhang LJ, Pan L, Liu Q. Direct Synthesis of6-Azabicyclo[3.2.1]oct-6-en-2-ones and Pyrrolizidines fromDivinyl Ketones and Observation of Remark-able Substituent Effects[J]. Adv Synth Catal,2011,353:1218–1222.
    [30] For a review on the [5+1]-annulation strategy based on alkenoyl ketene dithioacetals, see: Pan L, LiuQ. Synlett,2011,1073.
    [1] Angel R. Pharmacological investigations on various derivatives of pyrrole[J]. Bull Soc Ital Biol Sper,1927,2:830.
    [2] Moffett R B. Central nervous system depressants VIII, pyrroles[J]. J Med Chem,1968,11:1251–1252.
    [3] Sander P. Pharmacological analysis of the effects of synthetic α-methyl pyrryl ketone on the centralnerous system and blood circulation[J]. Arzneim-Forsch,1970,20:29.
    [4]张守芳,高文芳,郑红等.3H-1,2-二氢-1-吡里酮衍生物的合成[J].药学学报,1988,23:28–33.
    [5] Joseph M M. Synthesis, antiinflammatory and analgesic activity of5-aroyl-1,2-dihydro-3H-pyrrolo
    [1,2-a]pyrrole-1-carboxylic acids and related compounds[J]. J Med Chem,1985,28:1037–1039.
    [6] Chaney M O, Demarco P V, Jones N D, Orrolow-itz J L. Structure of A23187, a divalent cationionophore[J]. J Am Chem Soc,1974,96(6):1932–1933.
    [7] Cooper G H. Cyclopropyl2-Pyrrolyl Ketone[J]. J Org Chem,1971,36:2897–2898.
    [8] Kakushima M, Hamel P, FrenetteR, Rokach J. Regioselective Synthesis of Acylpyrroles[J]. J Org Chem,1983,48:3214–3219.
    [9] Yadav J S, Reddy B V S, Kondaji G R, Rao S, Praveen Kumar S. Zinc-mediated acylation andsulfonation of pyrrole and its derivatives[J]. Tetrahedron Lett,2002,43:8133–8135.10] Katritzky A R, Kazuyuki Suzuki, Sandeep K S, He H Y. RegiospecificC-Acylation of Pyrroles andIndoles UsingN-Acylbenzotriazoles[J]. J Org Chem,2003,68:5720–5723.
    [11] Taylor J E, Jones M D, Steven D B. Friedel-Crafts Acylation of Pyrroles and Indoles using1,5-Diazabicyclo[4.3.0]non-5-ene (DBN) as a Nucleophilic Catalyst[J]. Org Lett,2010,12:5740–5743.
    [12] Kostik E I, Abiko A, Oku A. Tetrahydroquinolizinium Ylides: Preparation and1,3-DipolarCycloaddition[J]. J Org Chem,2001,66:1638–1646.
    [13] Baran P S, Richter J M, Lin D W. Direct Coupling of Pyrroles with Carbonyl Compounds: ShortEnantioselective Synthesis of (S)-Ketorolac [J]. Angew Chem Int Ed,2005,44:609–612.
    [14] Zhang S G, Zhao J, Xi Z F. One-Pot Synthesis of Pyrrolo-[3,2-d]pyridazines and Pyrrole-2,3-dionesvia Zirconocene-Mediated Four-Component Coupling of Si-Tethered Diyne, Nitriles, and Azide[J].Org Lett,2011,13:1626–1629.
    [15] Cai Q, Zhou F T, Xu T F, Fu L B, Ding K. Copper-Catalyzed Tandem Reactions of1-(2-Iodoary)-2-yn-1-ones with Isocyanides for the Synthesis of4-Oxo-indeno[1,2-b]pyrroles [J]. Org Lett,2011,13(2):340–343.
    [16](a) Kamijo S, Kanazawa C, Yamamoto Y. Copper-or Phosphine-Catalyzed Reaction of Alkynes withIsocyanides. Regioselective Synthesis of Substituted Pyrroles Controlled by the Catalyst[J].J AmChem Soc,2005,127(25):9260–9266.(b) Lygin A V, Larionov O V, Korotkov V S, de Meijere A.Oligosubstituted Pyrroles Directly from Substituted Methyl Isocyanides and Acetylenes[J]. Chem EurJ,2009,15:227–236.(c) Grigg R, Lansdell M I, Thornton-Pett M. Silver acetate catalysedcycloadditions of isocyanoacetates[J]. Tetrahedron,1999,55:2025–2044.(d) Misra N C, Panda K, IlaH, Junjappa H. An Efficient Highly Regioselective Synthesis of2,3,4-Trisubstituted Pyrroles byCycloaddition of Polarized Ketene S,S-and N,S-Acetals with Activated Methylene Isocyanides[J]. JOrg Chem,2007,72:1246–1251.
    [17] Zhang L J, Xu X X, Xia W M, Liu Q. Bicyclization of Isocyanides: A Synthetic Strategy for FusedPyrroles[J]. Adv Synth Catal,2011,353:2619–2623.
    [1] Kobayarhi J, Cheng J, Nakamura H, Ohizumi Y, Hirata Y. Ascididemin, a novel pentacyclic aromaticalkaloid with potent antileukemic activity from the okinawan tunicate didemnumsp.[J].Tetrahedron Lett,1900,29:1177–1180.
    [2] DeGuzman F S, Schmitz F, J. Chemistry of2-bromoleptoclinidinone, structure revision[J]. TetrahedronLett,1989,30:1069–1070.
    [3] Kobayashi J, Cheng J, Walchli M R, Nakamura H, Hirata Y, Sasaki T, Ohizumi Y. Cystodytins A, B,and C, novel tetracyclic aromatic alkaloids with potent antineoplastic activity from the Okinawantunicate Cystodytes dellechiajei[J]. J Org Chem,1988,53(8):1800–1804.
    [4] Charyulu G A, McKee T C, Ireland C M. Diplamine, a cytotoxic polyaromatic alkaloid from thetunicate diplosoma sp[J].Tetrahedron Lett,1989,30:4201–4202.
    [5] Sc'hitz F J, D&uzman F S, Hdn M B, van der Helm D. Cytotoxic aromatic alkaloids from the ascidianAmphicarpa meridiana and Leptoclinides sp.: meridine and11-hydroxyascididemin[J]. J Org Chem,1991,56(2):804–808.
    [6]廖志新,抗爱滋病活性成分[R],制药工程进展专题.
    [7] Antunes E M, Copp B R, Samaai T. Pyrroloiminoquinone and related metabolites from marine sponges[J]. Nat Prod Rep,2005,22:62–72.
    [8] Hu J F, Fan H, Xiong J. Discorhabdins and Pyrroloiminoquinone-Related Alkaloids[J]. Chem Rev,2011,111(9):5465–5491.
    [9] Lin A J, Cosby L A, Shansky C W. Potential Bioreductive Alkylating Agents: Benzoquinone Derivatives[J]. J Med Chem,1972,12:1247–1252.
    [10] Oostveen E A, Speckamp W N. Mitomycin analogs I. Indoloquinones as (potential) bisalkylatingagents[J]. Tetrahedron,1987,43(1):255–262.
    [11] Jain A, Phillips R M, Scally A J, Lenaz G, Beer M. Response of multiple recurrent TaT1bladder cancerto intravesical apaziquone (EO9): comparative analysis of tumor recurrence rates[J]. Urology,2009,73(5):1083–1086.
    [12] Dehn D L, Siegel D, Zafar K S, Reigan P, Swann E, Moody C J, Ross D.5-Methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione, a mechanism-based inhibitor of NAD(P)H:quinoneoxidoreductase1, exhibits activity against human pancreatic cancer in vitro and in vivo[J]. MolCancer Ther,2006,5:1702–1709.
    [13] Yan C, Shieh B, Reigan P, Zhang Z, Colucci M A, et al. Potent activity of indolequinones againsthuman pancreatic cancer: identification of thioredoxin reductase as a potential target[J]. Mol Pharm,2009,76:163–172.
    [14] Martin T, Moody C J. Synthesis of the carbazole alkaloid murrayaquinone-B[J]. J Chem Soc, PerkinTrans,1988,2:241–246.
    [15] Jose, M S, Catalina, M, Angel, G R. A Novel Entry to4,7-Indoloquinones via the Fremy's SaltOxidative Degradation of4-Formyl-7-hydroxyindoles[J]. J Org Chem,1992,57:589–594.
    [16] Yi H W, Cho H I, Lee K J. A Simple Synthesis of4-Chloro-5-hydroxy-1H-benzo[g]indoles[J]. J HeterChem,2005,42:147–151.
    [17] Ryu C K, Lee J Y, Park R E, Ma M Y. Synthesis and antifungal activity of1H-indole-4,7-diones[J].Bioorg&Med Chem Lett,2007,17:127–131.
    [18] Passarella D, Belinghieri F, Scarpellini M, Pratesi G. Synthesis and biological evaluation ofpyrroloiminoquinone derivatives[J]. Bioorg&Med Chem Lett,2008,16:2431–2438.
    [19] Inman M, Moody C J. Synthesis of Indolequinones from Bromoquinones and Enamines Mediated byCu(OAc)2·H2O[J]. J Org Chem,2010,75:6023–6026.
    [20] Yamashitaa M, Ueda K, Sakaguchi K, Iida A. Synthesis of indolequinones via a Sonogashiracoupling/cyclization cascade reaction[J]. Tetrahedron Lett,2011,52:4665–4670.
    [21](a) Pan L, Liu Q.[5+1]-Annulation Strategy Based on Alkenoyl Ketene Dithioacetals andAnalogues[J]. Synlett,2011(8),1073–1080.(b) Pan L, Bi X H, Liu Q. Recent developments of ketenedithioacetal chemistry[J]. Chem Soc Rev,2013,42:1251–1286.
    [22](a) Lygin A V, de Meijere A. Isocyanides in the Synthesis of Nitrogen Heterocycles[J]. Angew ChemInt Ed,2010,49:9094–9124.(b) Gulevich A V, Zhdanko A G, Orru R V A, Nenajdenko V G.Isocyanoacetate Derivatives: Synthesis, Reactivity, and Application[J].Chem Rev,2010,110:5235–5331.
    [23](a) van Leusen A M, Siderius H, Hoogenboom B E, van Leusen D. A new and simple synthesis of thepyrrole ring system from Michael acceptors and tosylmethylisocyanides[J]. Tetrahedron Lett,1972,13(52):5337–5340.(b) van Leusen D, Flentge E, van Leusen A M. An efficient synthesis of3-nitropyrroles [J].Tetrahedron,1991,47(26):4639–4644.(c) Qin J, Zhang J, Wo B, Zheng Z, YangM, Yu X. Efficient and Mild Protocol for the Synthesis of4(3)-Substituted3(4)-Nitro-1H-pyrrolesand3-Substituted4-Methyl-2-tosyl-1H pyrroles from Nitroolefins and Tosylmethyl Isocyanide inIonic Liquids [J]. Chin J Chem,2009,27:1782–1788.(d) Baxendale I R, Buckle C D, Ley S V,Tamborini L. A Base-Catalysed One-Pot Three-Component Coupling Reaction Leading toNitrosubstituted Pyrroles [J]. Synthesis,2009,1485–1493.(e) Wang H, Zhao Y L, Ren C Q, Diallo A,Liu Q. Tandem [5+1] annulation–isocyanide cyclization: efficient synthesis of hydroindolones[J].Chem Commun,2011,47:12316–12318and references4g and4i.
    [24](a) Trofimov B A, Sobenina L N, Demenev A P, Mikhaleva A I. C-Vinylpyrroles as Pyrrole BuildingBlocks[J]. Chem Rev,2004,104(5):2481–2506.(b) Garg N K, Caspi D D, Stoltz B M. Developmentof an Enantiodivergent Strategy for the Total Synthesis of (+)-and ()-Dragmacidin F from a SingleEnantiomer of Quinic Acid[J]. J Am Chem Soc,2005,127(16):59701–5978.(c) Ackermann L,Sandmann R, Kaspar L T. Two Titanium-Catalyzed Reaction Sequences for Syntheses of Pyrrolesfrom (E/Z)-Chloroenynes or α-Haloalkynols[J]. Org Lett,2009,11(9):2031–2034.(d) Song C, Knight
    D W, Whatton M A. The First Examples of Nazarov Cyclizations Leading to Annulated Pyrroles[J].
    Org Lett,2006,8(1):163–166.(e) Onizawa Y, Kusama H, Iwasawa N. Efficient Control of π-Alkyne
    and Vinylidene Complex Pathways for the W(CO)5(L)-Catalyzed Synthesis of Two Types of
    Nitrogen-Containing Bicyclic Compounds[J].J Am Chem Soc,2008,130(3):802–803.(f) Beck E M,
    Grimster N P, Hatley R, Gaunt M J. Mild Aerobic Oxidative Palladium (II) Catalyzed C H Bond
    Functionalization: Regioselective and Switchable C H Alkenylation and Annulation of Pyrroles[J].J
    Am Chem Soc,2006,128(8):2528–2529.(g) Yi C S, Zhang J. Formation of bicyclic pyrroles from
    the catalytic coupling reaction of2,5-disubstituted pyrroles with terminal alkynes, involving the
    activation of multiple C–H bonds [J]. Chem Commun,2008,2349–2351.(h) Zhao X, Zhang E, Tu Y
    Q, Zhang, Y Q. Au(I)-Catalyzed Rearrangement Reaction of Propargylic Aziridine: Synthesis of
    Trisubstituted and Cycloalkene-Fused Pyrroles[J]. Org Lett,2009,11(17):4002–4004.(i) Martin R,
    Rivero M R, Buchwald S L. Domino Cu-Catalyzed C–N Coupling/Hydroamidation: A Highly
    Efficient Synthesis of Nitrogen Heterocycles [J]. Angew Chem Int Ed,2006,45(42):7079–7082.(j)
    Batchu H, Batra S. Versatile Synthesis of2-(Substituted phenyl)-6,7-dihydro-1H-indol-4(5H)-ones
    from Morita–Baylis–Hillman Acetates of2-Oxo-2-(substituted phenyl)acetaldehyde[J]. Eur J Org
    Chem,2012,2012(15):2935–2944.
    [1] Norte M, Cataldo F, Sanchez A, Gonzalez, A G, Rivera, P, Castillo, M. Spartidienedione, a newsesquiterpene with a novel carbon skeleton from Baccharis spartioides[J]. Tetrahedron Lett,1993,34(32):51435146.
    [2] Weyerstahl P, Schneider S, Marschall H, Rustaiyan A. Terpenes and Terpene Derivatives, XXXI. NewBisabolene Derivatives and a Salsolene Ketone from Artemisia sieberi Bess[J]. Liebigs Ann Chem,1993,1993(2):111116.
    [3] San Feliciano A, Barrero A F, Medarde M, del Corral J M M, Aramburu A. Asteriscanolide. Asesquiterpene lactone with a new natural skeleton[J]. Tetrahedron Lett,1985,26(19):23692372.
    [4] Toyota M, Bardon A, Kamiya N, Takaoka S, Asakawa Y. Dumortenols, novel sesquiterpenoids from theArgentinian liverwort Dumortiera hirsute[J]. Chem Pharm Bull,1997,45(2):21192121.
    [5] Adesomoju A A, Okogun J I, Cava M P, Carroll P J. Roseadione, a diterpene ketone from Hypoestesrosea[J]. Phytochemistry,1983,22:25352536.
    [6] Burke J W, Doskotch R W, Ni C Z, Clardy J. Kalmanol, a pharmacologically active diterpenoid with anew ring skeleton from Kalmia angustifolia L[J]. J Am Chem Soc,1989,111(15):58315833.
    [7] Prestwich G D, Tempesta M S, Turner C. Longipenol, a novel tetracyclic diterpene from the termitesoldier longipeditermes longipes[J]. Tetrahedron Lett,1984,25(15):15311532.
    [8] Sun H H, McEnroe F J, Fenical W. Acetoxycrenulide, a new bicyclic cyclopropane-containingditerpenoid from the brown seaweed Dictyota crenulata [J]. J Org Chem,1983,48(11):19031906.
    [9] Horwitz S B. Mechanism of action of taxol[J]. Trends Pharmacol Sci,1992,13,4:134136.
    [10]梅兴国,鲁明波.紫杉醇的抗癌作用及治疗其他疾病的潜力.国外医学药学分册,1996,23(3):136140.
    [11](a) Ayres D C, Loike J D. Chemistry&Pharmocology of Natural Products: Lignans; Chemical,Biological, and Chemical Properties; Cambridge University Press: Cambridge, U.K.,1990.(b)Whiting D. Ligans and neolignans[J].A Nat Prod Rep,1985,2:191221.(c) Whiting D A. Lignans,neolignans, and related compounds [J]. Nat Prod Rep,1987,4:499525.(d)Tanaka M, Mukaiyama C,Mitsuhashi H, Maruno M, Wakamatsu T. Synthesis of Optically Pure Gomisi Lignans: The TotalSynthesis of (+)-Schizandrin,(+)-Gomisin A, and (+)-Isoschizandrin in Naturally Occurring Forms[J].J Org Chem,1995,60(14):43394352.
    [12](a) Ikeya Y, Taguchi H, Mitsuhashi H, Takeda S, Kase Y, Aburada M. A lignan from Schizandrachinensis[J]. Phytochemistry,1988,27:569573.(b) Ikeya Y, Sugama K, Okada M, Mitsuhashi H.Two lignans from Schisandra sphenanthera[J]. Phytochemistry,1991,30:975980.
    [13] Uchida I, Ando T, Fukami N, Yoshida K, Hashimoto M. The structure of vinigrol, a novel diterpenoidwith antihypertensive and platelet aggregation-inhibitory activities[J]. J Org Chem,1987,52(23),52925293.
    [14](a) Ando T, Tsurumi Y, Ohata N, Uchida I, Yoshida K, Okuhara M J. Vinigrol, a novel antihypertensiveand platelet aggregation inhibitory agent produced by a fungus, Virgaria nigra. I. Taxonomy,fermentation, isolation, physicochemical and biological properties[J]. Antibiot,1988,41(1):2530.(b)Ando T, Yoshida K, Okuhara M J. Antibiot,1988,41:3135.(c) Norris D B, Depledge P, Jackson A P.Chem Abstr,1991,115:64776h.
    [15] Wonnacott S, Gallagher T. The chemistry and pharmacology of anatoxin-a and related homotropaneswith respect to nicotinic acetylcholine receptors[J]. Mar Drugs,2006,4(3):228254.
    [16](a) van Apeldoorn M E, van Egmond H P, Speijers, G J, Bakker, G. Toxins of cyanobacteria[J]. J MolNutr Food Res,2007,51:760.(b) Cadel-Six S, Peyraud-Thomas C, Brient L, Tandeau de Marsac N,Rippka R, Me′jean A. Different genotypes of anatoxin-producing cyanobacteria coexist in the TarnRiver[J]. Appl EnViron Microbiol,2007,73(23):76057614.(c) Wood S A, Selwood A I, Rueckert A,Holland P T, Milne J R, Smith K F, Smits B, Watts L F, Cary C S. First report of homoanatoxin-a andassociated dog neurotoxicosis in New Zealand[J]. Toxicon,2007,50(2):292301.(d) Edwards C,Beattie K, Scrimgeour C, Codd G. Identification of anatoxin-a in benthic cyanobacteria (blue-greenalgae) and in associated dog poisoning at Loch Insh, Scotland[J]. Toxicon,1992,30:11651175.
    [17] Chorus I, Bartram J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences,Monitoring and Management[M]. London,1999.
    [18](a) Yu Z X, Wang Y, Wang Y. Transition-metal-catalyzed cycloadditions for the synthesis ofeight-membered carbocycles [J]. Chem Asian J,2010,5:1072–1088.(b) Tori M, Mizutani R.Construction of Eight-Membered Carbocycles with Trisubstituted Double Bonds Using the RingClosing Metathesis Reaction[J]. Molecules,2010,15:4242–4260.(c) Yet L. Metal-MediatedSynthesis of Medium-Sized Rings[J]. Chem Rev,2000,100(8):29633008.
    [19](a) Reppe W, Schlichting O, Klager K, Toepel T. Cyclisierende Polymerisation von Acetylen I überCyclooctatetraen[J]. Liebigs Ann Chem,1948,560:192.(b) Jolly P W, In ComprehensiveOrganometallic Chemistry; Wilkinson, G, Stone, F G A, Abel, E W, London,1982,8:649.
    [20] Gilbertson S R, DeBoef B. Rhodium Catalyzed [4+2+2] Cycloaddition and Alkyne Insertion:A NewRoute to Eight-Membered Rings[J]. JAm Chem Soc,2002,124:87848785.
    [21] Murakami M, Ashida S, Matsuda T. Eight-Membered Ring Construction by [4+2+2] AnnulationInvolving β-Carbon Elimination[J]. JAm Chem Soc,2006,128:21662167.
    [22] Wender P A, Gamber G G, Hubbard R D, Zhang L. Three-Component Cycloadditions: The FirstTransition Metal-Catalyzed [5+2+1] Cycloaddition Reactions[J]. J Am Chem Soc,2002,124,12:28762877.
    [23] Wegner H A, Meijere A de, Wender P A. Transition Metal-Catalyzed Intermolecular [5+2] and [5+2+1] Cycloadditions of Allenes and Vinylcyclopropanes[J]. J Am Chem Soc,2005,127:65306531.
    [24] Takeda K, Haraguchi H, Okamoto Y. A New Strategy for Construction of Eight-MemberedCarbocycles by Brook Rearrangement Mediated [6+2] Annulation[J]. Org Lett,2003,5,20:37053707.
    [25] For reviews on the Brook rearrangement, see:(a) Brook M A, Silicon in Organic, Organometallic, andPolymer Chemistry; John Wiley&Sons: New York,2000.(b) Brook A G, Bassindale A R. InRearrangements in Ground and Excited States; de Mayo P Ed, Academic Press: New York,1980,149221.(c) Brook A G. Molecular rearrangements of organosilicon compounds[J]. Acc Chem Res,1974,7(3):7784.
    [26] For the use of the Brook rearrangement in tandem bond formation strategies, see:(a) Moser W H. TheBrook rearrangement in tandem bond formation strategies[J]. Tetrahedron,2001,57(11):20652084.(b) Ricci A, Degl’Innocenti, A. Synthesis And Synthesis Potental Of Acylsianes[J]. Synthesis,1989,647660.(c) Bulman Page P C, Klair S S, Rosenthal, S. Chem Soc Rev,1990,19:147195.(d) Qi H,Curran D P. In Comprehensive Organic Functional Group Transformations; Katritzky A R, Meth-CohnO, Rees C W, Moody C J. Pergamon: Oxford,1995,409431.(e) Cirillo P F, Panek, J S. Org PrepProc Int,1992,24:553582.(f) Patrocinio A F, Moran P J S. Acylsilanes and their applications inorganic chemistry[J]. J Braz Chem Soc,2001,12:731.
    [27] Yao Z K, Li J J, Yu Z X. Rh-Catalyzed [7+1] Cycloaddition of Buta-1,3-dienylcyclopropanes and COfor the Synthesis of Cyclooctadienones[J]. Org Lett,2011,13(1):134137.
    [28] Takahashi T, Sun W H, Liu Y H, Nakajima K, Kotora M. Copper-Catalyzed Intermolecular [4+4] and
    [4+5] Coupling of Zirconacyclopentadienes with Bis(halomethyl)arenes: A New Pathway to Eight-and Nine-Membered Ring Derivatives[J]. Organometallics,1998,17:38413843.
    [29] Mori M, Kitamura T, Sakakibara N, Sato Yoshihiro. Synthesis of Eight-Membered Ring CompoundsUsing Enyne Metathesis[J]. Org Lett,2000,2(4):543545.
    [30] Kawada H, Iwamoto M, Utsugi M, Miyano M, Nakada M. Synthetic Studies on the Taxane Skeleton:Construction of Eight-Membered Carbocyclic Rings by the Intramolecular B-Alkyl Suzuki MiyauraCross-Coupling Reaction[J]. Org Lett,2004,6(24):44914494.
    [31] Kim S M, Lee S I, Chung Y K. GaCl3-Catalyzed Formation of Eight-Membered Rings from EnynesBearing a Cyclic Olefin[J]. Org Lett,2006,8(24):54255427.
    [32] Hirai S, Urushizako N, Miyano M, Fujii T, Nakada M. A short and enantioselective preparation oftaxol A-ring fragment[J]. Tetrahedron Lett,2013, ASAP.
    [33](a) Michael J P. Indolizidine and quinolizidine alkaloids[J]. Nat Prod Rep,2008,25:139–165.(b)Weinreb S M. Studies on Total Synthesis of the Cylindricine/Fasicularin/Lepadiformine Family ofTricyclic Marine Alkaloids[J].Chem Rev,2006,106:2531–2549.(c) Brandi A, Cardona F, Cicchi S,Cordero F M, Goti A. Stereocontrolled Cyclic Nitrone Cycloaddition Strategy for the Synthesis ofPyrrolizidine and Indolizidine Alkaloids[J]. Chem Eur J,2009,15:7808–7821.
    [34] For selected recent reports on the synthesis of indolizidine alkaloids, see:(a) Wong H,Garnier-Amblard E C, Liebeskind L S. Organometallic Enantiomeric Scaffolding: A Strategy for theEnantiocontrolled Construction of Regio-and Stereodivergent Trisubstituted Piperidines from aCommon Precursor[J]. J Am Chem Soc,2011,133(19):7517–7527.(b) Kapat A, Nyfeler E, GiuffrediG T, Renaud, P. Intramolecular Schmidt Reaction Involving Primary Azidoalcohols under NonacidicConditions: Synthesis of Indolizidine ()-167B[J]. J Am Chem Soc,2009,131(49):17746–17747.(c)Davis F A, Yang B. Asymmetric Synthesis of α-Substituted β-Amino Ketones from Sulfinimines(N-Sulfinyl Imines). Synthesis of the Indolizidine Alkaloid ()-223A[J]. J Am Chem Soc,2005,127(23):8398–8407.(d) Yu R T, Lee E E, Malik G, Rovis T. Total Synthesis of Indolizidine Alkaloid()-209D: Overriding Substrate Bias in the Asymmetric Rhodium-Catalyzed [2+2+2]Cycloaddition[J]. Angew Chem Int Ed,2009,48(13):2379–2382.
    [35](a) Lapointe G, Schenk K, Renaud P. Total Synthesis of (±)-Cylindricine C[J]. Org Lett,2011,13(18):47744777.(b) Dutta S, Abe H, Aoyagi S, Kibayashi C, Gates K S. J Am Chem Soc,2005,127:1500415005.(c) Abe H, Aoyagi S, Kibayashi C. DNA Damage by Fasicularin[J]. J Am Chem Soc,2005,127(43):14731480.(d) Shibuguchi T, Mihara H, Kuramochi A, Sakubara S, Ohshima T,Shibasaki M. Short Synthesis of (+)-Cylindricine C by Using a Catalytic Asymmetric MichaelReaction with a Two-Center Organocatalyst[J]. Angew Chem Int Ed,2006,45(28):4635–4637.
    [36](a) Tsukanov S V, Comins D L. Concise Total Synthesis of the Frog Alkaloid ()-205B[J]. AngewChem Int Ed,2011,50(37):8626–8628.(b) Yang D, Micalizio G C. Synthesis of Alkaloid ()-205Bvia Stereoselective Reductive Cross-Coupling and Intramolecular [3+2] Cycloaddition[J]. J AmChem Soc,2012,134(37):1523715240.(c) Smith A B, Kim D S. A General, Convergent Strategyfor the Construction of Indolizidine Alkaloids: Total Syntheses of ()-Indolizidine223AB andAlkaloid ()-205B[J]. J Org Chem,2006,71(7):25472557.
    [37](a) Lautens M, Klute W, Tam W. Transition Metal-Mediated Cycloaddition Reactions[J]. Chem Rev,1996,96(1):49–92.(b) Yet L. Metal-Mediated Synthesis of Medium-Sized Rings[J]. Chem Rev,2000,100(8):2963–3008.(c) Murakami M. New Catalyzed Three-Component Cycloadditions for theSynthesis of Eight-Membered Carbocycles[J]. Angew Chem Int Ed,2003,42(7):718–720.(d)Nakamura I, Yamamoto Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis[J]. ChemRev,2004,104(5):2127–2198.(e) Butenscho¨n H. Seven-Membered Rings by Cyclization atTransition Metals:[4+3],[3+2+2],[5+2][J]. Angew Chem Int Ed,2008,47(29):5287–5290.(f)Yu Z X, Wang, Y. Transition-metal-catalyzed cycloadditions for the synthesis of eight-memberedcarbocycles[J]. Chem Asia J,2010,5(5):1072–1088.(g) Inglesby P A, Evans P A. Stereoselectivetransition metal-catalysed higher-order carbocyclisation reactions[J]. Chem Soc Rev,2010,39:2791–2805.
    [38] The only known building block larger than a C6building block, to the best of our knowledge, is a C7building block of divinyl cyclopropane, which undergoes a [7+1] cycloaddition with CO of Fe(CO)5and a [7+2] cycloaddition with tetracyanoethene. However, this [7+1] cycloaddition requires excessFe(CO)5(3equiv) and light irradiation. See:(a) Sarel S, Langbeheim M. The formation and structuralcharacterisation of the transoid-η4(5e)-butadienyl ligand; evidence for a ‘bent’ rhenium–carbonbond[J]. J Chem Soc, Chem Commun,1977,0:593–595.(b) Sarel S, Langbeheim M. Synthesis ofbicyclic cyclo-octadienones: photolysis of divinylcyclopropanes induced by pentacarbonyliron[J]. JChem Soc, Chem Commun,1977,0:827–828.
    [39] Zhang L J, Xu X X, Tan J, Pan L, Xia W, Liu Q. Tandem Michael addition/intramolecular isocyanide[3+2] cycloaddition: highly diastereoselective one pot synthesis of fused oxazolines [J]. ChemCommun,2010,46:3357–3359.
    [40] Xu X X, Li Y F, Zhang Y, Zhang L J, Pan L, Liu Q. Direct Synthesis of6-Azabicyclo[3.2.1]oct-6-en-2-ones and Pyrrolizidines from Divinyl Ketones and Observation of Remark-able SubstituentEffects[J]. Adv Synth Catal,2011,353:1218–1222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700