NF-κB结合位点在NOD2基因调控中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建含有NF-κB结合位点的人NOD2基因启动子驱动的绿色荧光蛋白表达载体和缺失NF-κB结合位点的人NOD2基因启动子驱动的绿色荧光蛋白表达载体,观察其在真核细胞中表达情况,探讨NF-κB结合位点在NOD2基因调控中的作用。
     方法
     以人基因组DNA为模板,PCR扩增含有NF-κB结合位点的四段不同长度的人NOD2基因启动子序列,以切除启动子的pEGFP-N3作为框架结构,将这四段序列片段进行酶切并定向克隆入表达载体pEGFP-N3中,构建含有NF-κB结合位点的人NOD2基因启动子驱动的绿色荧光蛋白载体pEGFP-N3-NOD2(617bp)wt、pEGFP-N3-NOD2(747 bp)wt、pEGFP-N3-NOD2(1136 bp)wt、pEGFP-N3-NOD2(1387 bp)wt,将构建的重组质粒经脂质体Lipofectamine~(TM)2000介导瞬时转染HEK293细胞、Hela细胞及ECV304细胞,在倒置荧光显微镜下观察其能否在NOD2基因启动子的调控下表达报告基因绿色荧光蛋白(greenfluorescent proteins,GFP)。用突变试剂盒将重组质粒pEGFP-N3-NOD2(617 bp)wt中的NF-κB结合位点缺失突变,将构建的突变重组质粒mpEGFP-N3-NOD2瞬时转染Hela细胞及HEK293细胞,观察绿色荧光蛋白的表达情况。
     结果
     pEGFP-N3-NOD2wt和mpEGFP-N3-NOD2经酶切鉴定和序列测定证实重组质粒构建成功,并且NF-κB结合位点突变成功。细胞转染结果表明,构建的重组质粒转染HEK293、Hela及ECV304细胞株后,在倒置荧光显微镜下均能看到绿色荧光,含有NF-κB结合位点的不同长度的人NOD2启动子片段驱动的绿色荧光蛋白的表达的强度相同(P>0.05),其中构建的pEGFP-N3-NOD2wt重组质粒在Hela及HEK293细胞中绿色荧光表达明显强于突变质粒mpEGFP-N3-NOD2的表达(P<0.05)。
     结论
     (1)成功构建了含有NF-κB结合位点的不同长度的人NOD2基因启动子的重组质粒和含有NF-κB结合位点缺失突变的重组质粒;
     (2)含有NF-κB结合位点的不同长度的人NOD2启动子片段驱动的绿色荧光蛋白的表达强度相同,说明含有NF-κB结合位点的不同长度人NOD2启动子效率相同;
     (3)NF-κB结合位点突变重组质粒在Hela细胞及HEK293细胞中绿色荧光表达明显减弱,说明NF-κB结合位点在NOD2基因调控中可能发挥了正调节作用;为进一步研究NOD2基因表达及调控机制奠定了良好的基础。
Objective
     To construct a specific GFP expression vector drived by promoter of human NOD2 gene and detect its transient expression in eukaryotic cells,to investigate the role of NF-κB binding element in regulation of NOD2 gene.
     Methods
     Four DNA promoter regions of NOD2 containing the NF-κB consensus site were amplified by PCR from human genome DNA and correctly connected to the vector pEGFP-N3 which had cut out promoter by restriction enzyme to obtain the GFP expression vector driven by human NOD2 gene promoter:pEGFP-N3-NOD2(617 bp) wt,pEGFP-N3-NOD2(747 bp) wt,pEGFP-N3-NOD2(1136 bp) wt, pEGFP-N3-NOD2(1387 bp) wt.The constructed plasmids were transiently transferred into cell line HEK293,Hela and ECV304 by Lipofectamine~(TM) 2000,GFP expression was observed under the inversion fluorescence microscope.Mutagenesis of the constructed vector pEGFP-N3-NOD2(617 bp) wt to deletion the NF-κB binding site was carried out by using the QuikChange site-directed mutagenesis kit. The recombinant plasmid mpEGFP-N3-NOD2 was transiently transferred into cell line Hela and HEK293 by Lipofectamine~(TM) 2000,the GFP expression was observed.
     Results
     The constructed pEGFP-N3-NOD2wt plasmids and mpEGFP-N3-NOD2 were the same as the design confirmed by restriction digestion and sequence analysis.The results of the cell transient transfection indicated that green fluorescence of different length NOD2 promoter expressed by recombinant plasmids in HEK293,Hela and ECV304 cells could be observed under the inversion fluorescence microscope.The GFP expression of vectors driven by different length human NOD2 gene promoter which contained the NF-κB consensus site showed the same intensity(P>0.05) and the GFP expression of constructed pEGFP-N3-NOD2wt is stronger than that of mpEGFP-N3-NOD2(P<0.05).
     Conclusion
     (1) The GFP expression vector driven by human NOD2 gene promoter which contains the NF-κB consensus site and the site deleted plasimid have been successfully constructed;
     (2) The GFP expression of vectors driven by different length human NOD2 gene promoter which contain the NF-κB consensus site shows the same intensity,which demonstrates that they have same priming efficiencies;
     (3) The GFP expression of recombinant plasmid mpEGFP-N3-NOD2,deleted the NF-κB binding site,is obviously weaken than that of pEGFP-N3-NOD2wt in Hela and HEK293.The results indicate that NF-κB binding element may play a positive role in regulation of NOD2 gene,which establishes favourable bases for further study on the mechanism of NOD2 gene expression and regulation.
引文
1.Akira,Uematsu S,Takeuchi O.Pathogen recognition and innate immunity.Cell,2006,124(4):783-801.
    2.Girardin SE,Sansonetti PJ,Philpott DJ.Intracellular vs extracellular recognition of pathogens-common concepts in mammals and flies.Trends Microbiol,2002,10(4):193-198.
    3.Becker CE,O'Neill LA.Inflammasomes in inflammatory disorders:the role of TLRs and their interactions with NLRs.Semin Immunopathol,2007,29(3):239-248.
    4.Underhill DM.Collaboration between the innate immune receptors dectin-1,TLRs,and Nods.Immunol Rev,2007,219:75-87.
    5.Church LD,Cook GP,McDermott MF.Primer:inflammasomes and interleukin 1beta in inflammatory disorders.Nat Clin Pract Rheumatol,2008,4(1):34-42.
    6.Fritz JH,Ferrero RL,Philpott DJ,Girardin SE.Nod-like proteins in immunity,inflammation and disease.Nat Immunol,2006,7(12):1250-1257.
    7.胡巢凤。参与免疫及炎症反应调控的胞浆蛋白NODs。《中国病理生理杂志》,2004,20(7):1304-1307。
    8.Harton JA,Linhoff MW,Zhang J,Ting JP.Cutting edge:CATERPILLER:a large family of mammalian genes containing CARD,pyrin,nucleotide-binding,and leucine-rich repeat domains.Immunol,2002,169(8):4088-4093.
    9.Inohara N,Nunez G.NODs:intracellular proteins involved in inflammation and apoptosis.Nat Rev Immunol,2003,3(5):371-382.
    10.Kobe B,Kajava AV.The leucine-rich repeat as a protein recognition motif.Curr Opin Struct Biol,2001,11(6):725-732.
    11.Uehara A,Fujimoto Y,Fukase K,Takada H.Various human epithelial cells express functional Toll-like receptors,NOD1 and NOD2 to produce anti-microbial peptides,but not proinflammatory cytokines.Molecular Immunology,2007,44(12):3100-3111.
    12.Duncan JA,Bergstralh DT,Wang Y,Willingham SB,Ye Z,Zimmermann AG, Ting JP. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA, 2007, 104(19): 8041-8046.
    13. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell, 2007, 25(5): 713-724.
    14. Royet J, Reichhart JM. Detection of peptidoglycans by NOD propteins. Trends Cell Biol, 2003, 13(12): 610-614.
    15. Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem, 2003, 278(43): 41702-41708.
    16. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science, 2003, 300(5625): 1584-1587.
    17. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N.An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol., 2003, 4(7): 702-707.
    18. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem, 2003, 278(11): 8869-8872.
    19. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J Biol Chem, 2003, 278(8): 5509-5512.
    20. Chamaillard M, Philpott D, Girardin SE, Zouali H, Lesage S, Chareyre F, Bui TH, Giovannini M, Zaehringer U, Penard-Lacronique V, Sansonetti PJ, Hugot JP, Thomas G. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci USA, 2003, 100(6): 3455-3460.
    21. Carneiro LA, Travassos LH, Philpott DJ. Innate immune recognition of microbes through Nod1 and Nod2 implications for disease. Microbes Infect, 2004, 6(6): 609-616.
    22. Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad. Sci USA, 2002, 99(3): 1503-1508.
    23. Heinzelmann M, Polk HC Jr, Chernobelsky A, Stites TP, Gordon LE. Endotoxin and muramyl dipeptide modulate surface receptor expression of human mononuclear cells. Immunopharmacology, 2000, 48(2): 117-128.
    24. Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev Immunol, 2003, 3(5): 371-382.
    25. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Nunez G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem, 1999, 274(21): 14560-14567.
    26. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J Biol Chem, 2001, 276(7): 4812-4818.
    27. Kufer TA, Sansonetti PJ. Sensing of bacteria: NOD a lonely job. Curr Opin Microbiol, 2007, 10(1): 62-69.
    28. Carneiro LA, Magalhaes JG, Tattoli I, Philpott DJ, Travassos LH. Nod-like proteins in inflammation and disease. J Pathol, 2008, 214(2): 136-148.
    29. Masumoto J, Yang K, Varambally S, Hasegawa M, Tomlins SA, Qiu S, Fujimoto Y, Kawasaki A, Foster SJ, Horie Y, Mak TW, Nunez G, Chinnaiyan AM, Fukase K, Inohara N. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J Exp Med, 2006, 203(1): 203-213.
    30. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol, 2007, 7(1): 31-40.
    31. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH. A frameshift mutation in N0D2 associated with susceptibility to Crohn's disease. Nature, 2001, 411(6837): 603-606.
    32. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Aimer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature, 2001, 411(6837): 599-603.
    33. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, Frenzel H, King K, Hasselmeyer A, MacPherson AJ, Bridger S, van Deventer S, Forbes A, Nikolaus S, Lennard-Jones JE, Foelsch UR, Krawczak M, Lewis C, Schreiber S, Mathew CG. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet, 2001, 357(9272): 1925-1928.
    34. Milman N, Byg KE. Blau: syndrome-a chronic granulomatous, genetic disease. Ugeskr Laeger, 2006, 168(42): 3612-3614.
    35. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Aimer S, Tysk C, O'Morain C, Gassull M, Binder V, Finkel Y, Modigliani R, Gower-Rousseau C, Macry J, Merlin F, Chamaillard M, Jannot AS, Thomas G, Hugot JP; EPWG-IBD Group; EPIMAD Group; GETAID Group. CARD15 /NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet, 2002, 70 (4): 845-857.
    36. Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, Masumoto J, Ghosh P, Moran A, Predergast MM, Tromp G, Williams CJ, Inohara N, Nunez G. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J, 2004, 23 (7): 1587-1597.
    37. Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE. The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol, 2007, 29(3): 289-301.
    38. van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM, Ahmad T, McGovern DP, Onnie C, Negoro K, Goldthorpe S, Foxwell BM, Mathew CG, Forbes A, Jewell DP, Playford RJ. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet, 2005, 365 (9473): 1794-1796.
    39. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Hafner R, Chamaillard M, Zouali H, Thomas G, Hugot JP. CARD15 mutations in Blau syndrome. Nat Genet, 2001, 29(1): 19-20.
    40. Kanazawa N. Clinical features of Blau syndrome and early-onset sarcoidosis and associating CARD15/NOD2 gene mutations. Nihon Rinsho Meneki Gakkai Kaishi, 2007, 30(2): 123-132.
    41. Rosenstiel P, Hellmig S, Hampe J, Ott S, Till A, Fischbach W, Sahly H, Lucius R, Folsch UR, Philpott D, Schreiber S. Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of H. pylori infection. Cell Microbiol, 2006, 8(7): 1188-1198.
    42. Papaconstantinou I, Theodoropoulos G, Gazouli M, Panoussopoulos D, Mantzaris GJ, Felekouras E, Bramis J. Association between mutations in the CARD15/NOD2 gene and colorectal cancer in a Greek population. Cancer, 2005, 114(3): 433-435.
    43. Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest, 2005, 115(10): 2625-2632.
    44. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/Nod2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology, 2003, 124(4): 993-1000.
    45. Pikarsky E, Ben-neriah Y. NF-kappaB inhibition: A double-edged sword in cancer?. Eur J Cancer, 2006, 42(6): 779-784.
    46. Caamano J, Hunter CA. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev, 2002, 15(3): 414-429.
    47. Chen Y, Vallee S, Wu J, Vu D, Sondek J, Ghosh G. Inhibition of NF-kB activity by IkB beta in association with kB-Ras. Mol Cell Biol, 2004, 24(7): 3048-3056.
    48. Camus-Bouclainville C, Fiette L, Bouchiha S, Pignolet B, Counor D, Filipe C, Gelfi J, Messud-Petit F. A virulence factor of myxoma virus colocalizes with NF-kappaB in the nucleus and interferes with inflammation. J Virol, 2004, 78(5): 2510-2516.
    49. Lee CM, Lo HW, Shao RP, Wang SC, Xia W, Gershenson DM, Hung MC. Selective activation of ceruloplasmin promoter in ovarian tumors: potential use for gene therapy. Cancer Res, 2004, 64(5): 1788-1793.
    50. Vesuna F, Winnard P Jr, Raman V. Enhanced green fluorescent protein as an alternative control reporter to Renilla luciferase. Anal Biochem, 2005, 342(2): 345-347.
    51. Zhang G, Gurtu V, Kain SR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun, 1996, 227(3): 707-711.
    52. Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol, 2006, 208(2): 299-318.
    53. Glasgow JN, Everts M, Curiel DT. Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther, 2006, 13(9): 830-844.
    54. Dean DA. Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals Am. Physiol Cell Physiol, 2005, 289(2): 233-245.
    55. Dieter Weichart, Johan Gobom, Sina Klopfleisch, Robert Hasler, Niklas Gustavsson, Susanne Billmann, Hans Lehrach, Dirk Seegert, Stefan Schreiber, Philip Rosenstiel. Analysis of NOD2-mediated Proteome Response to Muramyl Dipeptide in HEK293 Cells. J Biol Chem, 2006, 281(4): 2380-2389.
    56. Uehara A., Sugawara Y, Kurata S, Fujimoto Y , Fukase K, Kusumoto S, Satta Y, Sasano T, Sugawara S, Takada H. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via Toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol, 2005, 7(5): 675-686.
    57. Zhu CS, Ouyang WM, Liu XS, Liang XC, Song CJ, Jin BQ. The inhibition of TNF-induced NF-kappaB nuclear translocation in ECV304 cells by mAbs against human TNF. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2004, 20(5): 585-587.
    58. Almeida LP, Zala D, Aebischer P, Deglon N. Neuroprotective effect of a CNTF2 expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease.Neurobioi Dis,2001,8(3):433-436.
    59.Ramezani A,Hawley TS,Hawley RG.Lentiviral vectors for enhanced gene expression in human hematopoietic cells.MolTher,2000,2(5):458-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700