增温和氮素添加对松嫩草原羊草群落结构和功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业气体的排放和温室效应的加剧,全球气候变化已经成为不容置疑的事实。在环境温度和氮素改变的条件下,植物的生长以及生理生态特性将产生巨大的变化。松嫩草原不仅是我国面积最大的草甸草原,也是我国最具代表性的草地类型之一,在反映与调节全球气候变化过程中具有重要的作用。本研究以广泛分布于松嫩草原的羊草草甸为对象,在2006年到2009年采用红外线加热仪模拟增温效应、用氮素添加的方法模拟氮素沉降,研究了羊草草甸的群落结构特征、生产力、建群种物候期及种子生产能力与种子质量的变化规律,为预测全球气候变化对草地生态系统的影响提供科学依据。结果表明:
     (1)增温和氮素添加处理后,物种组成发生了较为明显的改变,增温1.7℃使物种数量增加,施氮使物种数量减少。同时,群落的特征值发生明显变化,增温使禾草重要值降低,非禾草重要值升高,而氮素的效应与增温相反;增温后物种的丰富度和均匀度有所升高,而氮素导致物种丰富度和均匀度降低。最终,增温使物种多样性指数升高,氮素使多样性指数降低。
     (2)增温对地上生物量生产有不利影响,对地下生物量的生产有利。在降水较多的年份,增温对地上生物量生产的抑制作用较小,而在干旱年份会产生明显的抑制作用。不论降雨的多少,氮素对羊草群落的地上和地下生物量生产均有明显的促进作用,二者的交互作用也使地上和地下生物量明显增加。
     (3)增温对羊草的生殖物候期有明显的影响,表现为抽穗、开花和结实期提前,而种子成熟期没有明显的变化;对氮素添加的响应表现为抽穗、开花和结实期有延后的趋势,而种子成熟期会明显的延迟。
     (4)增温对羊草的种子生产在不同的季节和降雨条件下有着不同的影响,果后营养期的增温会导致翌年单位面积的抽穗数量减少,开花期至种子成熟期这一阶段,由于降雨量较多,增温反而有利于种子的发育;增温会减少羊草单位面积的种子数和小种子的比例及小种子的发芽率和发芽速率,增加大种子的比例;但大种子的发芽率和发芽速率没有变化。这意味着在全球持续变暖的条件下羊草降低了种子生产能力,尽管大种子数量和比例的增加能够补偿一部分由于总籽粒数减少造成的成苗数量的减少,但是,由于单位面积可发芽的种子数量的减少,羊草种群的扩展会受到限制。
     氮素添加能够明显的促进羊草的种子生产,使单位面积的可发芽种子数增加;同时,能够明显的减少羊草种子中小种子的比例,增加大种子的比例,并使不同大小种子的发芽率、发芽速率以及所产生幼苗的生长均受到促进。这暗示着氮素添加对羊草的有性生殖过程有促进作用,有利于羊草占据更多的生长空间。
     综上所述,我们发现增温尽管维持了较高的生物多样性,但由于增温造成的干旱效应,生产力明显降低;氮素添加造成一些对氮素敏感物种的大量繁殖促进了净初级生产力,但导致群落的物种数量减少。即羊草群落的生长和结构对模拟增温和氮素添加的响应是敏感而迅速的,结果为解释和预测草原生态系统在全球变化背景下的变化趋势提供了依据。
Over the coming decades the signal of anthropogenic climate change is expectedto become increasingly apparent, with accelerated production of greenhouse gasesfurther warming the earth’s surface and modifying nitrogen deposition patterns.Global warming and nitrogen deposition may interact in their effects on the diversityand composition of natural communities. The two related goals of studying bioticresponses to climate change are to understand changes in species distributions andabundances and to understand ecosystem feedbacks to climate change. Songnenmeadow steppe is the largest, most representative grassland in China, which plays animportant role on response and regulation to global climate change. This studyevaluated Leymus chinensis plant communities, a dominant perennial grass widelydistributed in the Songnen plain, as a model to investigate the effect of increasingambient temperature on community composition, diversity, biomass, dominantspecies phenology, seed production from2006to2009. Our study showed potentialimportance of understanding ecosystem responses to climate change and nitrogendeposition in terms of species responses. The main results can be summarized asfollows:
     (1) Warming and nitrogen addition may indirectly affect species compositionthrough species numbers variation. Warming increased species numbers, whereasnitrogen addition decreased it. At the same time, community characteristics changedobviously. Warming reduced important value of grass, while enhanced the importantvalue of herbs, the opposite result occurred by nitrogen addition. Both speciesrichness and evenness increased by warming, in contrast, the effect of nitrogenaddition decreased them. Finally, diversity index showed positive dependence onwarming but negative dependence on nitrogen addition.
     (2) We found significant positive responses of warming to the undergroundbiomass but negative responses to the aboveground biomass. In particular, for theaboveground biomass, a negative impact in dry years and little affects in moreprecipitation years were found. Moreover, nitrogen addition significantly enhancedboth aboveground biomass and underground biomass regardless of rainfall. Theinteraction between them is the same result.
     (3) Warming accelerated Leymus chinensis spiking stage, flowering stage andseed-setting stage, but had no effect on seed maturity stage. Nitrogen addition hadlittle effect on phenology score of spiking stage, but obviously delayed the floweringstage and setting stage, and seed maturing stage.
     (4) Warming reduced the mean seed number per square meter and potentialgerminating seeds, and resulted in decreased proportion of light weight seeds butincreased the proportion of heavy weight seeds. The seed germination, germinationrate, and seedling shoot of light weight seeds were reduced by warming but the sameeffects were not observed in heavy weight seeds. Despite of increased proportion ofheavy weight seeds compensated decreased plant number because of reduced seednumber per square meter; a reduction in the potential germination seed number byincreased temperature may imply that climate warming will constrain populationexpansion depending on the viability implications for seeds under further globalclimate warming.
     Nitrogen deposition cause a decreases in proportion of light weight seeds butresult an increases in heavy weight seeds, which lead to an improving of seedproduction, seed germination success, germination rate and growth of correspondingshoots in Leymus chinensis. These results implied that continued nitrogen depositionwill promote the sexual reproduction process and improve the growth of Leymuschinensis by occupy more space.
     Overall, warming leaded a decrease in grassland productivity due to the soildrought from warming depspite warming maintained a high biodiversity. Nitrogendeposition leaded an increase in primary productivity, but a decrease of speciesnumber. And it was therefore that the growth and structure of the Leymus chinensiscommunity responded to global warming and nitrogen deposition were sensitive,which might provide a theoretical basis to explain and predict the trends of grasslandecosystems faced with further global changing.
引文
[1] Houghton J T, Ding Y, Griggs D J, et al. Climate change2001: the scientific basis[M].Cambridge University Press, New York.2001.
    [2] Holland E A, Dentene F J R, Braswell B H, et al. Contemporary and pre-industrial globalreactive nitrogen budgets[J]. Biogeochemistry,1999,46:7-43.
    [3]刘建国主编.当代生态学博论[M].北京:中国科学技术出版社,1992.369-380.
    [4] Wilmking M, Juday G P, Barber V A, et al. Recent climate warming forces contrastinggrowth responses of white spruce at treeline in Alaska through temperature thresholds[J].Global Change Biology,2004,10:1724-1736.
    [5] Wan S, Hui D, Wallace L, et al. Direct and indirect effects of experimental warming onecosystem carbon processes in a tallgrass prairie[J]. Global Biogeochemical Cycles,2005,19:GB2014.
    [6]廖国藩,贾幼陵.中国草地资源[M].北京:中国科学技术出版社,1996.5-7.
    [7]陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000.1-5.
    [8]邓慧平,刘厚风.全球气候变化对松嫩草原水热生态因子的影响[J].生态学报,2000,20(6):958-963.
    [9]李英年,赵亮,赵新全,等.5年模拟增温后矮嵩草草甸群落结构及生物量的变化[J].草地学报,2004,12(3):236-239.
    [10]珊丹.控制性增温和施氮对荒漠草原植物群落和土壤的影响[D]:[博士学位论文].呼和浩特:内蒙古农业大学,2008.
    [11] Peters R L, Lovejoy T E. Global warming and biology diversity[M]. New Haven, CT, USA:Yale University Press.1992.
    [12] Bachelet D, Neilson R P, Hickler T, et al. Simulating past and future dynamics of naturalecosystems in the United States[J]. Global Biogeochemical Cycles,2003,17:1045.
    [13]周华坤,周兴民,赵新全.模拟增温效应对矮嵩草草甸影响的初步研究[J].植物生态学报,2000,24(5):547-553.
    [14]徐振峰,胡庭兴,李小艳,等.川西亚高山采伐迹地草坡群落对模拟增温的短期响应[J].生态学报,2009,29(6):2089-2095.
    [15] Chapin III F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental andobserved changes in climate[J]. Ecology,1995,76:694-711.
    [16]高琼,李建东,郑慧莹.碱化草地景观动态及其对气候变化的响应与多样性和空间格局的关系[J].植物学报,1996,38(1):18-30.
    [17]刘钦普,林震山.内蒙古羊草群落优势物种对气候变暖的响应[J].地理科学进展.2006,1(25):63-71.
    [18] Pyankov V I, Gunin P D, Tsoog S, et al. C4plant in the vegetation of Mongolia: their naturaloccurrence and geographical distribution in relation to climate[J]. Oecologia,2000,123:15-31.
    [19] Bobbink R, Hornung M, Roelofs J G M. The effects of air-borne nitrogen pollutants onspecies diversity in natural and semi-natural European vegetation[J]. Journal of Ecology,1998,86:717-738.
    [20] Tilman D. Plant dominance a long an experimental nutrient gradient[J]. Ecology,1984,65:1445-1453.
    [21] Tilman D. Secondary succession and the pattern of plant dominance along experimentalnitrogen gradients[J]. Ecological Monographs,1987,57:189-214.
    [22] Nixon S W. Coastal marine eutrophication: a definition, social causes, and future concerns[J].Ophelia,1995,41:199-219.
    [23] Heil G, Werger M. Capture of atmospheric ammonium by grassland canopies[J]. Science,1988,239:764-765.
    [24] Gotelli N J, Ellison A M. Nitrogen deposition and extinction risk in the northern pitcher plant,Sarracenia Purpurea[J]. Ecology,2002,83:2758-2765.
    [25] Yoshida L C, Allen E B. Response to ammonium and nitrate by a mycorrhizal annualinvasive grass and native shrub in southern California[J]. American Journal of Botany,2001,88:1430-1436.
    [26] Zavaleta E S, Shaw M R, Chiariello N R, et al. Additive effects of simulated climate changes,elevated CO2and nitrogen on grassland diversity[J]. PNAS,2003,100:7650-7654.
    [27] Huenneke L F, Hamburg S P, Koide R, et al. Effects of soil resources on plant invasion andcommunity structure in Californian serpentine grassland[J]. Ecology,1990,71:478-491.
    [28] Tilman D. Community invisibility, recruitment limitation, and grassland biodiversity[J].Ecology,1997,78:81-93.
    [29] Aert R, Berendse F. The effect of increased nutrient availability on vegetation dynamics inwet heathlands[J]. Vegetatio,1988,76:63-69.
    [30] Foster B L, Gross K L. Species richness in a successional grassland: effects of nitrogenenrichment and plant litter[J]. Ecology,1998,79:2593-2602.
    [31] Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the speciesrichness of grasslands[J]. Science,2004,303:1876-1879.
    [32] Rajaniemi T K. Why does fertilization reduce plant species diversity? Testing threecompetition-based hypotheses[J]. Journal of Ecology,2002,90:316-324.
    [33] Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the speciesrichness of grasslands[J]. Science,2004,303:1876-1879.
    [34] Goldberg D E, Miller T E. Effects of different resource additions of species diversity in anannual plant community[J]. Ecology,1990,71:213-225.
    [35] Huberty L E, Gross K L, Miller C J. Effects of nitrogen addition on successional dynamicsand species diversity in Michigan old-fields[J]. Journal of Ecology,1998,86:794-803.
    [36] Edwards E J, Benham D G, Mafland L A, et al. Root production is determined by radiationflux in a temperate grassland community[J]. Global Change Biology,2004,10:209-227.
    [37] van Gardingen P R, Grace J, Harkness D D, et al. Carbon dioxide emissions at an Italianmineral spring: measurements of average CO2concentration and air temperature[J].Agricultural and Forest Meteorology,1995,73:17-27.
    [38] Kello mki S, Wang K Y. Growth and resource use of birch seedlings under elevated carbondioxide and temperature[J]. Annals of Botany,2001,87:669-682.
    [39] Gunn S, Farrar J F. Effects of a4℃increase in temperature on partitioning of leaf area anddry mass, root respiration and carbondydrates[J]. Functional Ecology,1999,13:12-20.
    [40] White A, Cannel M G R, Friend A D. Climate change impacts on ecosystems and theterrestrial carbon sink: a new assessment[J]. Global Environmental Change,1999,9:21-30.
    [41] Morison L, Lawlor W. Interactions between increasing CO2concentration and temperatureon plant growth[J]. Plant, Cell&Environment,1999,22:659-682.
    [42] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: thephysiological and molecular background[J]. Plant, Cell&Environment,1999,22:553-621.
    [43] Carlen C, K lliker R, Nosberger J. Dry matter allocation and nitrogen productivity explaingrowth responses to photoperiod and temperature in forage grasses[J]. Oecologia,1999,121:441-446.
    [44] Alward R D, Detling J K. Grassland vegetation changes and nocturnal global warming[J].Science,1999,283:229-231.
    [45] Morgan J A, Legain D R, Mosier A R, et al. Elevated CO2enhances water relations andproductivity and affects gas exchange in C3and C4grasses of the Colorado shortgrasssteppe[J]. Global Change Biology,2001,7:451-466.
    [46] Jonasson S, Lee J A, Callaghan T V, et al. Direct and indirect effects of increasingtemperatures on subarctic ecosystems[J]. Ecological Bulletins,1996,45:180-191.
    [47] Press M C, Potter J A, Burke M J W, et al. Responses of a subarctic dwarf shrub heathcommunity to simulated environmental change[J]. Journal of Ecology,1998,86:315-327.
    [48] Hartley A E, Neill C, Melillo J M, et al. Plant performance and soil nitrogen mineralization inresponse to simulated climate change in subarctic dwarf shrub tundra[J]. Oikos,1999,86:331-344.
    [49] John H, Rebecca S. Shifting dominance within a montane vegetation community: results of aclimate warming experiment[J]. Science,1995,27:876-880.
    [50]杨永辉.山地草原生物量的垂直变化及其与气候变暖和施肥的关系[J].植物生态学报,1997,21(3):234-341.
    [51]徐振峰,胡庭兴,李小艳,等.川西亚高山采伐迹地草坡群落对模拟增温的短期响应[J].生态学报,2009,29(6):2089-2095.
    [52]石福孙,吴宁,罗鹏.川西北亚高山草甸植物群落结构及生物量对温度升高的响应[J].生态学报,2008,28(11):5286-5293.
    [53]牛建明.气候变化对内蒙古草原分布和生产力影响的预测研究[J].草地学报,2001,4:277-282.
    [54]赵建中,刘伟,周华坤,等.模拟增温效应对矮嵩草生长特征的影响[J].西北植物学报,2006,26(12):2533-2539.
    [55]王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J].自然资源学报,2004,19(3):331-336.
    [56] Chapin III F S, Shaver G R. Individualistic growth response of tundra plant species toenvironmental manipulations in the field[J]. Ecology,1985,66:564-576.
    [57] Zhang Y Q, Welker J M. Tibetan alpine tundra responses to simulated changes in climate:aboveground biomass and community responses[J]. Arctic and Alpine Research,1996,28:203-209.
    [58] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2assimilation in leaves of C3species[J]. Planta,1980,149:78-90.
    [59] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur[J]?Biogeochemistry,1991,13:87-115.
    [60] Frink C R, Waggoner P E, Ausubel J H. Nitrogen fertilizer: retrospect and prospect[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96:1175-1180.
    [61] Huang Z L, Ding M M, Zhang Z P, et al. The hydrological processes and nitrogen dynamicsin a monsoon evergreen broadleafed forest of Dinghu Shan[J]. Chinese Journal of PlantEcology,1994,18:194-199.
    [62] Magill A H, Aber J D, Berntson G M, et al. Long-term nitrogen additions and nitrogensaturation in two temperate forests[J]. Ecosystems,2000,3:238-253.
    [63] Asner G P, Townsend A R, Riley W J, et al. Physical and biogeochemical controls overterrestrial ecosystem responses to nitrogen deposition[J]. Biogeochemistry,2001,54:1-39.
    [64] Fenn M E, Baron J S, Allen E B, et al. Ecological effects of nitrogen deposition in thewestern United States[J]. BioScience,2003,53:404-419.
    [65] Peierls B L, Paerl H W. Bioavailability of atmospheric organic nitrogen deposition to coastalphytoplankton[J]. Limnology and Oceanography,1997,42:1819-1823.
    [66] DiTommaso A, Aarssen L W. Resource manipulations in natural vegetation: a review[J].Plant Ecology,1989,84:9-29.
    [67]王俊锋.氮、水和温度对羊草有性生殖及克隆生长的影响[D]:[博士学位论文].长春:东北师范大学,2010.
    [68]蒋琦清.模拟氮沉降对杂草生长和氮吸收的影响[J].应用生态学报,2005,16(5):951-955.
    [69] Johansson M. The influence of ammonium nitrate on the root growth and ericoid mycorrhizalcolonization of Calluna vulgaris (L) Hull from a Danish heathland[J]. Oecologia,2000,123:418-424.
    [70] Schulze E D. Air pollution and forest decline in a spruce (Picea abies) forest[J]. Science,1989,244:776-783.
    [71] Persson H, Ahlstrom K, Clemensson L A. Nitrogen addition and removal at Gardsjon: effectson fine-root growth and fine-root chemistry[J]. Forest Ecology Management,1998,101:199-205.
    [72] Braley N L, LeoPold C L, Ross J. Phenology changes reflect climate change in Wisconsin[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96:9701-9704.
    [73] Primack R B. Patterns of flowering phenology in communities, populations, individuals, andsingle flowers[M]. In: White J, editor. The population structure of vegetation. Dr. Junk W,Dordrecht.1985,571-593.
    [74] Ollerton J, Lack A. Flowering phenology: An example of relaxation of natural selection[J].Trends in Ecology and Evolution,1992,7:274-276.
    [75] Rathcke B, Lacey E P. Phenological patterns of terrestrial plants[J]. Annual Review ofEcology and Systematics,1985,16:179-214.
    [76] Abe T. Flowering phenology, display size, and fruit set in an understory dioecious shrub,Aucuba japonica (Cornaceae)[J]. American Journal of Botany,2001,88:455-461.
    [77] Thórhallsdóttir T E. Flowering phenology in the central highland of iceland and implicationsfor climatic warming in the arctic[J]. Oecologia,1998,114:43-49.
    [78] Klanderud K, Totland O. Simulated climate change altered dominance hierarchies anddiversity of an alpine biodiversity hotspot[J]. Ecology,2005,86:2047-2054.
    [79] Walther G R, Beissner S, Burga C A. Trends in the upward shift of alpine plants[J]. Journal ofVegetation Science,2005,16:541-548.
    [80] Hillier S H, Sutton F, Grime J P. A new technique for experimental manipulation oftemperature in plant communities[J]. Functional Ecology,1994,8:755-762.
    [81] Ahas R. Long-term phyto-, ornitbo-and ichthyophenological time-series analyses inEstonia[J]. International Journal of Biometeorology,1999,42:119-123.
    [82] Beaubien E G, Freeland H J. Spring phenology trends in Alberta, Canada: links to oceantemperature[J]. International Journal of Biometeorology,2000,44:53-59.
    [83] Schwarz M D, Reiter B E. Changes in north American spring[J]. International Journal ofBiometeorology,20:929-932.
    [84] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern highlatitudes from1981to1991[J]. Nature,1997,386:698-701.
    [85] Zhou L, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferredfrom satellite data of vegetation index during1981to1999[J]. Journal of GeophysicalResearch,2001,106:20069-20083.
    [86] Farquhar G D. Carbon dioxide and vegetation[J]. Science,1997,278:1411.
    [87] Street-Perrott F A, Huang Y, Perrott R A, et al. Impact of lower atmospheric carbon dioxide ontropical mountain ecosystems[J]. Science,1997,278:1422-1426.
    [88] Wookey P A, Robinson C H, Parsons A N, et al. Environmental constraints on the growth,photosynthesis and reproductive development of Dryas octopetala at a high Arctic polarsemi-desert, Svalbard[J]. Oecologia,1995,102:478-489.
    [89] Harper J L. Population biology of plants[M]. New York, USA: Academic Press,1977.
    [90] He J S, Bazzaz F A. Density-dependent responses of reproductive allocation to elevatedatmospheric CO2in Phytolacca Americana[J]. New Phytologist,2003,157:229-239.
    [91]高福光,韩国栋,石凤翎,等.短花针茅生殖物候和光合作用对增温和施氮的响应[J].内蒙古农业大学学报(自然科学版),2010,2.
    [92] Lee T D. Patterns of fruit and seed production[M]. Plant reproductive Ecology (eds J.Lovett-Doust&L. Lovett-Doust). New York, Oxford University Press.1988,179-202.
    [93] Woodward F I, Williams B G. Climate and plant distribution at global and local scales[J].Vegetatio,1987,69:189-198.
    [94] Copeland L O, McDonald M B. Principles of seed science and technology,3rd edn[C].Chapman and Hall, New York.
    [95] Piovesan G, Adams J M. Masting behaviour in beech: linking reproduction and climaticvariation[J]. Canadian Journal of Botany,2001,79:1039-1047.
    [96] Richardson S J, Allen R B, Whitehead D, et al. Climate and net carbon availability determinetemporal patterns of seed production by nothofagus[J]. Ecology,2005,86:972-981.
    [97] Kullman L. Rapid recent range-margin rise of tree and shrub species in the SwedishScandes[J]. Journal of Ecology,2002,90:68-77.
    [98] Pe uelas J, Filella I, Comas P. Changed plant and animal life cycles from1952to2000in theMediterranean region[J]. Global change biology,2002,8:531-544.
    [99] Gordo O, Sanz J J. Phenology and climate change: a long-term study in a Mediterraneanlocality[J]. Oecologia,2005,146:484-495.
    [100] Gordo O, Sanz J J. Long term temporal changes of plant phenology in the westernMediterranean[J]. Global Change Biology,2009,15:1930-1948.
    [101] Gordo O, Sanz J J. Impact of climate change on plant phenology in Mediterraneanecosystems[J]. Global Change Biology.2010,16:1082-1106.
    [102] Menzel A, Sparks T H, Estrella N, et al. European phenological response to climate changematches the warming pattern[J]. Global Change Biololy,2006,12:1969-1976.
    [103] Gugerli F. Sexual reproduction in Saxifraga oppositifolia L. and Saxifraga biflora All.(Saxifragaceae) in the Alps[J]. International Journal of Plant Science,1997,158:274-281.
    [104] Ladinig U, Wagner J. Sexual reproduction of the high mountain plant Saxifraga moschataWulfen at varying lengths of the growing season[J]. Flora,2005,200:502-515.
    [105] Molau U, Shaver G R. Controls on seed production and seed germinability in Eriophorumvaginatum[J]. Global Change Biology,1997,3:80-88.
    [106] Totland. Effects of temperature on performance and phenotypic selection on plant traits inalpine Ranunculus acris[J]. Oecologia,1999,120:242-251.
    [107] Totland, Alatalo J M. Effects of temperature and date of snowmelt on growth,reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis[J].Oecologia,2002,133:168-175.
    [108] Sandvik S M, Eide W. Costs of reproduction in circumpolar Parnassia palustris L. in lightof global warming[J]. Plant Ecology,2009,205:1-11.
    [109] Welker J M, Molau U, Parsons A N, et al. Responses of dryas octopetala to ITEXenvironmental manipulations: a synthesis with circumpolar comparisons[J]. Global changebiology,1997,3:67-73.
    [110] Sherry R A, Zhou X, Gu S, et al. Divergence of reproductive phenology under climatewarming[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2007,104:198-202.
    [111] Hovenden M J, Wills K E, Chaplin R, et al. Warming and elevated CO2affect therelationship between seed mass, germinability and seedling growth in Austrodanthoniacaespitosa, a dominant Australian grass[J]. Global Change Boilogy,2008,14:1633-1641.
    [112]毛培胜,韩建国,王培,等.施肥处理对无芒雀麦和老芒麦种子产量的影响[J].草地学报,2000,8(4):273-278.
    [113] Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological Applications,1997,7:737-750.
    [114] Inouye R S, Tilman D. Convergence and divergence of old-field vegetation after11years ofnitrogen addition[J]. Ecology,1995,76:1872-1887.
    [115] Wilson S D, Tilman D. Plant competition and resource availability in response todisturbance and fertilization[J]. Ecology,1993,74:599-611.
    [116]漆良华.长江中下游低山丘陵区退化土地植被恢复研究[D]:[博士学位论文].北京:中国林业科学研究院,2007.
    [117]孙儒泳主编.基础生态学[M].北京:高等教育出版社,2002.
    [118]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.50-51.
    [119]王俊锋,穆春生,张继涛,等.施肥对羊草有性生殖影响的研究[J].草业学报,2008,17(3):53-58.
    [120] Wang J F, Xie J F, Zhang Y T, et al. Methods to improve seed yield of Leymus chinensisbased on nitrogen application and precipitation analysis[J]. Agronomy Journal,2010,102:277-281.
    [121] Wang J F, Gao S, Mu Y G, et al. Summer warming effects on biomass production and clonalgrowth of Leymus chinensis[J]. Crop&Pasture Science,2010,61:670-676.
    [122] Hooper D U, Johnson L. Nitrogen limitation in dryland ecosystems: responses togeographical and temporal variation in precipitation[J]. Biogeochemistry,1999,46:247-293.
    [123] James D W, Jurinak J J. Nitrogen fertilization of dominant plants in the northeastern GreatBas in Desert[J]. Nitrogen in Desert Ecosystems,1979:219-231.
    [124] Chen D X, Coughenour M B, Eberts D, et al. Interactive effects of CO2enrichment andtemperature on the growth of dioecious Hydrilla verticellata[J]. Environmental andExperimental Botany,1994,34:345-353.
    [125] Morgan J A, Hunt H W, Monz C A, et al. Consequences of growth at two carbon dioxideconcentrations and two temperatures for leaf gas exchange in Pascopyrum smithii (C3) andBouteloua gracilis (C4)[J]. Plant, Cell&Environment,1994,17:1023-1033.
    [126] Hunt H W, Elliot D T, Detling J K, et al. Responses of a C3and a C4perennial grass toelevated CO2and temperature under different water regimes[J]. Global Change Biology,1996,2:35-47.
    [127] Read J J, Morgan J J. Growth and partitioning in Pascopyrum smithii (C3) and Boutelouagracilis (C4) as influenced by carbon dioxide and temperature[J]. Annals of Botany,1996,77:487-496.
    [128] Field C B, Chapin III F S, Matson P A, et al. Responses of terrestrial ecosystems to thechanging atmosphere: a resource-based approach[J]. Annual Review of Ecology andSystematics,1992,23:201-235.
    [129] Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on thestability and turnover of soil carbon[J]. Nature,2002,419:915-917.
    [130] Nakaji T, Fukami M, Dokiya Y, et al. Effects of high nitrogen load on growth,photosynthesis and nutrient status of Cryptomeria japonica and Pinus densifloraseedlings[J]. Trees-Structure and Function,2001,15:453-461.
    [131] Li D J, Mo J M, Fang Y T, et al. Effects of simulated nitrogen deposition on growth andphotosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinnaseedlings[J]. Acta Ecologica Sinica,2004,24:876-882.
    [132]郭继勋,祝廷成.气候因子对东北羊草草原羊草群落产量影响的分析[J].植物学报,1994,36(10):790-796.
    [133] Jiang S. An introduction on the Inner Mongolia grassland research station, AcademiaSinica[J]. Research on grassland ecosystem research,1985,1:1-11.
    [134] Agren G I, Ingestad T. Root: shoot ratio as a balance between nitrogen productivity andphotosynthesis[J]. Plant, Cell and Environment,1987,10:579-586.
    [135] Lambers H, Freijsen N, Poorter H, et al. Analyses of growth based on net assimilation rateand nitrogen productivity[M]. Their physiological background. In: Lambers H, CambridgeML, Konings H, Pons TL eds. Causes and Consequences of Variation in Growth Rate andProductivity of Higher Plants. SPB Academic Publishing, Hague, The Netherlands.1990,1-18.
    [136] Hutching M J, de Kroon H. Foraging in plants: the role of morphological plasticity inresource acquisition[J]. Advances in Ecological Research,1994,25:159-238.
    [137]王义凤.内蒙古典型草原的生物量与生产力[J].植物杂志,1993,4:10-11.
    [138]蒋高明.当前植物生理生态学研究的几个热点问题[J].植物生态学报,2001,25:514-519.
    [139] Quisenberry J E, Wendt C W, Berlin J D, et al. Potential for using leaf turgidity to selectdrought tolerance in cotton[J]. Crop Science,1985,25:294-299.
    [140] Ericsson T. Growth and shoot:root ratio of seedlings in relation to nutrient availability[J].Plant and soil,1995,168-169:205-214.
    [141] Domiseh T, Finer L, Lehto T. Effect of soil temperature on nutrient allocation andmycorrhizas in Scots pine seedlings[J]. Plant and Soil,2002,239:173-185.
    [142] Romero J M, Maranon T. Allocation of biomass and mineral elements in Melilotus segetalis(annual sweetclover): effects of Nacl salinity and plant age[J]. New Phytologist,1996,132:565-573.
    [143] Chapin III F S. Integrated response of plants to stress[J]. BioScience,1991,41:29-36.
    [144] Grime J P. Plant strategies, vegetation processes, and ecosystem properties[M]. Secondedition. New York: John Wiley and Sons, Ltd.,2001.
    [145] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial netprimary production[J]. Nature,1993,363:234-240.
    [146] Boeck H J, Lemmens C H, Gielen H, et al. Combined effects of climate warming andplantdiversity loss on above-and below-ground grassland productivity[J]. Environmentaland Experimental Botany,2006,60:95-104.
    [147] Leadicy P W, Drake B G. Open top chambers for exposing plant canopies to elevated CO2concentration and for measuring net gas exchange[J]. Vegetatio,1993,104/105:3-15.
    [148] Watdrop M P, Firestone M K. Altered utilization patterns of young and old soil C bymicroorganisms caused by temperature shifts and N additions[J]. Biogeochemistry,2004,67:235-248.
    [149] Tingey D T, MeVeety B D, Waschrnann R, et al. A versatile sun-lit controlled-environmentfacility for studying plant and soil processes[J]. Journal of Environmental Quality,1996,25:615-625.
    [150] Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis andgrain-filling of wheat[J]. Plant and Soil,2003,257:219-226.
    [151] Chaves M M, Pereira J S, Maroco J. How plants cope with water stress in the field?Photosynthesis and growth[J]. Annals of Botany,2002,89:907-916.
    [152] Parsons A N, Welker J M, Wookey P A, et al. Growth responses of four sub-arctic dwarfshrubs to simulated envieonmental change[J]. Journal of Ecology,1994,82:307-318.
    [153] Chapin III F S, Shaver G R. Physiological and growth responses of arctic plants to a fieldexperiment simulating climatic change[J]. Ecology,1996,77:822-840.
    [154] Arft A M, Walker M D, Gurevitch J, et al. Responses of tundra plants to experimentalwarming: meta-analysis of the international tundra experiment[J]. Ecological Monographs,1999,69:491-511.
    [155] Valpine P D, Harte J. Plant responses to experimental warming in a montane meadow[J].Ecology,2001,82:637-648.
    [156] Klein J A, Harte J, Zhao X Q. Experimental warming, not grazing, decreases rangelandquality on the Tibetan plateau[J]. Ecological applications,2007,17:541-557.
    [157] Ziska L H, Caulfield F A. Rising CO2and pollen production of common ragweed (Ambrosiaartemisiifolia), a known allergyinducing species: implications for public health[J].Australian Journal of Plant Physiology,2000,27:893-898.
    [158] Jablonski L M, Wang X Z, Curtis P S. Plant reproduction under elevated CO2conditions: ameta-analysis of reports on79crop and wild species[J]. New Phytologist,2002,156:9-26.
    [159] Molau U. Relationships between flowering penology and life history strategies in tundraplants[J]. Arctic and Alpine Research,1993,25:391-402.
    [160] Ladinig U, Wagner J. Sexual reproduction of the high mountain plant Saxifraga moschataWulfen at varying lengths of the growing season[J]. Flora,2005,200:502-515.
    [161] Price M V, Waser N M. Effects of experimental warming on plant reproductive phenologyin a subalpine meadow[J]. Ecology,1998,79:1261-1271.
    [162] Henry G H R, Molau U. Tundra plants and climate change: the international tundraexperiment (ITEX)[J]. Global Change Biology,1997,3:1-9.
    [163]陈默君,贾慎修.中国饲用植物[M].北京:中国农业出版社,2002.194-198.
    [164] Fitter A H, Fitter R S R, Harris I T B, et al. Relationships between first flowering date andtemperature in the flora of a locality in central England[J]. Functional ecology,1995,9,55-60.
    [165] Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants[J]. Science,2002,296:1689-1691.
    [166] Chmielewski F M, R tzer T. Response of tree phenology to climate change across Europe[J].Agricultural and forest meteorology,2001,108:101-112.
    [167] Menzel A. Phenology, its importance to the global change community editorial comment[J].Climatic Change,2002,54:379-385.
    [168] Spano D, Cesaraccio C, Duce P, et al. Phenological stages of natural species and their use asclimate indicators[J]. International Journal of Biometeorology,1999,42:124-133.
    [169] Linderholm H W. Growing season changes in the last century[J]. Agricultural and ForestMeteorology,2006,137:1-14.
    [170] Lilley J M, Bolger T P, Gifford R M. Productivity of Trifolium subterraneum and Phalarisaquatica under warmer, high CO2conditions[J]. New Phytologist,2001,150:371-383.
    [171] Dunne J A, Harte J, Taylor K J. Subalpine meadow flowering phenology responses toclimate change: integrating experimental and gradient methods[J]. Ecological Monographs,2003,73:69-86.
    [172]张峰,周广胜,王玉辉.内蒙古克氏针茅草原植物物候及其与气候因子关系[J].植物生态学报,2008,32(6):1312-1322.
    [173] Ratchke B, Lacey E P. Phenological patterns of terrestrial plants[J]. Annual Review ofEcology and Systematics,1985,16:179-214.
    [174]李小艳,张远彬,潘开文,等.温度升高对林线交错带西川韭与草玉梅生殖物候与生长的影响[J].生态学杂志,2009,28(1):12-18.
    [175] Buide M L, Diaz-Peromingo J A, Guitian J. Flowering phenology and female reproductivesuccess in Silene acutifolia Link ex Rohrb[J]. Plant Ecology,2002,163:93-103.
    [176] Reekie E G, Bazzaz F A. Reproductive allocation in plants[M].2005.
    [177] Cohen D. Maximizing final yield when growth is limited by time or by limiting resources[J].Journal of Theoretical Biology,1971,33:299-307.
    [178] Zhang D Y. A method of detecting departure from randomness in plant communities[J].Ecological Modelling,1989,51:265-271.
    [179]唐湘玲,田长彦,吕昭智.不同氮肥水平与棉花生育期所需日度的关系[J].干旱区研究,2003,20(3):226-229.
    [180] Falster D S, Westoby M. Plant height and evolutionary games[J]. Trends in Ecology andEvolution,2003,18:337-343.
    [181]巴雅尔塔,贾鹏,杨晓.青藏高原高寒草甸组分种花期物候对施肥响应[J].草业学报,2010,19(3):233-239.
    [182] Bradley N L, Leopold A C, Ross J, et al. Phenological changes reflect climate change inWisconsin[J]. Ecology,1999,96:9701-9704.
    [183] Walck J L, Hidayati S N, Dixon K W, et al. Climate change and plant regeneration fromseed[J]. Global Change Biology,2010,10:1365-2486.
    [184] Grime J P, Campbell B D. Growth rate, habitat productivity, and Mooney H A, Winner W E,Pell E J. Plant strategy as predictors of stress response[M]. In: Response of plants tomultiple stresses. San Diego, USA,1991.
    [185] Stanton M L. Seed variation in wild radish: effect of seed size on components of seedlingand adult fitness[J]. Ecology,1984,65:1105-1112.
    [186] Howe H F, Richter W M. Effects of seed size on seedling size in Virola surinamensis; awithin and between tree analysis[J]. Oecologia,1982,53:347-351.
    [187] Huxman T E, Hamerlynck E P, Jordan D N, et al. The effects of parental CO2environmenton seed quality and subsequent seedling performance in Bromusrubens[J]. Oecologia,1998,114:202-208.
    [188] Steinger T, Gall R, Schmid B. Maternal and direct effects of elevated CO2on seedprovisioning, germination and seedling growth in Bromus erectus[J]. Oecologia,2000,123:475-480.
    [189] IPCC. IPCC WGI Fourth Assessment Report. Climatic change2007: the physical sciencebasis[M]. Geneva: Intergovernmental Panel on Climate Change.
    [190] Callaghan T V, Jonasson S. Arctic terrestrial ecosystems and environmental change[J].Philosophical Transactions: Physical Sciences and Engineering,1995,352:259-276.
    [191] Hovenden M J, Wills K E, Vander Schoor J K, et al. Flowering, seed production and seedmass in a species-rich temperate grassland exposed to FACE and warming[J]. AustralianJournal of Botany,2007,55:780-794.
    [192] Wookey P A, Welker J M, Parsons A N, et al. Differential growth, allocation andphotosynthetic responses of Polygonum viviparum to simulated environmental change at ahigh arctic polar semi-desert[J]. Oikos,1994,70:131-139.
    [193] Dermody O, Weltzin J F, Engel E C, et al. How do elevated CO2, warming, and reducedprecipitation interact to affect soil moisture and LAI in an old filed ecosystem[J]? Plant Soil,2007,301:255-266.
    [194] Xu Z Z, Zhou G S. Nitrogen metabolism and photosynthesis in Leymus chinensis inresponse to long-term soil drought[J]. Journal of Plant Growth Regulation,2006,25:252-266.
    [195] Khan M A, Ungar I A. The effect of salinity and temperature on the germination ofpolymorphic seeds and growth of Atriplex triangularis Willd[J]. American Journal of Botany,1984,71:481-489.
    [196] Steel R G D, Torrie J H. Principles and procedures of statistics: a biometrical approach[M].3rd ed. McGraw-Hill, New York,1997.
    [197] Yang Y F, Yang L M, Zhang B T, et al. Relationships between the fruit-bearing characters ofLeymus chinensis population and annual climatic variations in natural meadow in northeastChina[J]. Acta Botanica Sinica,2000,42:294-299.
    [198] Zhang J T, Mu C S, Wang D L, et al. Shoot population recruitment from a bud bank overtwo seasons of undisturbed growth of Leymus chinensis[J]. Canadian Journal of Botany,2009,87:1242-1249.
    [199]张兆军,穆春生,张继涛,等.羊草营养枝茎尖分生组织的分化动态研究[J].中国草地学报,2008,30(2):28-33.
    [200] Vong N Q, Murata Y. Studies on the physiological characteristics of C3and C4crop species.Ι. The effects of air temperature on the apparent photosynthesis, dark respiration, andnutrient absorption of some crops[J]. Japanese journal of crop science,1977,46:45-52.
    [201] Wallwork M A B, Jenner C F, Logue S J, et al. Effect of high temperature duringgrain-filling on the structure of developing and malted barley grains[J]. Annals of Botany,1998,82:587-599.
    [202] O’Connor T G, Haines L M, Snyman H A. Influence of precipitation and speciescomposition on phytomass of a semi-arid African grassland[J]. Journal of Ecology,2001,89:850-860.
    [203] Wang J F, Li X Y, Gao S, Mu C S. Effects of autumn nitrogen application on seedproduction in Leymus chinensis, a typical rhizomatous perennial grass[J]. Crop Science,2012, under review.
    [204] Hendrix S D. Variation in seed weight and its effects on germination in Pastinaca sativa L.(Umbelliferae)[J]. American Journal of Botany,1984,71:795-802.
    [205] Silvertown J W. Seed size,life span and germination date as co-adapted features of plant lifehistory[J]. American Naturalist,1981,118:860-864.
    [206]马红媛.羊草种子深度休眠机理与发芽生长特性研究[D]:[博士学位论文].长春:中国科学院东北地理与农业生态研究所,2008.
    [207] Gao S, Wang J F, Zhang Z J, et al. Seed production, mass, germination success, andsubsequent seedling growth responses to parental warming environment in Leymuschinensis[J]. Crop&Pasture Science,2012,63:87-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700