对硝基酚(PNP)降解菌在废水处理及土壤污染修复中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环境污染和安全问题日益成为关注的焦点,如何有效地减轻避免污染物对环境及人类健康的损害已成为亟待解决的问题。随着化学工业的发展,大量有毒难降解有机物随工业废水的排放进入环境,这些物质能在自然环境中长期存在、积累和扩散,对动植物的生存及人类的健康造成不良影响。目前,对废水中有毒难降解有机物的控制是水污染防治中的重要课题之一。硝基酚类化合物是重要的有毒难降解有机物,被广泛用于农药、医药、染料、炸药以及橡胶工业生产中,生物修复(Bioremedition)技术主要是利用生物有机体,尤其是微生物的降解作用将污染物分解并最终无害化的过程,具有高效快速、经济实用、安全简便等优点。国内外许多研究证实,微生物降解法在废水处理和土壤生物修复等领域具有广阔的开发应用前景。
     但是关于废水中硝基酚生物降解的研究,还存在多方面的缺陷,对于硝基酚的生物毒性和降解性不同,很多学者所得的结论也有较大差别,有些结论甚至相反。多数学者致力于研究硝基酚的生物降解,但将硝基酚降解菌分别加到废水及污染土壤中的报道确很少。本研究利用富集培养法,从吉化污水处理厂氧化沟的活性污泥中,筛选并获得多株能够有效降解对硝基酚(PNP)的细菌菌株,其中菌株Z-1具有较好的降解性能,研究内容如下:
     (1)通过驯化纯化培养,分离筛选出多株能以PNP为唯一碳源和能源生长的细菌,最终确定细菌菌株Z-1为最适菌株,并将其通过PCR鉴定,据16S rDNA序列分析鉴定红球菌属。最佳降解条件的确定为:在以PNP为唯一碳源的条件下,接种量4%-8%、温度15~35°C、pH6~11、PNP浓度在100~500mg/L的条件下,菌株的降解效果较好,且菌株能够耐受PNP的浓度为1000mg/L。
     (2)确定了高效降解菌的代谢途径,主要是通过两种方式,本文为偏苯三酚径代谢PNP。细菌Z-1对PNP的降解主要受以下环境因素影响:初始浓度,pH值和温度等因素。在最佳操作条件下,废水中PNP的去除率达到90%以上。
     (3)采用PVA和海藻酸钠的混合物为载体,通过正交实验确定出制备降酚菌株Z-1固定化的最优条件为:PVA为90g/L,海藻酸钠质量浓度为1.0%,H3BO3+CaCl2质量浓度为4.0%+3.0%,包埋剂与菌液体积比为30:1。钙化时间为12h,按此条件制成的固定化小球具有良好的降解性能和机械强度。
     (4)确定了固定化小球降解对硝基酚废水的最佳条件,即接菌8%、温度为30~35°C、pH为6~8,摇床转速为120~160r/min。在单因素影响下,固定化小球对对硝基酚废水(PNP)中PNP的降解率均高于游离降解菌。与未固定化的Z-1相比,在温度、盐度、pH值等各方面都有一定的耐受性。这表明固定化细胞的耐受程度较好,原因在于载体的表面积增大了降解菌与污染物的接触面积,而载体的加入又保护了降解菌,避免其在降解过程中的损失减少了环境的抑制作用,从而提高固定化小球的降解性能。
     (5)固定化小球在富集培养基中培养3d后在恒温摇床上以120r/min速度连续振荡5h,小球完全没有破碎现象,固定化小球的机械强度比较高,说明能够承受一定的废水水流的冲击力。而将制备好的固定化小球分别放入一定量的孔雀蓝和结晶紫溶液中,孔雀蓝和结晶紫色素可以在30min就可以到达大部分小球中心,说明固定化小球还具有良好的传质性能。
     (6)将筛选纯化的菌株Z-1投加到预先采集的土壤当中,室内模拟微生物降解土壤污染物环境,对于土壤中PNP微生物处理的初期,各浓度PNP对土壤中的Z-1产生明显的抑制作用。而30d后100mg/kg条件中土壤细菌Z-1对土壤氮源、碳源的利用能力都有所增强,Z-1明显加快了土壤中PNP的降解,PNP对土壤微生物的抑制也在逐步减缓,说明Z-1的加入则能恢复并提高土壤微生物多样性,平衡土壤中土著菌种和污染物的关系,接种细菌Z-1进行生物的强化是解决PNP污染土壤修复的一种有效的方法。但是,在土壤PNP降解过程中,500mg/kg土样中土壤酶的活性也随着PNP浓度的变化而呈现抑制趋势。微生物在土壤中PNP的降解过程中对于土壤环境及微生物的影响由于土壤污染物浓度的不同,土壤酶有不同的表达。
In recent years, environmental pollution and security issue have become the focus of theattention, how to effectively avoid pollutants that would cause damage of human healthdeposit into the environment has become an urgent problem that needs to be solved. As thedeveloping of the chemical industry, a large amount of toxic and refractory organics inindustrial wastewater have been discharged into the environment. The substances which canexist in a long-term in the natural environment have adverse impact on animal, plant andhuman health. At present, the control of toxic and refractory organics in wastewater is animportant issue of the Water-Pollution-Control. The nitro phenol (p-Nitrophenol, PNP) is oneof the important raw materials in industries, such as chemical, printing, dyeing, medicine andexplosives, and it is a long term residual pollutant in soil and water of the environment whichpose a threat to plants, animals and human health. The nitro phenol used in the productionprocess could be carried into environment with the discharge of industrial wastewater.Bioremedition technology is the mainly use biological organisms to the treat pollutants, andeventually the pollutants would be contaminated decomposition of harmless process, and theadvantage is about it is that it is quickly, efficiently, economical, practical, safety and simple.Some scholars are dedicated to the study of biological degradation of nitro phenol, but thePNP in the soil pollution reports really little. In this paper, enrichment culture method andsewage treatment plant oxidation ditch were used, and the efficient bacterial strains of PNPdegradation were screened from the activated sludge. There are many bacterial strains thatwere screened from the activated sludge can effectively degradation of nitro phenol (PNP),but among all the strains Z-1in all the strains had the best degradation performance, theresults are as follows:
     (1) PNP as the only carbon source and energy of the bacteria growth, through thephysiological and biochemical characteristics, and ultimately the bacterial strain Z-1wasdetermined for optimal strain, and identified by PCR, according to16S rDNA sequenceanalysis, strain Z-1was identified as Rhodococcus sp.. The optimal degradation conditionswere inoculation amount4%~8%, temperature15~35°C, pH6~11, PNP concentration100~500mg/L. Under the optimal condition, the degradation effect was better, and the straincould tolerate the PNP concentration of1000mg/L.
     (2) The metabolic pathway of high efficiency degradation bacterium was confirmed,mainly through two kinds of ways, and the4-nitro catechol way was conformed to degradePNP in this paper. The degradation performance of the immobilized bacterium Z-1mainlyeffected by environmental factors: the initial concentration, pH, temperature and other factors.Under the optimal operation conditions, the remove of the PNP in wastewater reached above90%.
     (3) The mixture of PVA and sodium alginate was used as the carrier, and orthogonalexperiment was used to determine immobilized optimal conditions of bacterium Z-1. Theresult are as following: PVA was90g/L, sodium alginate concentration was1.0%, H3BO3+ CaCl2concentrations were4.0%+3.0%, the proportion of embedding agent and bacteria liquidwas30:1, calcification time was12h, the embedding balls were made by the conditions abovehad the optimal degradation effectiveness and mechanical properties.
     (4) The degradation conditions of PNP wastewater for the embedding balls to wasdetermined. The optimal conditions were inoculation amount8%, temperature30~35°C,pH6~8, rotation peed120~160r/min. In the single factor effect, the degradation efficiency ofPNP wastewater by immobilized bacterium was higher than the free bacterium. Thissuggested that the tolerance of immobilized cells was better, compared to the free bacterium,in the salinity, temperature, pH and other conditions. The reason is that the surface of thecarrier increased the contact area, and also protected the bacterium in the embedding ballsfrom the toxicity of the substrate, so that the degradation performance of immobilized ballwas improved.
     (5) Immobilized balls in enrichment medium trained after3d in constant temperature and120r/min speed continuous oscillation5h, the balls had completely no broken phenomenon,which indicated that the mechanical strength of the immobilized balls was high could affordthe impact of the wastewater streams. Putting the immobilized balls into the solution ofcertain amount of peacock blue and crystal violet, the peacock blue and crystal violet couldreach the centre of the balls in30min which also indicated that immobilized balls had anexcellent transfer performance of.
     (6) The degradation of PNP in soil was studied under the simulating conditions. PNPcaused obvious inhibition of the microorganism in early stage. After30d of degradation, thecarbon source using ability was significantly enhanced. The degradation speed of Z-1of PNPin the soil was also accelerated. The PNP inhibition to soil microbes was eliminated. PNPcould reduce microbial diversity in the soil, but the addition of Z-1could restore andimproved soil microbial diversity, which indicated that adding Z-1to the soil environmentwas an effective way to restore the PNP polluted soil. The relationship of indigenous bacteriaand pollutants had a balance in the soil. Inoculated with bacteria Z-1was a solution to aneffective remediation method of PNP contaminated soil. In the degradation process, thedifferent soil enzyme activity was accompanied by changes in the PNP concentration.Meanwhile, the results showed a different trend of microorganisms in the soil during thedegradation of the PNP in the soil environment. The influence of micro-organisms played notonly the existence of a catalytic role, but also came with the inhibition.
引文
[1]冯鸣凤,赵娜,王柯,等.不同pH下对硝基酚(PNP)对小球藻和斜生珊藻的毒性[J].环境科学研究,2011,24(2):210-215.
    [2]陈文波,韩丽珍,谢和,等.苯酚降解菌的分离、驯化与固定化研究[J].贵州农业科学,2007,35(3):19-22.
    [3]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1997.
    [4]刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水[J].中国给水排水,2003,19(5):53-55.
    [5]孙翔,周汇,沈宇,等.竹碳固定化微生物处理低浓度含酚废水的初步研究[J].环境科学与技术,2009,32:151-154.
    [6]朱永光,冯栩,廖银章,等.活性污泥系统处理苯酚废水的生物强化效果[J].应用与环境生物学报,2006,12(4):559-561.
    [7]沈锡辉,刘志培,王保军,等.苯酚降解菌红球菌PNAN5菌株的分离鉴定、降解特性及其开环双加氧酶性质研究[J].环境科学学报,2004,24(3):482-486.
    [8]朱艳清.活性污泥法处理含酚废水[J].一重技术,2004,1:122-123.
    [9]高平平,陈迎春,刘彬彬,等.原废水培养基分离活性污泥中的苯酚降解细菌[J].应用与环境生物学报,2003,9(2):189-192.
    [10]龚斌,刘津,赵斌.一株高效苯酚降解菌的分离、鉴定及降解特性的研究[J].环境科学学报,2006,26(12):2008-2012.
    [11]宗红鹰,谢强.硝基苯生产废水处理技术进展[J].化工环保,2003,23(5):265-269.
    [12]付冬梅,陈吉平,粱鑫森.湿式氧化法处理苯酚、苯胺和硝基苯废水的研究[J].精细化工,2004,21(10):772-774.
    [13]Santos V L, Linard IV R. Biodegradation of phenol by a filamentous fungi isolated from industrialeffluents-dentification and degradation potential [J]. Process Biochemistry,2004,39:1001-1006.
    [14]陈美玲.含酚废水处理技术的研究现状及发展趋势[J].化学工程师.2003,95(2):48-51.
    [15]Ramos A F, Gomez M A, Hontoria E, et al. Biological nitrogen and phenol removal from salineindustrial wastewater by submerged fixed-film reactor[J]. Journal of Hazardous Materials,2007,142(2):175-183.
    [16]Kulkarni M, Chaudhari A. Biodegradation of p-nitro-phenol by putida[J]. Bioresource Technology,2006,97(8):982-988.
    [17]Sheldon R A, Rantwijk F Van. Biocatalysis for sustainable organic synthesis Aust[J]. Chem,2004,57:281-289.
    [18]Schoemaker H E, Mink D, Wubbolts M G. Dispelling the myths-biocatalysis in industrial synthesis[J].Science,2003,299:1694.
    [19]Straathof A J J, Panke S, Schmid A. The production of fine chemicals by biotransformations[J]. CurrOpin Biotechnol,2002,13:548.
    [20]Patel R N. Pre-mRNA splicing in the new millennium[J]. Curr Opin Biotechnol,2001,12:58.
    [21]Schmid A, Hollmann F, Park J B, et al. The use of enzymes in the chemical industry in Europe [J]. CurrOpin Biotechnol,2002,13:359.
    [22]Laumen K, Kittelmann M, Ghisalba O, Chemo-enzymatic approaches for the creation of novel chiralbuilding blocks and reagents for pharmaceutical applications [J]. J Mol Catal B: Enzymatic,2002,55:19-20.
    [23]Shaw N M, Robins K T, Kiener A.20years of biotransformations[J]. Adv Synth Catal,2003,345:425.
    [24]Thomas S M, DiCosimo R, Nagarajan V. Biocatalysis:applicationand potentials for the chemicalindustry [J]. Tibtech,2002,20:238.
    [25]Huisman G W, Gray D. Towards novel processes for the fine-chemical and pharmaceutical industries[J].Curr Opin Biotechnol,2002,13:352.
    [26]Stewart J D. Dehydrogenases and transaminases in asymmetric synthesis[J]. Curr Opin Chem Biol,2001,5:120.
    [27]Powell K A, Ramer S W, Del Cardayre S B. Directed Evolutionnand Biocatalysis[J]. Chem,2001,40:3948-3959.
    [28]Cao L. Carrier-bound Immobilized Enzymes, Principles, Applications and Design[M]. Wiley-VCHWeinheim,2005.
    [29] Bornscheuer U T. Immobilizing enzymes:how to create more suitable biocatalysts[J]. Angew Chem IntEd Engl,2003,42:3336-3337.
    [30]Adamczak M, Krishna S H. Enzyme for Efficient Biocatalysis[J]. Food Technol Biotechnol,2004,42:251–264.
    [31]Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations:areview[J]. Enzyme Microb Technol,2004,35:126-139
    [32] Kallenberg A I, Van Rantwijk F, Sheldon R A. Immobilization of penicillin G acylase:The key tooptimum performance[J]. Adv Synth Catal,2005,347:905–926.
    [35]Janssen M H A, Van Langen L M, Pereira S R M, et al. Evaluation of the performance of immobilizedpenicillin G acylase using active-site titration[J]. Biotechnol Bioeng,2002,78:425-432.
    [36]Boller T, Meier C, Menzler S. Eupergit oxirane acrylic beads: How tomake enzymes fit forbiocatalysis[J]. Org Proc Res Dev,2002,6:509-519.
    [37] Sheldon R A, Schoevaart R, Van Langen L M. CLEAs: an effective technique for enzymeimmobilization[J]. Speciality Chem. Mag,2003,23:40-42.
    [38]Mateo C, Abian O, Fernandez-Lorente G, et al. Epoxy Sepabeads: A Novel Epoxy Support forStabilization of Industrial Enzymes via Very Intense Multipoint Covalent Attachment[J]. Biotechnol Prog,2002,18:629-634.
    [39]Kirk O, Christensen M W. Lipases from Candida antarctica:Unique biocatalysts from a unique origin[J]. Org Proc Res Dev,2002,6:446-451.
    [40]Petkar M, Lali A, Caimi P. et al. Immobilization of lipases for non-aqueous synthesis[J]. J Mol CatalB:Enzym,2006,39:83-90.
    [41]Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations:Areview [J]. Enz Microb Technol,2004,35:126-139.
    [42]王勇,吴国良,李登科,杨凯,郝炳伟.核桃树体内酚类物质含量的变化[J].果树学报,2003,20(4):325-327.
    [43]贾春虹,王璞,赵秀琴.免耕覆盖麦秸土壤中酚酸浓度的变化及酚酸对夏玉米早期生长的影响[J].华北农学报,2004,19(4):84-87.
    [44]黄志群,廖利平,汪思龙.杉木根桩和周围土壤酚类含量的变化及其化感效应[J].应用生态学报,2000,11(2):190-192.
    [45]郑皓皓,邢建军,胡晓军,贾敬业,吴萼.麦秸还田耕层酚酸变化及其对夏玉米生长的影响[J].中国生态农业学报,2001,9(4):79-81.
    [46]Ansorge-Schumacher M B, Slusarczyk H, SchTmers J, et al. Directed evolution of formatedehydrogenase from Candida boidinii for improved stability during entrapment in polyacrylamide[J].FEBSJ,2006,273:3938-3945.
    [47]Burns N, Thomann, Y, Tiller J C. Nanophase Separated Amphiphilic Microbeads[J]. Macromolecules,2005,38:7536-7539.
    [48]Petri A, Marconcini P, Salvadori P. Efficient immobilization of epoxide hydrolase onto silica gel anduse in the enantioselective hydrolysis of racemic para-nitrostyrene oxide[J]. J Mol Catal B: Enzymatic,2005,32:219-224.
    [49]Yan A X, Li X W, Ye Y H. Enzymatic synthesis of peptide-steroidconjugate[J]. Appl BiochemBiotechnol,2002,101:113-129.
    [50]Moelans D, Cool P, Baeyans J, et al. Using mesoporous silica materials to immobilisebiocatalysis-enzymes[J]. Catal Commun,2005,6:307-311.
    [51]Borole A P, Cheng C L, Davison B H. Substrate Desolvation as a Governing Factor in EnzymaticTransformations of PAHs in Aqueous-Acetonitrile Mixtures[J]. Biotechnol Prog,2004,20(4):1251-1254.
    [52]朱林,张春兰,沈其荣,袁飞,彭宇.稻草等有机物料腐解过程中酚酸类化合物的动态变化[J].土壤学报,2001,38(4):471-475.
    [53]李天杰主编.土壤环境学[M].北京:高等教育出版社.1995:169,327-328.
    [54]Kreiner M, Moore B D, Parker M C. Enzyme-coated microcrystals:a1-step method for high activitybiocatalyst preparation[J]. ChemCommun,2001,12:1096-1097.
    [55]Galaev I Y, Mattiasson B.''Smart'' polymers and what they could do in biotechnology and medicine[J].Trends Biotechnol,1999,17:335-340.
    [56]Roy I, Sharma S, Gupta M N. Smart biocatalysts:design and applications[J]. Advan Biochem EngBiotechnol,2004,86:159-189.
    [57]Ivanov A E, Edink E, Kumar A. Conjugation of Penicillin Acylase with the Reactive Copolymer ofN-Isopropylacrylamide: A Step Toward a Thermosensitive Industrial Biocatalyst[J]. Biotechnol Progr,2003,19:1167-1175.
    [58]Lutz J F, Akdemir O, Hoth A. Synthetic bioactive surfaces by controlled radical polymerization[J]. JAm Chem Soc,2006,128:13046-13047.
    [59]李传涵,李明鹤,何绍江,陈秀华.杉木林和阔叶林土壤酚类含量及其变化的研究[J].林业科学,2002,38(2):9-14.
    [60] Pierre A C, Pajonk G M. Chemistry of Aerogels and Their Applications[J]. Chem Rev,2002,102:4243-4265.
    [61] Jose O,Siqueira et al..Significance of phenolic compounds in plant-soil-microbial systems[J],Criticalreviews in plant sciences,CRC Press,Inc,1991,10(1):63-74.
    [62]OrAaire O, Buisson P, Pierre A C. Immobilization of Glucose Oxidase by Acrylonitrile lar Catalysis[J].J Mol Catal B: Enzymatic,2006,42:106-113.
    [63]Soares C M F, Dos Santos O A, De Castro H F. et al. Location of the Two Genes EncodingGlutaconate Coenzyme A-Transferase at the Beginning of the Hydroxyglutarate Operon inAcidaminococcus fermentans[J]. Appl Biochem Biotechnol,2004,113:307-319.
    [64]姜培坤,徐秋芳.林木林地和根际土壤酚类物质分析[J].浙江林业科技,2000,20(5):1-4.
    [65]Ragheb A, Brook M A, Hrynyk M. Highly activated, silicone entrapped, lipase[J]. Chem Commun(Cambridge, UK) Issue,2003,18:2314-2315.
    [66]Kobayashi J, Mori Y, Kobayashi S. Novel immobilization method of enzymes using a hydrophilicpolymer support[J]. Chem Commun (Camb),2006,40:4227-4229.
    [67]Ayala M, Horjales E, Pickard M A. et al. Cross-linked crystals of chloroperoxidase[J]. BiochemBiophys Res Commun,2002,295:828-831.
    [68]Van Langen L M, Oosthoek N H P, Van Rantwijk F, et al. Penicillin acylase catalysed synthesis ofampicillin in hydrophilic organic solvents[J]. Adv Synth Catal,2003,345:797-801.
    [69]Illanes A, Wilson L, Caballero E R, et al. Crosslinked penicillin acylase aggregates for synthesis ofbeta-lactam antibiotics in organic medium[J]. Appl Biochem Biotechnol,2006,133:189-202.
    [70]Lopez-Serrano P, Cao L, Van Rantwijk F, et al. Cross-linked enzyme aggregates with enhanced activity:application to lipases[J]. Biotechnol Lett,2002,24:1379-1383.
    [71]Theil F. Enhancement of selectivity and reactivity of lipases by additives[J]. Tetrahedron,2000,56:2905-2909.
    [72]Schoevaart R, Van Rantwijk F, Sheldon R A. Class I fructose-1,6-bisphosphate aldolases as catalystsfor asymmetric aldol reactions[J]. Tetrahedron:Asymm,1999,10:705-711.
    [73]Sheldon R A, Sorgedrager M, Janssen M H A. Use of crosslinked enzyme aggregates (CLEAs) forperforming Biotransformations[J]. Chimica Oggi (Chemistry Today),2007,25(1):48-52
    [74]Hobbs H R, Kondor B, Stephenson P, et al. Continuous kinetic resolution catalysed by cross-linkedenzyme aggregates,"CLEAs" in supercritical CO2[J]. Green Chem,2006,8:816-821.
    [75]谭秀梅,王华田,孔令刚,等.杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J].山东大学学报(理学版),2008,43(1):14-19.
    [76]马云华,王秀峰,魏珉,亓延凤,李天来.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2005,16(11):2149-2153.
    [77]Mateo C, Abian O, Fernandez-Lorente G, et al. Epoxy Sepabeads:A Novel Epoxy SupportforStabilization of Industrial Enzymes via Very Intense Multipoint Covalent Attachment[J]. Biotechnol Prog,2002,18:629-634.
    [78]Honda T, Miyazaki M, Nakamura H. Facile preparation of an enzyme-immobilized microreactor usinga cross-linking enzyme membrane on a microchannel surface[J]. Advanced Synthesis&Catalysis,2006,348(15):2163-2171.
    [79]Lopez-Gallego F, Betancor L, Hidalgo et al. Co-aggregation of enzymes and polyethyleneimine: asimple method to prepare stable and mmobilized derivatives of glutarylacylase[J]. Biomacromolecules,2005,6:1839-1842.
    [80]Mateo C, Fernandes B, Van Rantwijk F, et al. Stabilisation of oxygen-labile nitrilases viaco-aggregation with poly(ethyleneimine)[J]. J Mol Catal B: Enzymatic,2006,38:154-157.
    [81]Shah S, Sharma A, Gupta M N. Preparation of cross-linked enzyme aggregates by using bovine serumalbumin as a protein feeder[J]. Anal Biochem,2006,351:207-213.
    [82]CLEAs are commercially available from CLEA Technologies[EB/OL].http://www.cleatechnologies.com,html.
    [83]Laumen K, Ghisalba O, Auer K. Enzyme-assisted preparation of D-tert-leucine[J]. Biosci BiotechnolBiochem,2001,65:1977-1980.
    [84]Van Rantwijk F, Sheldon R A. Enantioselective acylation of chiralamines catalysed by serinehydrolases[J]. Tetrahedron,2004,60:501-519.
    [85]Bode M L, Van Rantwijk F, Sheldon R A. Crude aminoacylase from Aspergillus sp is a mixture ofhydrolases[J]. Biotechnol Bioeng,2003,84:710-713.
    [86]Hilal N, Nigmatullin R, Alpatova A. Immobilization of crosslinked lipase aggregates within icroporouspolymeric membranes[J]. Journal of Membrane Science,2004,238(1-2):131-141.
    [87]Lee J, Lee D, Oh E, et al. Preparation of a Magnetically Switchable Bioelectrocatalytic SystemEmploying Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam[J]. Angew ChemInt Ed,2005,44:7427-7432.
    [88]Chen J, Zhang J, Han B, et al. Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expandedmicellar solutions[J]. Colloids and Surfaces, B:Biointerfaces,2006,48(1):72-76.
    [89]Kim J, Jia H, Lee C W, et al. Single Enzyme Nanoparticles in Nanoporous Silica:A HierarchicalApproach to Enzyme Stabilization and Immobilization[J]. Enz Microb Technol,2006,39:474-480.
    [90]曹树煜,刘均洪.过氧化物酶应用的生物技术进展[J].化学工业与工程技术,2003,24(5):28-33.
    [91]智丽飞,蒋育澄,胡满成,等.氯过氧化物酶的手性催化活性在有机合成中的应用[J].化学进展,2006.
    [92]张国平, Nicell J A,邹永廖.用辣根过氧化物酶处理废水中的五氯酚[J].环境科学研究,2000,13(2):12-14.
    [93]郑琦,李忠铭.辣根过氧化物酶处理邻苯二酚废水的研究[J].化学与生物工程,2007,24(7):65-67.
    [94]马秀玲,陈盛,黄丽梅,等.磁性固定化酶处理含酚废水的研究[J].广州化学,2003,28(1):17-22.
    [95]陈叶福,郭雪娜,王正祥,等.木质素生物降解与纸浆工业废水脱色[J].工业微生物,2001,31(4):49-53.
    [96]张朝晖,夏黎明,岑沛霖.木素过氧化物酶降解偶氮燃料卡布龙红的动力学过程模型[J].化工学报,2002,53(4):378-383.
    [97]张丽华,智丽飞,蒋育澄,等.氯过氧化物酶稳定化技术的研究进展及其应用[J].生命的化学,2007,27(4):349-351.
    [98]林中祥,程康华.萃取法去除硝基苯生产废水中的硝基酚[J].环境导报,2000,2:18-20.
    [99]郑新梅,丁亮,刘红玲,等.对硝基酚对大型蚤和斑马鱼胚胎的毒性[J].生态毒理学报,2010,5:692-697.
    [100]Wang Y, Tian Y, Han B, et al. Biodegradation of phenol by free and immobilized Acinetobacter spstrain PD12[J]. J Environ Sci,2007,19(2):222-225.
    [101]Arutchelvan V, Kanakasabai V, Nagarajan S, et al. Isolation and identification of novel high strengthphenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater[J].J Hazar Mater,2005,127:238-243.
    [102]Chen W M, Chang J S, Wu C H, et al. Characterization of phenol and trichloroethene degradation bythe rhizobium Ralstonia taiwanensis[J]. Res Microbiol,2004,155(8):672-680.
    [103]Godjevargova T, Ivanova D, Alexieva Z, et al. Biodegradation of toxic organic components fromindustrial phenol production waste waters by free and immobilized Trichosporon cutaneum R57[J]. ProcessBiochem,2003,38(6):915-920.
    [104]Futamata H, Nagano Y, Watanabe K, et al. Unique kinetic properties of phenol degrading Variovoraxstrains responsible for efficient trichloroethylene degradation in a chemostat Enrichment culture[J]. ApplEnviron Microbiol,2005,71(2):904-911.
    [105]Cai B, Han Y, Liu B, et al. Isolation and characterization of an atrazine2degrading bacteriumfromindustrial wastewater in China[J]. Lett Appl Microbiol,2003,36(5):272-276.
    [106]Lin X, Li P J, Sun T H, et al. Bioremediation of petroleum-contaminated soil and its relationship withsoil enzyme activities. Chinese Journal of Ecology[J].2005,24(10):1226-1229.
    [107]Wan Z M, Wu J G. Study progress on factors affecting soil enzyme activity. Journal of NorthwestSci-tech University of Agriculture and Forestry (Natural Science edition)[J].2005,6(33).
    [108]Su Z J, Li M, Wang Y. Principle and research status of bioremediation to soil polluted by oil. Journalof Anhui Agricultural Sciences[J].2007,5(6):1742-1744.
    [109]Abdulkadir E, Abdulaziz Y A. Biodegradation of crude oil and n-alkanes by fungi isolated fromOman[J]. Marine Pollution Bulletin,2007,54:1692-1696.
    [110]Ayotamuno M J, Kogbara R B. Bioremediation of a crude-oil polluted agricultural-soil at PortHarcourt, Nigeria[J]. Applied Energy,2006,83:1249-1257.
    [111]Li B M. Microbial remediation of oil contaminated soil[J]. Chinese Academy of Agriculture,2007.
    [112]Song X Y, Song Y F, Sun T H, et al. Limited effect of introduced microbial inoculants in thebioremediation of petroleum-contaminated soils[J]. Acta Scientiae Circumstantiae,2007,27(7):1168-1173.
    [113]Liu E K, Zhao B Q, Li X Y, et al. Biological properties and enzymatic activity of soils affected bylong-term different fertilization systems[J]. Journal of Plant Ecology,2008,21(4):205-208.
    [114]Hao J C, Wu Y Y, Lian B, et al. Properties of polyphenol oxidase in Soil and its significance[J].Chinese Journal of Soil Science,2006,37(3):470-474.
    [115]Zhang J, Zhang H W, Zhang Q. Impact of long-time irrigation of petroleum wastewater on glebemicrobial biomass and soil enzyme activities in Northeast China[J]. Chinese Journal of Eco-Agriculture,2008,16(1):67-69.
    [116]Yu F Q. Effects of mycorrhiza symbiosis on the enzyme activities in the rhizosphere[D]. InnerMongolia: University of Inner Mongolia Agriculture,2008.
    [117]Bai C X, Gen Y Q. Studies on soil urease activity of major forest types in badaling of Beijing[J].Journal of Sichuan Agriculture University,2005,23(4):425-428.
    [118]Zhao Z. Study on PCBs-degrading enzyme preparations and remediation of the PCBs polluted soil[D].Jilin: Jilin University.2007.
    [119]Richard W, Lucas, Brenda B. Ectomycorrhizal community and extracellular enzyme activityfollowing simulated atmospheric N deposition[J]. Soil Biology and Biochemistry,2008,1662-1669.
    [120]Farnet A M, Prudent P, Cigna M, et al. Soil microbial activities in a constructed soil reed-bed undercheese-dairy farm effluents[J]. Bioresource Technology,2008,99(14)6198-6206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700