膨润土处理含油废水的研究——以新疆乌兰林格膨润土为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文介绍了含油废水的处理方法、膨润土的基本性能、有机膨润土的制备及其在环境保护中应用的研究现状。以新疆乌兰林格膨润土为原料,系统研究了有机膨润土的制备、特性及其对废水中油的吸附行为、机理和再生利用。为拓展膨润土在环境保护中的应用,提高其开发利用的经济效益和开发含油废水处理方法提供了科学依据。
     1.在不同试验条件下制备了一系列有机膨润土,并通过对模拟废水中油的去除率来衡量各因素对有机膨润土的吸附性能的影响。结果表明,由长、短碳链季铵盐混合改性制备有机膨润土的最佳工艺条件为:十六烷基三甲基溴化铵和四甲基溴化铵表面活性剂用量(水溶液中质量分数)分别为1%和5%;钠基膨润土用量为10g/100ml;反应温度为70℃;pH值为7;搅拌时间为90min;陈化时间12h:干燥温度为90℃。
     2.应用通径系数法对有机膨润土制备中各因素与吸附性能的关系进行了探讨。直接通径系数分析结果表明,在影响有机膨润土吸附性能的各制备因素中,表面活性剂种类和用量的影响是占主要的,其次是膨润土的种类和质量;间接通径系数表明,所考虑的因素除了对有机膨润土的吸附性能有直接影响外,还存在程度不同的间接影响;剩余项的通径系数表明还有部分其它因素(如改性方法、搅拌速率、膨润土粒度以及测量误差等)需要考虑。
     3.采用岩矿测试技术对有机膨润土的结构与性能进行了研究。有机物含量测试结果表明,有机膨润土的烧失率和有机物含量随改性剂溶液中长碳链季铵盐改性剂(CTMAB)所占比例增加而增大。X射线粉晶衍射分析结果表明,长碳链季铵盐改性剂(CTMAB)所制备的有机膨润土层间距比短碳链季铵盐改性剂(TMAB)所制备有机膨润土大;由长、短碳链季铵盐混合改性制得的有机膨润土的层间距随长碳季铵盐改性剂(CTMAB)所占比例增加而增大。红外光谱分析结果表明,膨润土的有机改性对蒙脱石的基本晶体结构影响不明显。差热分析表明季铵盐阳离子进入层间使吸附水及结构水减少了,而且有机膨润土的耐热随改性剂溶液中长碳链季铵盐改性剂(CTMAB)所占比例增加而增强。扫描电镜分析结果进一步说明了改性剂加入后,蒙脱石表面填塞了改性剂基团。
     4.研究了有机膨润土对含油废水中油的吸附行为。结果表明,所制备的有机膨润土吸附性能均比膨润土原土好,由长、短碳链季铵盐混合改性可以制备出对油吸附性能比单一季铵盐改性剂好的有机膨润土;长、短碳链表面活性剂用量比值大于2时,有机膨润土的除油效果随膨润土中长碳链表面活性剂占的比重增大而增强,当长、短碳链表面活性剂用量比值小于2时,有机膨润土的除油效果随膨润土中长碳链表面活性剂占的比重增大反而减弱。通过单因素试验和正交试验,遴选出了有机膨润土处理含油废水的优化条件:有机
    
    膨润土为所制备的1%CTMAB/5%T MABbent.,用土量为1.09/SOml(即2鲍/1),搅拌时间为
    120 min.,搅拌速率为15Or/min,pH值6,反应温度35oC,油的初始浓度为115.45mg/1;
    在此条件下,废水中油的去除率可达97.98%。
     5.测定了不同初始浓度的含油废水,在不同有机膨润土用量时油的平衡浓度。结果表
    明,随着有机膨润土用量增加,油的去除率也增加(即油的平衡浓度减小)。由平衡浓度与
    膨润土用量曲线及国家对含油废水排放的要求(10 mg/1),得到了不同油初始浓度一F有机
    膨润土的用量方程:y二0.0043x十0.0605(式中:X为油初始浓度,雌/1;y为膨润土用
    量,g/1)。
     6.研究了有机膨润土对油的吸附机理。结果表明,水溶液中有机膨润土吸附油过程中
    由表面吸附和分配作用两种机制共同作用;有机膨润土(1%Cl袖气B/5%T毗B bent.)对废水
    中油的吸附主要受内扩散动力学控制。
     7.初步探讨了加热再生法对有机膨润土的再生利用。结果表明,通过6次再生循环利
    用的有机膨润土,对油初始浓度为115.45mg/1的废水进行处理,油的去除率达92.2%以上,
    残余油的浓度在9.01m幼以下,达到国家排放标准的要求。
     8.简要经济分析表明,与活性炭相比,有机膨润土处理含油废水及其再生利用是相对
    经济的。
     9.论文创新点:
     (1)应用通径系数法,定量分析了有机膨润土各制备因素与有机膨润土吸附性能及因
    素之间的关系;
     (2)研究了由长、短碳链季铰盐改性剂混合改性制备的有机膨润土对废水中油的吸附
    性能、优化条件和吸附机理。
    关键词:有机膨润土,含油废水,废水处理,油去除率,再生
In this study, the characteristics and applications of bentonite were described. The ways and means to treat oily wastewater were introduced. Especially the preparations, characteristics and applications of organobentonite in environmental protection were also reviewed. Furthermore, the preparations, properties of organobentonite synthesized by using bentonite from Wulanlinge, Xinjiang province have been investigated in detail. The sorption behaviors, mechanisms and rules for organobentonite to adsorb oil from wastewater have been investigated in particular. The reuse and economic analysis of organobentonite used in treating oily wastewater have been investigated as well. It promotes the use and benifits of bentonite and oily wastewater treatment.The preparation of organobentonite using cationic surfactants has been investigated in different conditions. The influences of factors on the sorption of organobentonite have been measured by the removal rate of oil from wastewater made in laboratory. Results indicate that the perfect organobentonite may be obtained under the optimal preparation condition that the addition of sodium rich bentonite is 10%, the addition of cetyltrimethylammonium bromide (CTMAB) and etramethylammoniumbromide (TMAB) is 1% and 5%, reacting for 90min. at the temperature of about 70℃, pH value of 7, aging 12h , and then drying at temperature of about 90℃.The correlation coefficients between the preparation factors and the sorption of organobentonite have been investigated by path coefficients. Study of direct path coefficients shows that the most important factor of them is the sort and dosage of cationic surfactants, and the second is the kind and properties of bentonite. Research of indirect path coefficients indicates that all of the factors not only have direct influence on the sorption of organobentonite, the correlations between the factors but also have indirect influence on it. Surplus path coefficient is 0. 418, which suggests that some other important factors (for exam, the modified methods, the velocity of mixing, measure error margin etc.) should be considered.The structures and properties of organobentonite have been investigated by using mineralogical test techniques. Results of organic content analysis show that the organic content of organobentonite increase as the ration of CTMAB to TMAB increase. Studies on X-ray diffraction date (XRD) demonstrates that it is possible to create large interlayer spacing organobentonite by use of organic cation surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths, and the value of dom become larger as the percentage of CTMAB increases in the mixed water with CTMAB and TMAB. Results of infrared spectrum (IR), differential thermal analysis (DTA) and'SEM indicate that cationic exchange
    
    reaction only happened in interlayer of bentonites, which may not destroy the basic structure of mentmorillonite but bring a few of changes of organic content in the interlayer spacing.The sorption behaviors for organobentonites to sorb oil from water have been investigated. Results indicate that adsorption abilities of organobentonite are higher than that of bentonite unmodified, and adsorption takes an important role when the ration of long-chain quaternary ammonium (CTMAB) to short-chain quaternary ammonium (TMAB) is less 2, otherwise, partition will be prevail adsorption. Results of mono-factor experiment and orthogonal table prove that the optimum reaction conditions for 1% CTMAB /6% TMAB (Na)bent to treat 50ml wastewater which initial oil concentration is 115. 45mg/l may be obtained with the addition of sorbent about 1. Og, pH of 6, reaction temperature of 35°C, reaction time of about 120min and the mixing rate of about 150r/min. The removal rate of oil can be up to 97. 98% in this condition.The equation of the dosage for 1% CTMAB /6% TMAB bentonite to treat wastewater at different oil initial concentration is obtained by the curves of the relation between oil concentration of balance and dosage of organobentonite at di
引文
[1]奚旦立主编.环境工程手册(环境监测卷)[M].北京:高教出版社,1998.
    [2]陈国华.水体油污染治理[M].北京:化学工业出版社.2002.
    [3]Boyd S.A., Mortland M. M., Chiou C. T. Sorption characteristics of organiccompounds on hexadecyltrimethylammonium smectite. J. Soil Sci. Soc. Am. J., 1988, 52: 652~657.
    [4]Smith J.A., Jaffe P.R., Chiou C. T. Effects of tenemaryammonium cations on tetrachloromethane sorption on clay from wator. J. Environ. Sci. Tecnol., 1990, 24: 1167~1172
    [5]朱利中,李益民,张建英等.有机膨润土吸附水中萘胺、萘酚的性能及其应用[J].环境科学学报,1997,17(4):445~449.
    [6]Zhu L., Li Y., Zhang J. Sorption of organobentonites to some organic pollutants in wator. J. Environ. Sci. Tecnol., 1997, 31 (5): 1407~1410.
    [7]Chiou C.T., Mcgroddy S.E., Kile D E. Partition charactistics of polycylicaromatic hyrocabonson soil sand sediments. J. Environ. Sci. Tecnol. , 1998, 32: 264~269.
    [8]国家环境保护局.石油石化工业废水处理[M].北京:中国环境科学出版社,1992
    [9]丛澜波,吴秋林.膜分相处理含油废水[J].水处理技术,1987,13(4):240~243
    [10]MatsumotoM R, Jensen J N, Read B E, et al. Physicochemical Processes. J.Water Environment Research, 68 (4): 431~450
    [11]刘廷惠,吴光夏,张东华等.超滤法处理喷漆工段含油废水[J].环境化学,1990,9(2):41~45
    [12]李发永,李阳初,孙亮等.含油污水的超滤法处理[J].水处理技术,1995,21(3):45~48
    [13]王静荣,吴光夏等.超滤法处理乳化油废水的研究[J].环境科学,1997,18(4):53~55
    [14]张裕卿,丁键,常俊石.聚合-A1203复合膜处理油田含油污水[J].工业水处理,2000,20(2):24~25
    [15]袁惠民.含油废水处理方法[J].化工环保,1998,18(3):146~149
    [16]Singh B P. Correlation between Surface Film Pressure and Stability of Emulsion. J. Enery Sources, 1997, 19:783~788
    [17]Mathavan G N, Viraraghavan D. Use of peat in the treatment of oily waters. J. Water Air and Soil Pollution, 1989, 45:17~26
    [18]陈芳艳,唐玉斌,何军.用聚合氯化铝铁混凝处理炼油废水的研究[J].辽宁城乡环境科技,2000,20(5):27~29
    [19]刘正宝,姚清照.光催化技术及其发展[J].工业水处理,1997,17(6):7~8
    [20]钟理,张浩.催化氧化法降解废水过程[J].现代化工,1999,19(5):16~18
    [21]刘秀珍等.负载型纳米光催化剂的研究进展[J].环境保护技术,2000,2:79~82
    
    [22]张相如,庄源益,朱坦等.吸附法处理含油废水和水面溢油的吸附剂研究进展[J].城市环境与城市生态,1997,10(1)59~61
    [23]肖月竹,赵光.用活性炭纤维处理炼油厂废水的研究[J].水处理技术,1994,20(3):177~181
    [24]刘炳泗,袁维富,赵晓红.磁性粉末净化含油污水数学模型[J].环境科学学报,1993,13(2):76~78
    [25]林稚兰,熊小燕,钱存柔,应用生物降解处理石油化工废水[J].环境化学,1986,5 (4):7~12
    [26]关为省,曾涛,朱浚黄.A/O生物法处理石化废水的研究[J].中国环境科学,1995,15(5):363~367
    [27]周岳溪.循序间歇式活性污泥法处理含油废水[J].1994,14(1):70~72.
    [28]成文,赵立和等.乳化液废水处理技术的试验研究[J].华南师范大学学报(自然科学版),2002,1:108~112
    [29]王鸿禧.膨润土[M].北京:地质出版社,1980
    [30]潘兆橹主编.结晶学与矿物学[M].北京:地质出版社,1985
    [31]郑秀华,叶建良等.膨润土应用技术[M].武汉:中国地质大学出版社,2001
    [32]刘伯元.中国非金属矿开发与应用[M].北京:冶金工业出版社,2003
    [33]李海燕.膨润土在建筑防水中的应用[J].西部探矿工程,2000,65(4):14~15
    [34]胡智荣,叶振球等.改性膨润土的应用研究[J].非金属矿,1994,(4):46~48
    [35]乔放,李强等.聚酰胺/粘土纳米复合材料的制备、结构表征和性能研究[J].高分子通报,1997,(3):135~143
    [36]张彩云膨润土对水中铜(Ⅱ)离子的吸附[J].河南化工,1995,7:12~12
    [37]蒋引珊,董振亮等,膨润土对干电池溶液中重金属离子的吸附作用[J].应用化学,1995,12(6):101~102
    [38]夏海萍,柯家骏.膨润土对重金属离子的吸附动力学[J].中国有色金属学报,1995,5 (4):51~53
    [39]杭瑚,马兵等.膨润土吸附——絮凝法处理污水中重金属离子[J].环境科学研究,1994,7(1):48~52
    [40]赵晓明,等.改性膨润土在去除水中Cr(Ⅵ)的试验研究[J].污染防术,1999,12(2):107-108
    [41]周珊,王玲莉,杜冬云等.膨润土对酸性蓝染料废水的脱色研究[J].湖北化工,2001,4:17~18
    [42]Smith C. R, Base exchange reactions of bentonite and salts of organic base. J. Am. Chem. soc., 1934, 56 (2): 1561~1563
    [43]Jordon J. W. Organicphilic bentonites, Swelling in organic liquids. J. Phys. Chem. 1949, 53: 294~306
    [44]栾文楼,李明路.膨润土的开发利用[M].北京:地质出版社.1998
    [45]邓友军、马毅杰、温淑瑶.有机粘土化学研究进展与展望[J].地球科学进展,2000,15(2):197~200
    
    [46]Wada K. Lattice expansion of kaolinite mineral by treatment with potassium acetate Amer Min. , 1961, 46 (1): 78~91
    [47]Fukushima Y, Okada O, Kawasumi M, et al. Swelling behavior of montmorillonite by poly~6~amide. J. Clay Minerals, 1988, 23 (1): 27~34
    [48]陈美、敖宁建、周惠莲等,超声技术制备蒙脱石/天然橡胶纳米复合材料[J].电子显微学报,2002,21(2):199~202
    [49]朱利中、王晴、陈宝梁.阴-阳离子有机膨润土吸附水中苯胺、苯酚的性能[J].环境科学,2000,21(4):42~45
    [50]朱利中、陈宝梁、葛渊数等.P-硝基苯酚在阴~阳离子有机膨润/水界面行为研究[J]环境化学,2000,19(5):419~425
    [51]陈宝梁、朱利中.阴-阳离子有机膨润土吸附水中P-硝基苯酚的性能及机理研究[J].浙江大学学报(理学版),2002,29(3):317~323
    [52]Wolf, T.A. , Demirel, T. , and Baymann, E.R. Interaction of aliphatic amine with montmorillonite to enhance adsorption of organic pollutants. Clays and Clay Minerals 1985, 33 (4): 301~311
    [53]Yun-Hwei Shen. Preparations of organobentonite using nonionic surfactants J., Chemosphere, 2001, 44 (5): 989~995
    [54]Zhang , Z. Z. , Sparks, D. L. , and Scrivner, N.C. , Sorption and desorption of quaternary amine cations on clay. Environ. Sci. Tecnol., 1993, 27 (8): 1625~1631
    [55]王玉洁、张军、张东丽等.有机膨润土制备及测试[J].长春科技大学学报,2000,30 (2):206~208
    [56]王厚亮、邹爱红、李建保等.用天然钙质膨润土制取有机膨润土[J].离子交换与吸附,1999,15(1):186~189
    [57]陈德芳、王重、李运康.有机膨润土性能与结构关系研究[J].西安交通大学学报,2000,34(8):92~95
    [58]张永华.有机膨润土制备研究.非金属矿[J].1996,(4):15~17
    [59]王晓蓉,吴顺年,李万山等.有机粘士矿物对污染环境的修复研究进展[J].环境化学,1997,16(1):1~14
    [60]朱利中、陈宝梁、沈韩艳等.双阳离子有机膨润土吸附处理水中有机物的性能[J].中国境科学,1999,19(4):325~329
    [61]Smith, J.A., and Galan, A. Sorptin of nonionic contaminants to single and dual organic cation bentonites from water. Environ. Sci. Technol , 1995, 29 (3): 685~692
    [62]Harper, M., and Purnell, C.J. Alkylammonium montmorillonites as adsorbents for organic vapors from air. Environ. Sci. Technol, 1990, 24 (1): 55~59
    [63]Chiou. C.T., Thomas D. Shoup, Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol, 1985, 19 (7): 1196~1200
    [64]Spencer M. Steinberg, Vapor phase sorption of benzene by modified soil. Chemosphere。 1999.38 (9): 2143~2153
    [65]Molly S., Costanza, Mark L., Brusseau. Contaminant vapor adsorption at the gas~water interface in soils. Environ. Sci. Technol, 2000, 34 (1): 1~11
    
    [66] 苏玉红,朱利中,陈苏晓,有机膨润土多次吸附模拟废水中苯酚的性能及机理[J].环境科学,2001,22(5):55~59
    [67] Smith, J.A. Jaffe. P. R. Benzene transport through landfill liners containing organophilic bentonite. J. Environ. Engr., 1994, 120:1559~1577
    [68] 刘长礼,王秀艳,垃圾填埋场砂土衬垫中膨润土添加剂的防渗能力[J].中国地质科学院院报,2000,21(1):98~103
    [69] 黄少云,马广伟等.改性膨润土在环境保护中的应用[J].岩石矿物学杂志,2001,20 (4):490~494
    [70] Alston, Daniel C, David E. Design and construction of sand-bentonite liner for effluent treatment lagoon, Marathon Ontario. Canadian geotechnical journal , 1997, 34 (6): 841~852
    [71] Filz, Baxter G.M., Diane Y.B., et al. Ground deformations adjacent to a soil-bentonite cutoff wall. Geotechnical Special Publication, J., 1999, 90:121~139
    [72] Smith, J.A., Jaffe, P. R., Chiou, C.T. Eeffect ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Eniron. Sci. Technol., 1990, 24: 1167~1172
    [73] Atockmtyer M. Adsorption of zinc and nickel ions and phenol and diethyl ketones by bentonites of different organophilicites. J, Clays and Clay Minerals, 1991, 26 (3): 431~436
    [74] Boyd S. A. et al. Pentach lorophenol sorption by organic-clay[J]. Clays and clay minerals, 1988, 36: 125~130
    [75] Mortland M. M. et al. Clay organic complexes as adsorbents for phenol and chlorophenols. J. Clays and clay minerals, 1986: 34:581~585
    [76] 邵颖.膨润土改性及其在分散大红溶液脱色处理中的应用[J].环境科学与技术,1997,4:16~18
    [77] 顾曼华.有机膨润土吸附硝基苯的性能及其在废水处理中的应用[J].水处理技术,1994,20(4):236~239
    [78] 向阳,范瑾初、高研耀等.胶联蒙脱土对水中有机优先污染物的静态吸附研究[J].同济大学学报,1995,23(4):255~258
    [79] 朱利中,张淳,周立峰等.有机膨润土吸附苯酚的性能及其在水处理中的应用初探[J] 中国环境科学,1994,14(5):346~349
    [80] 朱利中、苏玉红、沈学优等.阴-阳离子有机膨润土协同吸附作用及其机理研究.中国环境科学[J].2001,21(5):408~411
    [81] 朱利中,任剑盛,张建英等,溴化十六烷基三甲铵.膨润土对印染废水的脱色作用[J].水处理技术,1994,20(1):56~59
    [82] 陈宝梁,沈学优,朱利中等,溴化十四烷基吡啶对膨润土吸附萘的增强效应及机理[J].环境科学,2003,24(2):92~96
    [83] 苏玉红,朱利中,苯蒸气在有机膨润土上的吸附性能及机理研究[J].中国环境科学 2001,21(3):252~255
    
    [84]朱利中,苏玉红,苯蒸气在有机膨润土上的吸附行为研究[J].环境科学学报,2001,20 (6):669~673
    [85]朱利中,胡建中,沈小强等.有机膨润土吸附对硝基苯酚的性能及其在水处理中的应用初探[J].环境科学学报,1995,15(3):316-321
    [86]金辉.膨润土对汞的吸附性能研究[J].水处理技术,1995,25(4):12~15
    [87]苏玉红、王强等.有机膨润土对重金属离子的吸附性能研究[J].新疆有色金属,2002.3:24~26
    [88]金辉,林鸿福等.有机膨润土处理乳化油废水研究[J].环境污染与防治,1998,20(6):11~14
    [89]徐克勤.有机硅对聚氨脂性能的影响[J].皮革化工,1997,2:11~14
    [90]杨柳燕.HDTMA改性蒙脱土对苯酚的吸附及机理研究[J].上海环境科学,2003.22 (7):456~464
    [91]魏复盛主编.水和废水监测分析方法[M].中国环境科学出版社,1989.
    [92]陈晓银、陶龙骧、郑禄彬.钛层柱粘土的合成[J].催化学报.1994,15(5):361~367
    [93]许中坚等 通径系数法分析中国酸雨中主要离子与pH值的关系[J].湘潭矿业学院学报,2002(6):44~48.
    [94]明道绪 通径分析[M].雅安;四川农业大学出版社,1990.
    [95]陆琦,管俊芳,刘惠芳等;柱撑粘土的晶体结构模型[J],矿物岩石地球化学通报;2002,21(4):217~220.
    [96]朱埗瑶.表面活性剂复配规律(中性无机盐的影响)[J].日用化学工业,1988,2:35-40.
    [97]林维宣.试验设计方法[M].大连海事大学出版社,1995
    [98]Tao Z., Niu J., Solvent Extr. Ion Exch., 1990, 8 (1): 99
    [99]Bhandari V.A. Patwardhan S.R., Sep.Tech., 1992, 27 (8): 1043

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700