PHI诱导急性T淋巴细胞性白血病Molt-4细胞p15基因去甲基化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】研究新型组蛋白去乙酰化酶抑制剂异硫氰酸苯己酯(PHI)对急性T淋巴细胞性白血病Molt-4细胞p15基因的去甲基化作用及诱导沉默基因从新(de novo)表达作用,并进一步探讨其去甲基化作用的机制,为PHI作为一种新型抗肿瘤药物提供理论依据。
     【方法】采用甲基化特异性聚合酶链反应(MSP)法检测PHI作用前后Molt-4细胞株甲基化状态的变化情况,并对PCR产物进行基因测序鉴定,以经典的DNA甲基化抑制剂5-杂氮胞苷(5-Aza)和经典的组蛋白去乙酰化酶抑制剂古曲抑菌素(TSA)为对照;半定量逆转录-聚合酶链反应(RT-PCR)检测Molt-4细胞经过不同浓度PHI处理后DNA甲基转移酶1(DNMT1)、3A(DNMT3A)、3B(DNMT3B)、p15基因的mRNA的表达变化;用蛋白免疫印迹法(Western Blotting)检测Molt-4细胞经过不同浓度PHI处理后的P15蛋白的表达变化等。【结果】(1)甲基化特异性聚合酶链反应检测提示Molt-4细胞p15基
     因发生高甲基化而失活。不同浓度PHI作用于Molt-4细胞5天后, PHI各组p15基因的甲基化程度减弱,p15基因的异常甲基化现象被逆转,沉默的p15基因从新表达,并呈明显的浓度依赖性。
     (2)不同浓度PHI处理5天后,与空白对照组相比,各组的DNMT1和DNMT3B的mRNA表达下降(p<0.05);DNMT3A的mRNA表达则无明显变化(p>0.05)。
     (3)PHI处理Molt-4细胞5天后,与空白对照组相比,各组的P15蛋白表达增加,且随着药物浓度的增加,其表达增强。
     【结论】(1)新型组蛋白去乙酰化酶抑制剂PHI有DNA去甲基化的作用,能诱导沉默的p15基因从新表达。
     (2)PHI可能是通过降低DNA甲基转移酶DNMT1和DNMT3B的活性从而诱导p15基因产生去甲基化,或者(和)是通过改变p15基因附近组蛋白的乙酰化水平,导致染色体空间结构的变化,诱导p15基因产生去甲基化。
Objects To investigate the effect of Phenylhexyle Isothiocyanate (PHI) on demethylation and activation transcription of p15 in acute leukemia cell line Molt-4, which has been proved a novel HDACi recently,and to further study its potential mechanism of demethylation.
     Methods DNA sequencing and Modified Methylation Specific PCR (MSP) were used to screen p15-M and p15-U mRNA after Molt-4 cells had been treated with PHI, 5-Aza and TSA. DNA methyltransferase 1(DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein was detected by Western Blotting.
     Results The gene p15 in Molt-4 was hypermethylated and gene silence. Hypermethylation of gene p15 was apparently attenuated and p15 gene was de novo activation after 5days exposure to PHI in a concentration dependent manner. DNMT1 and DNMT3B were inhibited by exposure to PHI for 5 days (P<0.05). Alteration of DNMT3A was not significant at those concentrations.
     Conclusions We have demonstrated that PHI could active demethylation and activation transcription. Hypermethylation of gene p15 was reversed and activation transcription could be de novo by PHI in Molt-4. It may result from down-regulating DNA methyltransferases, DNMT1 and DNMT3B, or up-regulating the histone acetylation that allow chromatin to unfold and the accessibility of regulators in the p15 promoter for transcription activation.
引文
[1] Wolffe AP, Matzke MA. Epigenetics:regulation through repression[J]. Science,1999,286(5439):481-486.
    [2] Lewin B. GenesⅧ. Perarson Prenc Hall press,2004.
    [3] Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nat Rev Genet, 2003,33: 245-254.
    [4] Laura JR,Christoph P.Alterations of DNA methylation in hematologic malignancies[J]. Cancer Lett,2002,185:1-12.
    [5] Yuning Xiong, Sean C. Dowdy, Karl C. Podratz,et al.Histone Deacetylase Inhibitors Decrease DNA Methyltransferase-3B Messenger RNA Stability and Down-regulate De novo DNA Methyltransferase Activity in Human Endometrial Cells[J]. Cancer Res,2005,65(7):2684-2689
    [6] Selker EU. Trichostatin A causes selective loss of DNA methylation in Neurospora[J]. PNAS,1998,95:9430-9435.
    [7] Hu JF, Pham J, Dey I, et al. Allelespecific histone acetylation accompanies genomic imprinting of the insulin-like growth factor II receptor Gene[J]. Endocrinology,2000,141:4428-4435.
    [8] Cosgrove DE, Cox GS. Effects of sodium butyrate and 5-azacytidine on DNA methylation in human tumor cell lines: variable response to drug treatment and withdrawal[J]. Biochim Biophys Acta,1990,1087:80-86.
    [9] Dobosy JR, Selker EU. Emerging connections betweenDNA methylation and histone acetylation[J]. Cell Mol Life Sci,2001,58:721–7.
    [10] Hu JF, Oruganti H, Vu TH, Hoffman AR. The role of histone acetylation in the allelic expression of the imprinted human insulin-like growth factor II gene[J]. Biochem Biophys Res Commun,1998,251:403-408.
    [11] Dong Xiao,Sanjay KS, Karen LL, et al.Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis[J]. Carcinogenesis,2003,5:891-897.
    [12] 黄轶群、马旭东、郑瑞玑等. 异硫氰酸苯己酯对 Molt-4 细胞组蛋白甲基化、乙酰化调控的实验研究[J]. 中华血液学杂志,2007,(28)9:612-616.
    [13] Ma X, Fang Y, Beklemisheva A, et al. Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatins to induce growth arrest in human leukemia cells[J].Int J Oncol,2006,28(5):1287-93.
    [14] Herman JG,Graff JR,Myohanen,et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands [J].Proc Natl Acad Sci USA,1996,93: 9821-9826.
    [15] Ding Jiao, Karin IE, Chang-In Choi, et al. Structure-Activity Relationships of Isothiocyanates as Mechanism-based Inhibitors of 4-(Methy-Initrosamino)-1-(3-pyridy1)-1-butanone-induced Lung Tumorigenesis in A/J Mice[J]. Cancer Res, 1994,54:4327-4333.
    [16] Jerald TW, Mark AM, Laura AK, et al.Effect of alkyl chain length on inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis and DNA methylation by isothiocyanates[J]. Carcinogenesis, 1995, 16(5):1011-1015.
    [17] 森光康次郎等. 异硫氰酸类的第二相解毒酶诱导的抑癌作用.日本医学介绍,2004,25:64-65.
    [18] Tamaro SH, Gary DS, Mark AM, et al. Comparison of phenethyl and 6-phenylhexyl isothiocyanate-induced toxicity in rat esophageal cell lines with and without glutathione depletion[J]. Toxicology Letters,2005,155: 427–436.
    [19] Tamaro SH, Peter SC, Ashok G,et al. Investigation of the enhancement of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis by 6-phenylhexyl isothiocyanate[J]. Cancer Lett, 2001,162: 19–26.
    [20] Conaway CC, Ding Jiao, Toshiyuki K, et al. Disposition and Pharmacokinetics of Phenethyl Isothiocyanate and 6-Phenylhexyl Isothiocyanate in F344 Rats[J]. Drug Metabolism And Disposition,1999,(27) 1:13-20.
    [21] Hecht S.S, Trushin N, Rigotty J, et al. Inhibitory effects of 6-phenylhexyl isothiocyanate on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanonemetabolic activation and lung tumorigenesis in rats[J].Carcinogenesis, 1996, 17:2061–2067.
    [22] Melki JR ,Vincent PC ,Clark SJ . Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia[J] . Cancer Res ,1999 ,59 :3730 -3740.
    [23] 郑瑞玑,沈松菲,沈建箴等. INK4 系列抑癌基因(p16、p15、p18、p19)在白血病中的甲基化. 福建医科大学学报,2004,(38)3:257-260.
    [24] M.H. Lee, H.Y.Yang. Contributions in the domain of cancer research: Review Negative regulators of cyclin-dependent kinases and their roles in cancers [J]. CMLS,2001,58:1907-1922.
    [25] Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-βinduced cell cycle arrest[J]. Nature, 1994,371:257-261.
    [26] Herman JG, Civin CI, Issa JP, et al. Distinct patterns of inactivation of p15 INK4B and p16 INK4B characterize the major type of hematologic malignancies[J]. Cancer Res, 1997, 57: 837-841.
    [27] Aggerholm A, Guldberg P, Hokland M, et al. Extensive intra-and interindividual heterogeneity of p15 INK4B methylation in acute myeloid leukemia[J]. Cancer Res, 1999, 59: 436-444.
    [28] Ayse Batova, Mitchell B. Diccianni, John C. Yu, et al. Frequent and Selective Methylation of p15 and Deletion of Both p15 and p16 in T-Cell Acute Lymphoblastic Leukemia[J]. Cancer Res,1997,57: 832-836
    [29] Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B[J]. J Clin Oncol, 2002, 20:2429-2440.
    [30] Bender CM, Pao MM,Jones PA. Inhibition of DNA methylation by 5-Aza-2 ’ -deoxycytidine suppress the growth of human tumor cell line[J].Cancer Res,1998,58:95-101.
    [31] Jones AR. DNA methylation errors and cancer[J].Cancer Res,1996, 56:2463-2467.
    [32] Melki J R, Warnecke P, Vincent PC, et al.Increased DNA methyltransferaseexpression in leukemia [J].Leukemia,1998,12:311-316.
    [33] Mizuno S ,Chijiwa T ,Okamura T ,et al . Expression of DNA met hylt ransferases DNMT1, 3A , and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia [J].Blood ,2001, 97:1172-179.
    [34] Christman JK, 5-azacytidine and 5-aza-2-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy,Oncogene[J].2002,21:5483-5495.
    [35] Regine Schneider-Stock, Mona Diab-Assef, Astrid Rohrbeck,et al. 5-aza-Cytidine Is a Potent Inhibitor of DNA Methyltransferase3a and Induces Apoptosis in HCT-116 Colon Cancer Cells via Gadd45- and p53-Dependent Mechanisms[J].JPET,2005,312:525-536.
    [36] Attwood JT, Yung RL, Richardson BC. DNA methylation and the regulation of gene transcription[J]. Cell Mol Lif Sci,2002,59:241-257.
    [37] Bender CM, Zingg JM, Jones PA. DNA methylation as a target for drug design[J]. Pharm Res ,1998,15:175-187.
    [38] Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa[J]. Nature,2001, 414:277-283
    [39] Fuks.F,Burgers.W.A,Godin.N, et al. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription[J]. EMBO[J]. 2001,20:2536-2544.
    [40] Singal R, Van Wert J, Bashambu M. Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells. Cancer Res[J]. 2001,61:4820-4826.
    [41] Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet[J]. 1999,21:103-107.
    [42] El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol[J]. 2002,22:1844–57.
    [1] Michael SF, Jill RD, Alona C, et al.Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors[J ]. Nature,1999,401(9):188 - 193.
    [2] Akihisa M, Tadahiro S, Yuko S, et al. In vivo destabilization of dynamic microtubules by HDAC6- mediated deacetylation[J]. The EMBO Journal,2002,21(24): 6820- 6831.
    [3] Somech R, Izaelia S, Simon AJ. Histone deacetylase inhibitors:a new tool to treat cancer[J]. Cancer Treatment Reviews,2004,30(5):461- 472.
    [4] Ma X, Fang Y, Beklemisheva A, et al.Phenylhexyl isothiocyanate inhibitshistone deacetylases and remodels chromatins to induce growth arrest in human leukemia cells[J]. Int J Oncol. 2006 ,28(5):1287-93
    [5] Beklemisheva AA, Fang Y, Feng J, et al. Epigenetic mechanism of growth inhibition induced by phenylhexyl isothiocyanate in prostate cancer cells[J].Anticancer Res,2006,26(2A):1225-30
    [6] Bieliauskas AV, Sujith V, Mary K. Structural requirements of HDAC inhibitors: SAHA analogs functionalized adjacent to the hydroxamic acid[J ]. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 2216–2219
    [7] Yasuhiko K,Kin-Ya T, Makiko T,et al. Cyclic Hydroxamic-acid-containing Peptide 31, a Potent Synthetic Histone Deacetylase Inhibitor with Antitumor Activity[J]. Cancer Research,2001,61(6):4459-4466.
    [8] Ryohei F, Yasuhiko K, Norikazu N,et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin[J ] . PNAS,2001,98(1):87 - 92.
    [9] Xie A,Li B,Liao C,et al. Docking Study of HDAC Implication for Benzamide Inhibitors Binding Mode[J ]. Acta Physico-Chimica Sinica(物理化学学报),2004,20(6):569 - 572.
    [10] Suzuki T, Ando T, Tsuchiya K, et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives [J]. J Med Chem,1999,42(15):3001-3.
    [11] Victoria MR, Zhou XB, Richard AR, et al. Histone Deacetylase Inhibitors: Development of Suberoylanilide Hydroxamic Acid (SAHA) for the Treatment of Cancers[J]. Blood Cells,Molecules, and Diseases, 2001, 27(1): 260–264.
    [12] Clare H, Michela M, Gabriela P, et al. Role of Caspases, Bid and p53 in the Apoptotic Response Triggered by Histone Deacetylase Inhibitors Trichostatin-A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA)[J].The Journal of Biological Chemistry, 2003, 278(14):12579–89.
    [13] Dai Z, Liu S, Marcucci G, et al. 5-Aza-2-deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer) [J].Biochemical and Biophysical Research Communications, 2006, 351(2):455–461.
    [14] Kjersti F, Ragnhild V N, Sigurd F, et al. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition[J]. Radiat Oncol, 2006(1): 25
    [15] Douglas CM, Elona B, Adil ID, et al. In vivo synergy between topoisomerase II and histone deacetylase inhibitors[J]. Mol Cancer Ther. 2005, 4:1993-2000.
    [16] Kenji I, Aki T, Motoko K, et al. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors[J]. Life Sciences, 2007, 80(13): 1213–1220.
    [17] Soyoung K, Jae Kk, Yong K K, et al. Histone deacetylase inhibitor apicidin induces cyclin E expression through Sp1 sites[J].Biochemical and Biophysical Research Communications, 2006, 342: 1168–1173.
    [18] Sepideh S, Mark B, Louise FM, et al. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2’-deoxycytidine) and histone deacetylation(trichostatin A depsipeptide) in combination against myeloid leukemic cells[J]. Leukemia Research, 2003,27: 437–444.
    [19] Zhou Y , Xue K , Chen Y, et al. Inhibitive effects of trichostatin A on telomerase activity of HL 260 cells and expression of subunit hTERT during apoptosis [J]. Chinese Pharmacological Bulletin (中国药理学通报), 2006, 22(2): 171-174.
    [20] Francesca JD, Jyothish Bp, Madhu G, et al. Concurrent opposite effects of trichostatin A ,an inhibitor of histone deacetylases, on expression of α-MHC and cardiac tubulins:implication for gain in cardiac muscle contractility[J]. Am J Physiol Heart Circ Physiol, 2005,288(3): 1477-1490.
    [21] Yuka S, Yoshinori N, Takahisa N, et al. Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors[J]. Biochemical Pharmacology, 2003, 66: 897–906.
    [22] Jung J , Cho S , Ahn N, et al. Ras/MAP Kinase pathways are involved inRas specific apoptosis induced by sodium butyrate[J]. Cancer Letters, 2005, 225:199–206
    [23] Han S , Lu J, Zhang Y, et al. HDAC inhibitors TSA and sodium butyrate enhanced the human IL-5 expression by altering histone acetylation status at its promoter region[J]. Immunology Letters, 2007, 108(2):143–150.
    [24] Moreira JM, Scheipers P, Sorensen P.The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses[J]. BMC Cancer, 2003, 3(11):30-47.
    [25] Daosukho C, Chen Y, Noel T, et al. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury [J].Free Radical Biology & Medicine, 2007, 42(12):1818-25
    [26] Sandra C, Antonio HI, Daehee H, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis[J]. Journal of Neuroimmunology, 2005, 164:10-21.
    [27] Simonini Mv, Camargo Lm , Dong E, et al. The benzamide MS-275 is a potent long-lasting brain region-selective inhibitor of histone deacetylases[J]. PNAS, 2006, 103 (5): 1587–1592.
    [28] Colletti Sl, Myers Rw, Darkin –Rattray Sj, et al. Broad Spectrum Antiprotozoal Agents that Inhibit Histone Deacetylase: Structure-Activity Relationships of Apicidin. Part 1[J]. Bioorganic & Medicinal Chemistry Letters, 2001,11(2):107-11
    [29] William KK, Victoria MR, Owen O’C, Phase I Clinical Trial of Histone Deacetylase Inhibitor:Suberoylanilide Hydroxamic Acid Administered Intravenously,[J]. Clinical Cancer Research, 2003, 9: 3578–3588
    [30] William KK, Owen O’C, Lee KM . Phase I Study of an Oral Histone Deacetylase Inhibitor, Suberoylanilide Hydroxamic Acid, in Patients With Advanced Cancer [J].Clin. Oncol, 2005, 23(17):3923–3931.
    [31] Blumenschein G, Lu C, Kies M, et al . Phase Ⅱclinical trial of suberoylanilide hydroxamic acid (SAHA) in patients with recurrent and/ ormetastatic head and neck cancer ( SCCHN) [J ] . Journal of Clinical Oncology , 2004,22 (14s): 5578.
    [32] Ottmann OG, Deangelo DJ, Stone RM, et al. A phase Ⅰ pharmacokinetic ( PK) and pharmacodynamic (PD) study of a novel histone deacetylase inhibitor LAQ824 in patients with hematologic malignancies [J1]. J Clin Oncol, 2004,22(14s) :3024 - 3028.
    [33] Rowinsky EK,Bono J, Deangelo DJ, et al. Cardiac monitoring in phase I trials of a novel histone deacetylase (HDAC) inhibitor LAQ824 in patients with advanced solid tumors and hematologic malignancies[J ].Journal of Clinical Oncology ,2005,23(16S): 3131.
    [34] John CB, Guido M, Mark RP,et al. A phase I and pharmacodynamc study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia[J]. Blood, 2005, 105: 959–67.
    [35] Manisha HS, Philip B, Kenneth C,et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors[J].Clinical Cancer Research, 2006, 12:3997–4003.
    [36] AMITA P, ERIC KR, MIGUEL AV, et al. A phase I study of pivaloyloxymethyl butyrate a prodrug of the di.erentiating agent butyric acid in patients with advanced solid malignancies[J].Clinical Cancer Research, 2002, 8:2142–2148.
    [37] Tony R,Frank V,William L, et al. Phase II trial of the histone deacetylaseinhibitor pivaloyloxymethyl butyrate (Pivanex AN-9) in advanced non-small cell lung cancer[J]. Lung Caner, 2004, 45:381–386.
    [38] Ryan QC,Headlee D,Acharya M, et al. Phase Ⅰand pharmacokinetic study of MS-275, a histone deacetylase inhibitor in patients with advanced and refractory solid tumors or lymphoma[J]. J Clin Oncol, 2005, 23(17):3912-3922.
    [39] Pili R,Rudek M,Altiok S,et al. Phase I pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor MS-275 in combination with 13-cis-retinoic acid in patients with advanced solidtumors[J] . Journal of Clinical Oncology, 2006, 24(18S):3055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700