干旱地区植被景观格局与水生态过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
景观格局和生态过程之间的相互关系是景观生态学的核心问题之一,其二者相互关系根据特定的景观格局和生态过程又包含众多方面,干旱地区植被景观格局与水生态过程则为其中之一。干旱地区水分缺乏,以荒漠植被为主,具有蒸发量大、降水稀少的气候环境特征。干旱区内,水分因素在生态系统中占主导地位,植被景观格局在很大程度上随着水分环境的变化而相应演变。干旱地区植被景观格局与水生态过程的研究对干旱地区生态系统的保护和恢复具有重要意义。
     黑河流域是我国西北地区第二大内陆流域,位于河西走廊中部,发源于祁连山脉,最终注入内蒙古额济纳旗,且在额济纳旗内孕育了额济纳天然绿洲。由于自上世纪60年代以来,黑河流域中游用水过度,使得进入额济纳天然绿洲的水量锐减,造成了一系列的生态环境问题。因此从2001年开始在黑河流域启动了分水工程,保证进入额济纳天然绿洲的水量,以促进绿洲内生态环境的恢复。
     本文主要以黑河下游额济纳天然绿洲为研究对象,基于研究区2001-2009年MODIS影像、三个年份(1987、2001、2009)TM/ETM+影像以及2002年和2009年的实地植被样方调查,分别进行NDVI指数、景观格局指数和植被样方数据分析;并结合研究区内地表水、地下水数据,从多个层面和角度分析分水后研究区内水分环境动态变化对植被景观格局演变的影响,为干旱地区生态系统的保护和恢复提供参考。
     主要结果表明:
     ①地表水是干旱地区植被生长所需水分的主要来源,能够通过下渗转化成地下水,直接影响植被生长及植被景观格局的演变;
     ②地表径流量和植被覆盖度之间具有正相关关系,地表以地表水为主导,地表径流量增加会引起植被覆盖度的增加,反之亦然,植被覆盖度会响应当年以及往年的地表径流量变化,且具有时滞性;
     ③地下水位的上升使得研究区内植被生长状况得到改善,植被密度、生长高度、盖度均有一定幅度提升,物种丰富度增加,且草本植物受地下水位影响最为明显;
     ④地下水位上升使得研究区整体景观格局趋于复杂化、多样化、均匀化,基质景观类型(戈壁滩)在景观中优势度降低,植被景观格局破碎化程度提高、趋于复杂化。
One of the core issues in landscape ecology is the relationships between the landscape pattern and hydro-ecological process, which contains many fields on the basis of specific pattern and process. The relationships between the dynamic vegetation landscape pattern changing characteristics and hydro-ecological process in arid regions are studied in the research into the correlation of vegetation landscape pattern and hydro-ecological process in arid regions. Due to climate featured by great amount of evaporation and scarce rainfall, arid regions are constantly in short of water and mainly covered by the desert vegetation; hence the hydro-ecological process dominating the ecological system as well as the changing of vegetation landscape pattern. To the arid region, the study of correlation between vegetation landscape pattern and hydro-ecological process is of great importance to the protection and restoration of the ecological system.
     The Hei River is the second largest inland river in the northwest of China, which is located in Hexi Corridor, originated in Qilian mountains and flows into Ejina Banner of Inner Mongolia and gives birth to the Ejina natural oasis. Since the 1960s, as the overusing of water in the middle Hei River, the amount of water fall into Ejina natural oasis decreased markedly which lead to a series of ecological and environmental problems. Under these circumstances, the project of water distribution was launched in 2001 to promote the ecological system restoration of the oasis. This paper takes the Ejina natural oasis as the research subject. Adopting the remote sensing techniques and on-the-spot survey of vegetation quadrat, the NDVI index, landscape pattern index and data of vegetation quadrat are studied. Based on the surface water, underground water data, the correlation between vegetation pattern changing and dynamic changes of water ecological process are studied, in order to provide reference for the protection and restoration of the ecological system. The findings are as follows:
     ①Surface water is the main source of water for vegetation growth in arid regions, since it is transformed into underground water through the infiltration to affects vegetation growth directly.
     ②There is a positive correlation between the surface water and the coverage of vegetation which is dominated by the surface water. The increasing of the runoff will lead to the rising of the vegetation coverage and vice verse. Vegetation coverage will respond to the changes of surface water with a time lag.
     ③The vegetation growth condition was improved with the rising of underground water level:the vegetation density, growth height, coverage have certain improvements, species richness is increased and the change of herbaceous is most obvious.
     ④The landscape pattern of the subject area tends to be complex, diverse and uniform with the rising of underground water level. The dominance of the matrix landscape type (desert) is reduced, while the fragmentation of vegetation landscape pattern improves.
引文
[]]Alexander Popp, Melanie Volgel, Niels Blaum, and Florian Jeltsch. Schaling up ecohydrological processes:Role of surface water flow in water-limited landscapes. Journal of Geophysical research.2009, Vol.114:59-69
    [2]B.Nandintsetseg, M.Shinoda, R.Kimura. Relationship between soil moisture and vegetation activity in the Mongolian Steppe.2010, VOL.6:029-032
    [3]C.Soulsby, D.Tetzlaff, S.M.Dunn.Scaling up and out in runoff process understanding:insights from nested experimental catchment studies. Hydrological processes.2006,20:2461-2465
    [4]D.A.Robinson, A.Binley, N.Crook. Advancing process-based watershed hydrological research using near-surface geophysics:a vision for, and review of, electrical and magnetic geophysical methods. Hydrological processes.2008,22:3604-3635
    [5]D.Tetzlaff, J.Seibert, K.J.McGuire. How does landscape structure influence catchment transit time across different geomorphic provinces. Hydrological processes.2009,23:945-953
    [6]Florian Malard, Klement Tockner. A landscape perspective of surface-subsurface hydrological exchange in river corridors. Freshwater Biology.2002,47:621-640
    [7]Gustafson E.F. Quantifying Landscape Spatial Pattern:What Is the State of the Art. Ecosystems. 1998,1:143-156
    [8]Hong Jiang, Shirong Liu, Pengsen Sun. The influence of vegetation type on the hydrological process at the landscape scale. Remote Sensing.2004, Vol 30(5):743-763
    [9]lvan Prieto, Karina Martinez-Tilleria. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems:patterns and control mechanisms. Physiological Ecology.2010,3: 156-175
    [10]John A.Lunwig, Bradfrod P.Wilcox, David D.Breshears. Vegetation patches and runoff-erosion interacting ecohydrological processes in semiarid landscapes. Ecology.2005,86 (2):288-297
    [11]Richard J.Hobbs, Viki A.Cramer. Natural ecosystems:Pattern and process in relation to local and landscape diversity in southwestern Australian woodlands. Plant and Soil.2003,257: 371-378
    [12]Sheng-nan Li, Gen-xu Wang, Wei Deng. Influence of hydrology process on wetland landscape pattern:A case study in the Yellow River Delta. Ecological Engineering.2009,35:1719-1726
    [13]Yanjun Shen, Yaning Chen. Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrological Processes.2010,24:129-135
    [14]白福,杨小荟.河西走廊黑河流域地下水化学特征研究.西北地质.2007,40(3):105-110
    [15]陈仁升,康尔泗,赵文智等.中国西北干旱区树木蒸腾对气象因子的响应.生态学报.2004,24(3):477-485
    [16]曹宇,陈辉,欧阳华等.基于多项植被指数的景观生态类型遥感解译与分类——以额济纳天然绿洲景观为例.自然资源学报.2006,21(3):481-488
    [17]曹宇.额济纳天然绿洲景观格局、动态、演化机制及其健康评价[博士学位论文],中国科学院沈阳应用生态研究所,2003年,31-56
    [18]陈凌静,基于GIS支持下的土地利用景观梯度分析——以重庆市合川区为例[硕士学位论文],西南大学,2009年,15-18
    [19]陈亚宁,李卫红,陈亚鹏等.新疆塔里木河下游河道生态输水对植被生理的影响研究.自然科学进展.2004,14(6):665-671
    [20]额济纳旗水利局,额济纳旗地下水位观测资料:2001--2009年,2009(内部资料)
    [21]额济纳旗统计局,额济纳旗国民经济统计资料,2009,(内部资料)
    [22]傅伯杰,陈利顶,马克明等.景观生态学原理及应用.北京:科学出版社,2001.
    [23]葛方龙,李伟锋,陈求稳.景观格局演变及其生态效应研究进展.生态环境,2008,17(6):
    [24]2511-2519
    [25]何文华,郭峰.塔里木河干流下游地下水变化分析.中国西部科技.2009,8(22):30-31
    [26]何兴东,高玉葆.干旱区水力提升的生态作用.生态学报.2003,23(5):996-1002
    [27]侯钰荣,安沙舟.塔里木河干流景观格局的时空变化分析.干旱区资源与环境.2010,24(3):44-50
    [28]胡巍巍,王根绪,邓伟.景观格局与生态过程相互关系研究进展.地理科学进展,2008,27(1):18-24
    [29]黄青.塔里木河中游景观格局与生态水文过程的耦合分析.干旱区资源与环境.2008,22(9):83-87
    [30]贾艳红,赵传燕,牛博颖等.基于GIs的黑河下游地下水波动带范围探析.淮海工学院学报.2009,18(3):51-54
    [31]金晓媚,胡光成.黑河下游额济纳地区植被变化规律及最小需水量的估算.水利水电科技进展.2010,30(1):30-34
    [32]金宇.基于ETM数据的额济纳绿洲景观分类方法的研究[硕士学位论文].内蒙古农业大学.2009年:9-27
    [33]李哈滨.景观生态学:生态学领域里的新概念框架.生态学进展,1988,5(1):23-33
    [34]李卫红,杨玉海,周海鹰等.塔里木河下游断流河道输水的生态变化分析.中国水土保持.2009,6,10-20
    [35]李峰瑞,刘继亮.干旱区根土界面水分再分配及其生态水文效应研究进展与展望.地球科学进展.2008,23(7):698-706
    [36]卢玲,李新,程国栋等.黑河流域景观结构分析.生态学报.2001,2l(8):1217-1224
    [37]卢玲,程国栋,李新.黑河流域中游地区景观变化研究.应用生态学报.2001,12(1):68-74
    [38]吕一河,陈利顶,傅伯杰.景观格局与生态过程的耦合途径分析.地理科学进展,2007,26(3):1-10
    [39]牛婷,李霞.塔里木河下游输水区景观与植被变化分析.遥感应用.2008,5:68-73
    [40]邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2000.
    [41]任加国,郑西来,武倩倩.干旱地区区域地下水循环规律.2006,22:148-151
    [42]壬新建,陈建生.水化学成分聚类法分析干旱区地下水补给.水资源保护.2005,21(5):11-26
    [43]司建华,冯起,张小由.极端干旱区胡杨水势及影响因子研究.中国沙漠.2005,25(4):505-510
    [44]索安宁,于波,王天明等.泾河流域植被景观格局对流域径流的调节作用.水土保持学报.2005,19(4):40-43
    [45]王刚,张鹏,陈年来.内陆河流域基于绿水理论的生态-水文过程研究.地球科学进展.2008,23(7):692-697
    [46]王库,史学正,于东升等.基于景观格局分析的兴国县土壤侵蚀演变研究.水土保持学报.2003,17(4):94-116
    [47]王莉雯,牛铮,卫亚星.基于MODIS NDVI的新疆潜在荒漠化趋于探测.红外与毫米波学报.2007,26(6):456-460
    [48]王彦辉,熊伟,于澎涛等.干旱缺水地区森林植被蒸散耗水研究.中国水土保持科学.2006,4(4):19-25
    [49]邬建国.景观生态学中的十大研究论题.生态学报.2004,24(9):2074-2076
    [50]肖生春,肖洪浪.极端干旱区湖岸柽柳径向生长对水环境演变的响应.北京林业大学学报.2006,28(2):39-45
    [51]徐恒力,周爱国,肖国强等.西北地区干旱化趋势及水盐失衡的生态环境效应.地球科学中国地质大学学报.2000,25(5):499-504
    [52]许文鼎,西北干旱盆地地下水化学特征及成因机制分析,河北地质,2009,1:15-23
    [53]薛博,额济纳绿洲NDVI与黑河下游年均流量的滞后关系模型研究[硕士学位论文],合肥工业大学,2009年,16-25
    [54]杨国靖,肖笃宁,周立华.祁连山区森林景观格局对水文生态效应的影响.水科学进展.2004,15(4):489-494
    [55]杨自辉,高志海.荒漠绿洲边缘降水和地下水对白刺群落消长的影响.应用生态学报.2000,11(6):923-926
    [56]张勃,丁文晖,孟宝.干旱区土地利用的地下水水文效应分析——以黑河中游地区为例.干旱区地理.2005,28(6):764-769
    [57]张丽,董增川,黄晓玲.干旱区典型植物生长于地下水位关系的模型研究.中国沙漠.2004,24(1):110-113
    [58]张强,赵映东,张存杰等.西北干旱区水循环与水资源问题.干旱气象.2008,26(2):1-8
    [59]赵文智,常学礼,何志斌等.额济纳荒漠绿洲植被生态蓄水量研究.地球科学,2006,36(6):559-566
    [60]周茅先,肖洪浪,罗芳等.额济纳三角洲地下水水盐特征与植被生长的相关研究.2004,24(4):431-436
    [61]庄丽,陈亚宁,李卫红等.塔里木河下游柽柳ABA积累对地下水位和土壤盐分的响应.生态学报,2007,27(10):4247-4251
    [62]朱槐文,孟庆春,宋二红等.景观格局-生态过程研究进展.2010,49(1):211-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700