小麦多属杂交后代种质系的鉴定和评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦的野生近缘种中蕴藏着丰富的优良基因,是小麦遗传改良中宝贵的基因资源。通过多属杂交,不仅可以在同一遗传背景中评价不同属染色体(组)间的亲缘关系,而且还可以创造综合多属优良特性的新种质,丰富小麦育种资源。本研究以从多属杂交后代中筛选出的七个种质系山农030-1、山农05078、山农05081、山农05083、山农05086、山农05094和山农05099为材料,对其农艺性状、抗病性、细胞学特点和高分子量麦谷蛋白亚基(HMW-GS)组成进行了鉴定。在此基础上,综合利用细胞学、染色体原位杂交和SSR等技术对山农05078和山农030-1的遗传组成进行了鉴定。本研究获得以下主要结果:
     (1)多属杂交后代种质系山农05081、山农05083、山农05086、山农05094和山农05099农艺性状稳定,均高抗白粉病,对条锈病免疫。细胞学分析结果表明,山农05081、山农05083、山农05086和山农05099染色体数目均为2n=42,细胞学稳定,推测其为代换系或易位系。山农05094染色体数目为2n=56,部分细胞含有较多单价体,说明其细胞学上不太稳定。
     (2)利用SDS-PAGE方法分析了多属杂交后代种质系的高分子量麦谷蛋白亚基(HMW-GS)组成,并利用Perten-DA7200近红外品质分析仪测定了种质系的部分品质性状指标。结果发现山农05083含有优质亚基14+15和5+10,且籽粒硬度较大;山农05086的白度比较高;山农05094的硬度、湿面筋含量较高;山农05099的蛋白质含量比较高。
     (3)山农05078来自硬簇麦和Am3的杂交后代,对锈病免疫、高抗白粉病。细胞学鉴定表明其染色体数目为2n=28,花粉母细胞中期Ⅰ构型为2n=28=14Ⅱ。其蛋白质含量较高,含有高分子量麦谷蛋白优质亚基7+8、5+10。SSR和染色体原位杂交结果证明其染色体组成为AABB,且含有粗山羊草D基组和簇毛麦V基组的遗传物质。
     (4)山农030-1为小麦-黑麦1BL/1RS易位系,来自劲松49和小滨麦的杂交后代,对白粉病免疫,高抗锈病,且植株较矮,综合性状较好。遗传分析结果表明其白粉病抗性由显性单基因控制的,且不同于已有的1BL/1RS易位系,可能含有新的白粉病抗性基因。利用1RS上的特异引物对山农030-1/chancellor的F2分离群体进行了PCR分析,发现引物NOR-R1能在抗病单株和感病单株之间扩增出430kb左右的差异带。推测山农030-1的白粉病抗性基因与1RS染色体有关,其抗性来自黑麦。
Wild relatives of wheat in a large collection of excellent genes are valuable genetic resources for the genetic improvement of wheat. And polygeneric hybrids can not only evaluate the relationship between different genera(group) in the same genetic background,but also create new germplasms with much fine characteristics from different genus. In this study, seven germplasm lines Shannong 030-1, Shannong 05078, Shannong 05081, Shannong 05083, Shannong 05086, Shannong 05094 and Shannong 05099 derive from polygeneric hybrids,whose agronomic traits ,resistance, cytologic- al characteristics and the composition of HMW-GS are studied in this paper.And cytological analysis, SSR and GISH are used to identify and analyze genetic component of Shannong 05078 and Shannong030-1. Main results were as follows:
     (1)Germplasm lines Shannong 05081, Shannong 05083, Shannong 05086, Shannong 05099 and Shannong 05094 are immune to stripe rust and highly resist to powdery mildew.The results of cytological analysis show that the chromosome number of Shannong 05081, Shannong 05083, Shannong 05086 and Shannong05099 is 2n=42 and the cytology is stable, which indicates that they are substitutions or translocations. The chromosome number of Shannong 05094 is 2n=56,some cells contain some multivalents, which shows that it is not stable on its cytology.
     (2)Shannong 05083 is of greater grain hardness, the composition of HMW-GS is 14+15 and 5+10. Flour white is relatively high in Shannong 050- 86. Grain hardness and wet gluten content is higher in Shannong 05094. Protein content is relatively high Shannong 05099.
     (3)Germplasm line Shannong 05078 is selected from the hybrids of Ttiticum durum Dasypyrum villosum amplidiploid and Am3. Shannnong05078 is immune to rust and highly resist to powdery mildew, the number of chromosomes is 28, configuration of pollen mother cells at MI is 2n=28=14Ⅱ, it contains higher protein and high molecular weight glutenin quality subunit 7+8,5+10. The SSR and GISH analysis prove that its chromosome composition is AABB, and contain part genetic material from Aegilops tauschii and Haynaldia villosa. Shannong 05078 can be used as resistant and quality sources in the process of genetic improvement of wheat.
     (4)Shannong 030-1 comes form the hybrids of Jinsong49 and Tritileymus, and it is immune to powdery mildew and highly resistant to rust, which appears well agronomic characteristic. Results have proved that Shannnong 05078 is a 1BL/1RS translocation,whose resistance gene controlled by the single dominant gene and this translocation is different from the others 1BL/1RS translocation lines, perhaps the resistance gene is a new one.The SSR technique is further applied to verify the separation groups of Shannong 030-1/chancellor F2, with specific primers on 1RS testified. The results indicates that primer pairs NOR-R1 on Nucleolar Organizer Region of 1R can show the diversity between resistant plants and susceptible plants, the size of specific segment is about 430bp, which is assigned as NOR-R1430. It could be inferred that its resistance to powdery mildew is relevant with 1RS.
引文
1.曹爱忠,陈全战,王海燕,等.基于专化的反转录转座子序列开发鉴定簇毛麦染色质的PCR分子标记[J].西北植物学报,2007,27(6):1078-1084.
    2.陈法棣,陈佩度,王苏玲,等.普通小麦-大赖草-簇毛麦异附加、易位系的选育和鉴定[J].植物学报,2001,43(4):359-363.
    3.陈企村,段双科,李振岐,等.小麦慢白粉病坑病性的组分和影响因素研究进展[J].麦类作物学报,2004,24(1):86-89.
    4.陈尚安,董玉琛,许树军,等.波斯小麦-粗山羊草双二倍体Am3抗白粉病特性的基因定位[J].中国农业科学,1990,23(4):17-21.
    5.陈笑娟,杨学举,刘桂茹,等.小麦高分子量谷蛋白亚基与加工品质研究综述[J].安徽农业科学,33(5):2005,895-897.
    6.迟世华,杨足君,李光蓉,等.簇毛麦基因组特异DNA序列标记的建立和应用[J].麦类作物学报,2006,26(4):1-5。
    7.董玉琛.21世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集[L].小麦远缘杂交育种,2001,5:12-22.
    8.封德顺.体细胞杂种小麦与供体高冰草的高分子量麦谷蛋白亚基及其基因分析[D].山东大学博士学位毕业论文,2004,23-26。
    9.傅杰,井金学,陈漱阳,等.具一对双随体染色体的硬粒小麦-簇毛麦双二倍体的合成、抗病性及细胞遗传学研究[J].西北植物学报,1998,18(3):319-324.
    10.傅杰,周荣华,陈漱阳,等.小簇麦新种质的品质、抗病性及分子细胞遗传学研究[J].西北农林科技大学学报(自然科学版),2001,29(6):1-8.
    11.郝水,何孟元.染色体工程与小麦改良[M],植物细胞工程与育种(胡谷,王恒立主编),北京:北京工业大学出版社,1990,125-131.
    12.侯永翠,郑有良,王含彦,等.小麦1BL/1RS易位新品系的鉴定与评价[J].西南农业学报,2003,16(4):14-19.
    13.孔凡晶.簇毛麦抗白粉病基因的染色体显微切割及其抗病相关基因克隆的研究[D].中国农业科学院博士学位毕业论文,2001,22-23.
    14.李锁平,刘大钧.节节麦和硬粒小麦-簇毛麦双二倍体间杂种的产生及其细胞学研究[J].遗传学报,1992,19(4):344-348.
    15.李兴锋,刘树兵,王洪刚,等.小黑麦×小滨麦后代1RS?1BL易位系的选育和鉴定[J].遗传,2004,26(4):481-485.
    16.李兴锋.小麦三属杂种的分子细胞遗传学研究[D].山东农业大学博士学位论文,2003:67-80.
    17.李雪莉,郑有良,魏育明,等.小麦抗白粉病优质高产T1BL.1RS易位系的鉴定与分析[J].四川农业大学学报,1999,17(4):367-373.
    18.李义文,唐顺学.利用两个小麦异源二体代换系杂交创造易位系[J].科学通报,1999,44(10):1052-1054.
    19.李振岐.麦类病害[M].北京:中国农业出版社,1997,57-58.
    20.李振声,穆素梅,蒋立训,等.蓝粒单体小麦研究(一)[J].遗传学报,1982,9(6):431-439.
    21.李振声,容珊,钟冠昌,等.小麦远缘杂交[M],北京:科学出版社,1985.
    22.刘成,杨足君,冯娟,等.利用小麦微卫星引物建立簇毛麦染色体组特异性标记[J].遗传,2006,28(12):1573-1579.
    23.刘大钧,陈佩度,吴沛良,等.硬粒小麦-簇毛麦双二倍体[J].作物学报,1986,12(3):155-159.
    24.刘树兵,王洪刚.抗白粉病小麦-中间偃麦草(Thinopyrum intermedium,2n=42)异附加系的选育及分子细胞遗传鉴定[J].科学通报,2002,47(19):1500-1503
    25.刘志勇,孙其信,姜岚,等.利用黑麦基因组特异PCR标记鉴别小麦K型雄性不育保持系[J].农业生物技术学报,1997,5(3):205-210.
    26.亓增军,刘大均,陈佩度,等.利用染色体C-分带和双色荧光原位杂交技术鉴定普通小麦-黑麦-簇毛麦双重易位系1RS?1BL、6VS?6AL[J].遗传学报,2001,28(3):267-273.
    27.任燕,Graybosch R A,王涛.小麦中的1BL/1RS染色体易位[J].麦类作物学报,2006,26(3):152-158.
    28.尚海英,郑有良,魏育明,等.应用ISSR标记研究黑麦属植物遗传多样性[J].西南农业学报,2004,17(3):273-277.
    29.尚海英,郑有良,魏育明,等.黑麦属基因资源研究进展[J].麦类作物学报,2003,23(1):86-89.
    30.司红起,马传喜.SDS-PAGE和PCR检测1B/1R易位系研究初报[J].中国农学通报,2006,22(7):95-97.
    31.苏亚蕊,李玉阁,李锁平,等.小麦-黑麦1BL/1RS易位系在小麦育种中的应用及改良[J].河南农业科学,2006(3):12-15.
    32.孙善澄,孙玉,袁文业,等.优质黑粒小麦76的选育及品质分析[J].作物学报,1999,25(1):344-348.
    33.孙善澄,袁文业,刘少翔,等.小麦-偃麦草-簇毛麦-黑麦四属杂种的产生及其形态学、细胞学研究[J].遗传学报,1996,23(3):214-219.
    34.唐宗祥,任正隆,符书兰,等.黑麦特异重复序列pScl l9.1在姊妹T1RS/1BL易位系中的变异[J].遗传,2007,29(2):235-24.
    35.王静,王献平,纪军,等.小麦-黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定[J].作物学报,2006,32(1):30-33,131-117.
    36.王涛.四川小麦高分子量麦谷蛋白新亚基5+12的分子生物学与品质改良策略研究[D].雅安:四川农业大学博士学位论文,2004.
    37.王新望,赖菁茹,宋希云,等,小麦抑制部分同源配对基因(Ph1)的研究[J].华北农学报,1997,12(1):34-40.
    38.魏育明,郑有良,周荣华,等.应用荧光原位杂交和RFLP标记检测多小穗小麦新种质10-A中的黑麦染色质[J].植物学报,1999,41(7):722-725.
    39.魏育明,郑有良,周荣华,等.几种鉴定小麦背景中1BL/1RS易位染色体的分子标记方法比较研究[J].四川农业大学学报,2001,19(1):10-14.
    40.翁跃进,贾继增,董玉深,等.1997,利用RFLP分子标记鉴定小麦-顶芝山羊草异代换系[J].遗传学报,24(3):248-254.
    41.吴崇明,徐智斌,王涛,等.小麦1BL/1RS易位系的生化和分子标记鉴定[J].西南农业学报,2007,20(1):15-18.
    42.吴金华,吉万全,李凤珍,等.黑麦在小麦改良中的应用研究进展[J].麦类作物学报,2005,25(1):115-119.
    43.辛志勇,徐惠君,陈孝,等.应用生物技术向小麦导入黄矮病抗性的研究[J].中国科学(B辑)[J].1991,1:36-42.
    44.张红军.小麦多属杂种的创制及遗传分析[D].山东农业大学硕士毕业论文,1998:18-19
    45.张红军,王洪刚,刘树兵,等.小麦族多属杂种的研究进展[J].山东农业大学学报,2000,31(3):337-344.
    46.张立平,何中虎,陆美琴,等.用Glu-B3,Gli-B1和SEC-1b复合引物PCR检测普通小麦
    1BL/1RS易位系[J].中国农业科学,2003,36(12):1566-1570.
    47.张玲丽,李秀全,杨欣明,等.小麦优良种质资源高分子量麦谷蛋白亚基组成分析[J].中国农业科学,2006,39(12):2406-2414.
    48.张正斌.小麦遗传学[M].北京:中国农业出版社,1997:291-292.
    49.张志雯,陈于和,王黎明,等.小麦-簇毛麦种质系‘山农030713’的细胞学和SSR鉴定[J].西北植物学报,2006,26(5):921-926.
    50.钟少斌,姚景侠.1B/1R易位系“84059-4-2”的细胞学鉴定[J].作物学报,1991,17(5):321-325.
    51.周建平,杨足君,冯娟,等.小麦特异DNA重复序列的分离与鉴定[J].西南农业学报,2005,18(5):598-602.
    52. Armstrong K C, Lee H, Fedak G. Expression of Thinopyrum distichum Nors in Wheat X Thinopyrum amphiploid and their backcross generations[J]. Theor Appl Genet, 1991, 81: 63-368.
    53. Asiedu R, Fisher J M, Driscoll C J. Resistance to Heterodera avenae in the rye genome of triticale[J]. Thero Appl Genet, 1990, 79: 331-336.
    54. Blanco A, Simeone R, Tanzarella O A, et al. Cytology,morphology and fertility of the amphiploidTTriticum durum desf×Haynaldia villosa(c.)schur.[M]. Proc 6th Int Wheat Genet Symp[C]. Cambridge, 1983: 205-212.
    55. Brites C, Carrillo J M. Influence of High molecular weight (HMW) and low molecular weight (LMW) glutelin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality[J]. Cereal Chemistry, 2001, 78: 59-63.
    56. Cabrea A, Martin A. A trigeneric hybrids between Hordeum,Aegilops,and Secale[J]. Genome, 1992, 35: 647-649.
    57. Cai X, Chen P D, Xu S S, et al. Utilization of alien genes to enhance Fusarium head blight resistance in wheat–A review[J]. Ephytica, 2005, 142(3): 309-318.
    58. Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominan- t PCR marker for detecting 1BL/1RS wheat-rye chromosome translocations [J]. Pla- nt Breeding, 2006, 125(3): 302–304.
    59. Chen Haimei, Li Linzhi, Wei Xianyun, et al. Development,chromosome location and genetic mapping of EST-SSR markers in wheat[J]. Chinese Science Bulletin, 2005, 50(20): 2328-2336.
    60. Christiansen M J, Andersen S B, Ortiz R, et al. Diversity changes in an intensively bred wheat germplasm during the 20th century[J]. Molecular Breeding, 2002, 9(1): 1-11.
    61. Cuadrado M C, Romero C. Different genetic system sinrye affecting homologous pairing in wheat-rye combination[J]. Genome, 1988, 30: 793-796.
    62. Delibess. Hessian fly-resistance gene transferred from chromosome 4M(V)of Aegilops ventricosa to Triticum aestivum[J]. TAG, 1997, 94(6/7): 858-864.
    63. Devos K M, Atkinson M D, Chinoy C N, et al. Chromosomal rearrangements in the rye genome relative that of wheat[J]. Theor Appl Genet, 1993, 85: 673-680.
    64. Dreisigacker S, Zhang P, Warburton M L, et al. Genetic Diversity among and within CIMMYT Wheat Landrace Accessions Investigated with SSRs and Implications for Plant Genetic Resources Management[J]. Crop Science, 2005, 45(2): 653-661.
    65. Falk D E, Kasha K J. Comparison of cross ability of rye(Secale cereale) and hordeum bulbosum onto wheat(Triticum aestivum)[J]. Can J Genet Cytol, 1981, 23: 81-88.
    66. Ferrari M R, Greizerstein E J, Pacapelo H A, et al. The genomic composition of Tricepiro, a synthetic forage crop[J]. Genome, 2005, 48: 154-159.
    67. Friebe B, Hatchets J H, Gill B S, et al. Transfer of Hessian fly resistance from rye to wheat viaradiation-induced terminal and intercalary chromosomal translocations [J]. Theor Appl Genet, 1991, 83: 33-40.
    68. Friebe B, Heum M, Tuleen N, et al. Cytogenetirally monitored transfer of powdery mildew resistance from rye into wheat[J]. Crop SCi, 1994, 34: 621-625.
    69. Friebe B, Jing J, Raupp W J, et al. Characterization of wheat-alien translocation conferring resistance to diseases and pests: current status[J]. Euphytica, 1996, 91: 59-87.
    70. Gale M D, Miller T E. The introduction of alien genetic variation into wheat[J]. In: Lupton F G H(ed)Wheat Breeding: its scientific basis[C], 1987: 173-210.
    71. Garret R, Anderson, Dan Papa, et al. Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat[J]. TAG , 2003, 107: 1297-1303.
    72. Gupta R K, Shepherd K W. Production of multiple wheat-rye 1RS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheats using these stocks[J]. Theor Appl Genet, 1993, 85: 719-728.
    73. Gupta P K, Balyan H S, Edwards K J, et al. Genetic mappping of 66 new microsatellite(SSR) in bread wheat[J]. Theor Appl Genet, 2002, 105: 413 -422.
    74. Guidet F P, Rogowsky C, Taylor S, et al. Cloning and characterization of a new rye-specific repeatedsequence[J]. Genome, 1991, 34: 81-87.
    75. Hart L, Weiss H, Zeller F J, et al. Use of RFLP markers for the identification of alleles at the Pm3iocus conferring Powdery mildew resistance in wheat (Triticurn aestivum L)[J]. Theor Appl Genet, 1993, 86: 959- 963.
    76. Hussien J. Chromosome location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat, Crop Science [J], 1997, 37 (6): 1764-1766.
    77. Iqba M J, Rayburn A L. Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis [J]. Theor Appl Genet, 1995, 91: 1048-1053.
    78. Jiang J, Friebe B, Gill B S, et al. Recent advances in alien gene transfer in wheat[J]. Euphytica, 1994, 73: 199-212.
    79. Jiang J M, Chen P D, Friebe, et al. AlloPlasmic wheat Elpmus cilliaris chromosome addition lines[J]. Genome, 1993, 36: 327-333.
    80. Orellana J, Vazquez J F, Carrillo J M, et al. Genome analysis in wheat–rye -Aegilops caudata trigeneric hybrids[J]. Genome, 1989, 32: 169-172.
    81. Katto M C, Endo T R, Nasuda S, et al. A PCR-based markerfor targeting small rye segments in wheat background[J]. Genes Genet Syst, 2004, 79: 245-250.
    82. Knott D R. Transferring alien genes to wheat[J]. In: Heyne, E G (ed), Wheat and Wheat improvement (2nd)[C], 1987: 462-471.
    83. Koebner R M D. Generation of PCR-based markers for the detection of rye chromatin in a wheat background[J]. Theor Appl Genet, 1995, 90: 740-745.
    84. Ko Jong min, Geum Sook. Identifiction and chromosomal organization of two rye genome specific RAPD products useful as introgression markers in wheat[J]. Genome, 1998, 45: 157-164.
    85. Kosina R, Heslp Harrison J S. Molecular Cytogenetics of an amphiploid TrigenericHybrid between Triticum durum, Thinopyrum distichum and Lophopyrum elongatum[J]. Annals of Botany, 1996, 78: 583-589.
    86. Larkin P J, Banks P M. From somatic variation to variant plants mechanisms and applications[J]. Genome, 1989, 31: 705-711.
    87. Li Xingfeng, Song Zhenqiao, Liu Shubing, et al. Cytogenetic study of a trigeneric ( triticale X trileymus ) hybrid[J]. Euphytica, 2006, 150: 117-122.
    88. Lima Brito J, Guedes Pinto H, Harrison G E, et al. Chromosome identification and nuclear architecture in triticale×tritordeum F1 hybrids[J]. Journal of Experimental Botany, 1996, 47: 583-588.
    89. Lima Brito J, Guedes Pinto H, Heslop Harrison J S, et al. The activity of nucleolar organizing chromosomes in multigeneric F1 hybrids involving wheat, triticale, and tritordeum[J]. Genome, 1998, 41(6): 763-768.
    90. Lind V. Analysis of the resistance of wheat-rye addition lines to powdery mildew of wheat (Erysiphe graminis F sptritici) [J]. Tagungsber Akad Landwirs chafts wiss DDR, 1982, 198: 509-520.
    91. Lukaszewski A J, Rybka K, Korzun V, et al. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R[J]. Genome, 2004, 47(1): 36.
    92. Luo M C, Yen C, Yang J L, et al. The evoluation of crossability of Chinese wheat landraces[J]. In: (Wang and Jensen,eds)Proceedings of the 2nd International Triticeae Symposium, Logan, Utah, 1994: 83-85.
    93. Mukai Y. Molecular cytogenetoc analysis of radiation induced wheat-rye terminal andintercalary chromosomal translocations and the detection of rye chromatin specifying resistant to Hessian fly[J]. Chromosoma, 1993, 102(2): 88-95.
    94. Nagy E D, Lelley T. Genetic and physical mapping of sequence-specific amplified polymorphic(SSAP) markers on the 1RS chromosome arm of rye in a wheat background[J]. Theor Appl Genet, 2003, 107: 1271-1277.
    95. Nkongolo K K. Identification of rye chromosomes involved in tolerance to barley yellow dwarf virus disease in wheat triticale hybrids[J]. Plant Breed Z P flanzenzucht, 1992, 109(2): 123-129.
    96. Oliver R E, Cai X, Xu S S, et al. Wheat-Alien Species Derivatives: A Novel Source of Resistance to Fusarium Head Blight in Wheat[J]. Crop Science, 2005, 45(4): 1353-1360.
    97. Payne P I, Nightingale M A, Krattiger A F, et al. The Relationship between HWM glutelin subunit composition and the bread making quality of British grown wheat varieties[J]. Journal Science Food agriculture, 1987, 40: 51-65.
    98. Masojc P. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA(RAPD) and isozyme markers[J]. Theor Appl Genet, 2001, 102: 1273-1279.
    99. Reif J C, Zhang P, Dreisigacker S, et al. Wheat genetic diversity trends during domestication and breeding[J]. TAG, 2005, 110(5): 859-864.
    100. Mago R, Miah H, Lawrence G J, et al. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1[J]. Theor Appl Genet, 2006, 112: 41-50.
    101. Mago R, Spielmeyer W, Lawrence G J, et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines[J]. Theor Appl Genet, 2002, 104: 1317-1324.
    102. R?der M S, Korzun V, Wendehake K A, et al. mirosatellite map of wheat [J]. Genetics, 1998, 149: 2007-2023.
    103. Rogowsky P M, Shepherd K W, Langridge P, et al. Polymerase chain reaction based mapping of rye involved repeated DNA sequences[J]. Genome, 1992a, 35: 621-626.
    104. Romuald, Kosina, Harrison J S, et al. Molecular Cytogenetics of an amphiploid Trigeneric Hybrid between Triticum durum, Thinopyrum distichum and lophopyrum elongatum[J]. Annals of Botany, 1996, 78: 583 -589.
    105. Saal B, Wricke G. Development of simple sequence repeatmarkers in rye Secale cereale L[J]. Genome, 1999, 42: 964-972.
    106. Sharma H C, Ohm H. crossability and embryo rescue enhancement in wide crosses between wheat and threeAgropyron spcies[J]. Euphytica, 1990, 49: 209-214.
    107. Sharma H C, Gill B S. Current status of wide hybridization in wheat[J]. Euphytica, 1983, 32: 17-31.
    108. Sharp P J, Chao S, Desai S, et al. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm[J]. Theor Appl Genet, 1989, 78: 342-348.
    109. Shepherd K W, A K M R, Islam, et al. Fourth compendium 0f wheat-alien chromosome 1ines[J]. In: T E Miller and R M D Koebner (eds) Proc 7th Int Wheat Genet SymP, Cambridge, England, 1988: 1373-1395.
    110. Tang S X, Zhuang J J, Wen Y X, et al. Identification of introgressed segments conferring disease resistance in a tetrageneric hybrid of Triticum,Secale,Thinopyrum, and Avena[J]. Genome, 1997, 40: 99-103.
    111. The T T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat,Nature[J], New Biol, 1973: 241-256.
    112. Unrau J. Chromosome substitution in hexapoid wheat[J]. Can J Botany, 1956, 34: 629-640.
    113. Weng Y, Azhaguvel P, Devkota R N, et al. PCR-based markers for detection of different sources of 1AL/1RS and 1BL/1RS wheat–rye translocations in wheat background[J]. Plant Breeding, 2007: 1-5.
    114. Whelan E D P, Conner R L, Thomas J B, et al.Transmission of a wheat alien chromosome translocation with resistance to the wheat curl mite in commonwheatTriticum aestivum L[J]. Can J Genet Cytol, 1986, 28: 294-297.
    115. Whelan E D P. Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat[J]. Genome, 1988, 30: 293-298.
    116. William A, Berzonsky, Michael G, et al. Biochemical,molecular and cytogenetic technologies for characterizing 1RS in wheat:A review[J]. Euphytica, 1998, 108: 1-19.
    117. Yamamoto M, Mukai Y. High-resolution physicalmapping of the secalin-1 locus of rye on extended DNA fibers[J]. Cytogenet Genome Res, 2005, 109: 79-82.
    118. Zaharieva M, Monneveux P. Spontaneous Hybridization between Bread Wheat (Triticum aestivum L) and Its Wild Relatives in Europe[J]. Crop Sci, 2006, 46: 512-527.
    119. Zeller F J, Hsam S L K, et al. Broadening the genetic variability of cu1tivated wheat by utilizing rye chromatin.In: S Sakamoto(ed.), Proc. 6th International Wheat Genetics Symp[M]. Plant Germplasm Institute,Kyoto University, Kyoto, Japan. 1984: 161-173.
    120. Zhang Lianquan, Sun Genlou, Yan Zehong, et al.Comparison of Newly Synthetic Hexaploid Wheat with Its Donors on SSR Products[J]. Journal of Genetics and Genomics, 2007, 34(10): 939-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700