抗高血压药物短期降压疗效和不良反应以及基因组学相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的“基于药物基因组学在未治疗高血压患者中探讨抗高血压药物治疗反应研究”是一个社区基础临床药物基因组学试验。本研究是该试验的分支研究,探讨了四种常用抗高血压药物在中国农民未治疗原发性高血压患者中短期治疗4周后的降压疗效及不良反应。
     方法设计为社区为基础的随机、双盲临床试验。在信阳平桥区7个乡镇经3次筛查40—75岁农民入选了未治疗高血压患者3408例,按1:1.5:1.5:1.5的比例随机分到4个药物治疗组:阿替洛尔组(25mg/day)584例,双氢克尿噻组(25mg/day)891例,硝苯地平缓释剂组(20mg/day)947例,卡托普利组(50mg/day)976例。比较药物干预4周后降压反应、降压达标率和不良反应的差异。
     结果治疗4周后收缩压下降18.0±21.5mmHg,舒张压下降8.73±11.2mmHg,收缩压达标率44.5%,舒张压56.2%。收缩压达标率在四种药物组间男、女均有显著差异(all P<0.001):阿替洛尔组男32.7%,女43.3%;双氢克尿噻组男51.9%,女51.7%;硝苯地平缓释剂组男52.2%,女51.8%;卡托普利组37.4%,女32.7%。舒张压达标率有相似的趋势。收缩压降压反应在调整年龄、血糖、药物剂量、治疗前血压等因素后,男、女性在四种药物间均有显著差异(P<0.001):阿替洛尔组男-11.2±1.5mmHg,女-16.6±1.0mmHg,双氢克尿噻组男-18.7±1.2mmHg,女-21.5±1.9mmHg,硝苯地平缓释剂组男-20.9±1.3mmHg,女-23.1±1.7mmHg,卡托普利组男-15.7±1.1mmHg,女-14.9±1.6mmHg。卡托普利组舒张压降压反应显著低于其它治疗组(P<0.001)。四种药物治疗组间不良反应有显著差异(P<0.001):双氢克尿噻4.62%;阿替洛尔11.1%;硝苯地平缓释剂8.03%;卡托普利7.52%。
     结论小剂量双氢克尿噻的收缩压达标率相对较高,收缩压降压反应与硝苯地平缓释片相似,显著优于阿替洛尔和卡托普利,且不良反应发生率较低,价格便宜,适合我国农村高血压患者的一线治疗。
     背景与目的肾素—血管紧张素—醛固酮系统(RAS)是体内血压水平主要调节因素并参与了高血压的发病机制。RAS中许多基因多态血压调节相关及抗高血压治疗的降压反应相关。ACE2是RAS的新成员。ACE2和血管紧张素转换酶(AcE)在RAS中合成生物活性肽,其生物功能相互拮抗,参与心血管及血压的调节。本研究假设ACE和ACE2基因的单核苷酸多态性可能相互作用增加高血压发病易感性,并可影响抗高血压药物血管紧张素转换酶抑制剂(ACEI)的降压治疗反应。
     方法进行了2个病例对照试验验证ACE2和ACE基因多态与高血压的相关性。第一个病例对照:信阳入选高血压病人973例,年龄、性别匹配的对照969例。第二个病例对照:山东日照入选高血压病人286例和匹配的对照316例。进行了一个社区—基础的随机临床试验验证ACE2和ACE基因多态对抗高血压药物降压反应的影响。入选了3408例未治疗高血压病人,随机分配到双氢克尿噻组、阿替洛尔组、倪福达组和卡托普利组单药治疗4周,测量治疗前和治疗后血压差值。依据国际人类基因组单体型图计划(HapMap)中国人ACE2基因SNP资料运用Haploview软件的Tagger程序挑选了3个标签SNP(TagSNP:rs2106809,rs4646155 and rs879922);依据NCBI—SNP数据库和先前的研究资料选择另外2个标签SNP(rs4646112,rs2285666)。选择ACE基因I/D多态检测基因相互作用。采用标准的PCR-RFLP技术进行基因分型,抽取部分进行测序验证。
     结果第一个病例对照研究中,ACE2基因rs2106809的TT±CT基因型在女性高血压病人中显著高于女性血压正常对照(59%vs 48.9%,OR,1.21,95%CI 1.09 to1.34,P<0.001),男性中没有发现这种差异。经过多元logistic回归分析,排除年龄、体重指数、总胆固醇、高密度和低密度脂蛋白胆固醇、及空腹血糖的影响,女性T等位基因携带者高血压易感性增加了1.6倍(OR,1.59,95%CI,1.13 to 2.06,P<0.001)。女性高血压病人中,ACE DD基因型+ACE2 rs2106809TT/TC基因型频率显著高于对照组(11.7%vs 6.0%,P<0.001)。Logistic回归模型调整了其它危险因素后联合ACE DD和ACE2 rs2106809TT/TC基因型高血压危险(OR 2.34,95%CI 1.75 to 4.85,P=0.002)较单个ACE2 rs2106809T等位基因危险增加。上述结果在第二个病例对照样本中得到验证。在临床试验中发现,ACE2 rs2106809基因型与女性高血压病人对卡托普利的舒张压降压反应相关(P=0.003)。多元回归分析调整了治疗前血压水平、年龄,体重指数,空腹血糖及ACE基因I/D多态后,携带ACE2 rs2106809 TT+CT基因型的女性未治疗高血压病人应用卡托普利治疗后舒张压下降程度比携带ACE2 rs2106809 CC基因型者显著减少3.3mmHg(P=0.019)。运用协方差分析ACE2 rs2106809基因型对卡托普利组降压反应的影响是否与“其它”(阿替洛尔组+双氢克尿噻组+硝苯地平缓释剂组)药物组有差异,发现ACE2 rs2106809 CC和CT+TT基因型间舒张压降压反应的差异在卡托普利组显著大于“其它”药物组(P=0.009)。
     结论ACE2 T等位基因独立于其它的心血管危险因素,增加女性高血压易感性。且可以预测女性对卡托普利治疗的舒张压降压反应。
Background Few studies compared the relative efficacy and tolerability of antihypertensive drug classes as initial treatment for hypertensive patients in rural area in developing countries. The study "An antihypertensive intervention trial to lower blood pressure in untreated hypertensive patients based on the gene polymorphisms in the pathway of the drug-metabolism and biological effects" was a randomized, double-blind, active-controlled, community based clinical trial in rural area in China aiming to determine antihypertensive effects and side effects of Atenolol, Captopril, Nifidipine sustained release (SR) and Hydrochlorothiazide relative to the gene polymorphisms in untreated hypertensive patients in countryside. The present study is the prelementary results of the study to compare the efficacy and tolerability of monotherapy with different classes drugs as initial treatment in untreated patients after 4-week's treatment.
     Methods At baseline, unrelated patients never receiving antihypertensive therapy aged 40 to 75 years of either sex were recruited from 7 communities in XinYang County from March to May in 2005. A total of 3408 untreated patients (66% women) enrolled with mean systolic blood pressure, 160.5±19.2mmHg; mean diastolic blood pressure, 95.9±11.0mmHg. Patients were randomized to 1 of 4 treatments—Atenolol (25mg/d) group of 594, or Hydrochlorothiazide (25mg/d) of 891, or Nifedipine SR (20mg/d) of 947, or Captopril (50mg/d) of 976,—in a ratio of 1:1.5:1.5:1.5, respectively. The antihypertensive goals were that systolic blood pressure was reduced to less than 140mmHg, or diastolic blood pressure, less than 90mmHg, and the goal-achieving rate from baseline to week 4. Tolerability was assessed by recording adverse events and physical examination.
     Results On week 4, the goal-achieving rates were 44.5% for systolic pressure and 56.2% for diastolic pressure, respectively. The mean reductions in systolic and diastolic blood pressure were 18.0±21.5mmHg and 8.73±11.2mmHg, respectively. The goal- achieving rates for systolic blood pressure were significantly different among four treatment groups in male (32.7% in Atenolol, 51.9% in Hydrochlorothiazide, 52.2% in Nifedipine SR, and 37.4% in Captopril, respectively, P<0.001) as well as in female patients (43.3%, 51.7%, 51.8%, and 32.7%, respectively, P<0.001). After adjustment for the age, blood glucose, drug doses and pretreatment blood pressure, the mean reduction in systolic pressure showed significant difference among 4 treatment groups either in male (11.2±1.5mmHg for Atenolol, 18.7±1.2mmHg for Hydrochlorothiazide, 20.9±1.3mmHg for Nifedipine SR, and 15.7±1.1mmHg for Captopril, respectively, P<0.001) or in female patients. The mean diastolic pressure showed the similar pattern as systolic pressure with the lowest reduction and goal-achivement rate in Captopril group either in meles or in females. Total adverse event was significantly lower in Hydrochlorothiazide treatment (4.62%) than other treatments (11.1% in Atenolol, 8.03% in Nifedipine SR, and 7.52% in Captopril, respectively; P<0.001). Discontinuation rate due to adverse events was 2.0% for Hydrochlorothiazide, 6.9% for Atenolol, 5.4% for Nifedipine SR, and 2.8% for Captopril (P<0.001).
     Conclusions Our results support that hydrochlorothiazide is suitable as the first line antihypertensive drug in developing countries due to its significantly higher efficacy, better tolerability, and lower cost. Its long-term metabolic side effects and cardiovascular events are under investigation.
     Background ACE2 is a newer member of renin-angiotensin system. Both ACE2 and ACE are involved in the production of biologically active peptides and appear to have complementary functions in the regulation of blood pressure. We hypothesized ACE2 genetic variations could confer high risk of hypertension and predict blood pressure response to ACE inhibitors.
     Methods Two case control studies were performed to test the association of single nucleotide polymorphisms of ACE2 and ACE I/D with hypertension (first, 973 cases vs 969 controls; second, 286 cases vs 316 controls). A total of 3,408 untreated hypertensive patients were randomized to captopril, atenolol, hydrochlorothiazide, or nifedipine sustained release treatments for 4 weeks to determine the association of blood pressure response with polymorphisms of ACE2. Five single nucleotide polymorphisms of ACE2 and ACE insert/delete were selected.
     Results We found an independent association of ACE2 rs2106809 T allele with an increased risk of hypertension in women (OR, 1.59, 95%CI, 1.13 to 2.06, P<0.001). The genotypes of ACE DD and ACE2 CT/TT had much higher risk of hypertension than did ACE2 CT/TT genotype alone(OR 2.34, 95%CI 1.75 to 4.85, P=0.002). The results were confirmed in the second sample. ACE2 T allele female carriers had 3.3mmHg lower reduction in diastolic blood pressure response to captopril than did CC genotype female carriers after adjusting for pretreatment blood pressure, age, body mass index, and ACE I/D polymorphism (P=0.019). The difference between CC and CT+TT genotype groups was larger in captopril group than other drugs aggregated group in women.
     Conclusions ACE2 T allele confers high risk of hypertension and can predict blood pressure responses to ACE inhibitors in women.
引文
1.卫生部科技部国家统计局.中国居民营养与健康现状.2004年10月12日.
    2. He J, Klag MJ, Wu Z, Whelton PK. Stroke in the People's Republi Geographic variations in incidence and risk factors. Stroke. 1995; 26(12):2222-7.
    3. Collins R, Peto R, MacMahon S, et al.Blood pressure, stroke, and coronary disease.2. Short-term reductions in blood pressure: overview of randomized drug trials in their epidemiological context. Lancet 1990;335: 827-38.
    4. Psaty BM, Smith NL, Siscovick DS, et al.Health outcomes associated with antihypertensive therapies used as first-line agents: a systematic review and meta-analysis. JAMA, 1997; 277: 739-45.
    5. Materson BJ, Reda DJ, Cushman WC, etal. Single-drug therapy for hypertension in men: a comparison of six antihypertensive agents with placebo. N Engl J Med 1993;328: 914-21. [Erratum, N Engl J Med 1994;330: 1689.]
    6. Aram V. Chobanian, George L. Bakris, Henry R. Black, William C. Cushman, Lee A. Green, Joseph L. Izzo, Jr, Daniel W. Jones, Barry J. Materson, Suzanne Oparil, Jackson T. Wright, Jr, Edward J. Roccella, and the National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003 42: 1206-1252.
    7. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J Cardiol 1995; 52:39-44.
    8. Reynolds K, Gu D, Muntner P, et al. Geographic variations in the prevalence,awareness, treatment and control of hypertension in China. J Hypertens 2003; 21:1273 -1281.
    9. Sciarrone, M.T. et al. ACE and α-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension 41,398-403 (2003).
    10. Cadman, P.E. O'Connor, D.T. Pharmacogenomics of hypertension. Curr. Opin. Nephrol. Hypertens. 12, 61-70 (2003).
    11. Marteau, J.B. Zaiou, M. Siest, G. Visvikis-Siest, S. Genetic determinants of blood pressure regulation. J. Hypertens. 23, 2127 - 2143 (2005).
    12. Gifford RW Jr, Borazanian RA.Traditional first-line therapy. Overview of medical benefits and side effects. Hypertension. 1989; 13(5 Suppl):I119-24.
    13. Cutler JA, MacMahon SW, Furberg CD. Controlled clinical trials of drug treatment for hypertension. A review. Hypertension. 1989;13(5 Suppl):I36-44.
    
    14. Wilson MD, Weart CW. Hypertension: are beta-blockers and diuretics appropriate first-line therapies? Ann Pharmacother. 1994;28(5):617-25.
    
    15. Dahlof B, Lindholm LH, Hansson L, Schersten B, Ekbom T, Wester PO. Morbidity and mortality in the Swedish Trial in Old Patients with Hypertension (STOP-Hypertension) Lancet. 1991 Nov 23;338(8778):1281-5.
    
    16. Lever AF, Brennan PJ. MRC trial of treatment in elderly hypertensives. Clin Exp Hypertens. 1993 Nov;15(6):941-952.
    
    17. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991 Jun 26;265(24):3255-64.
    
    18. Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RH Jr, Neaton JD, Stamler J.Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 1995 Feb 1;91(3):698-706.
    
    19. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial.Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002 Dec 18;288(23):2981-97.
    
    20. Psaty BM, Smith NL, Siscovick DS, Koepsell TD, Weiss NS, Heckbert SR, Lemaitre RN, Wagner EH, Furberg CD. Health outcomes associated with antihypertensive therapies used as first-line agents. A systematic review and meta-analysis. JAMA. 1997;277(9):739-745.
    
    21. Freis ED, Reda DJ, Materson BJ. Volume (weight) loss and blood pressure response following thiazide diuretics. Hypertension. 1988;12(3):244-50.
    
    22. Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB,et al. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA. 2003;289:2073-2082.
    
    23. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomized trial against atenolol. Lancet. 2002;359:995-1003.
    
    24. Wing LM, Reid CM, Ryan P, Beilin LJ, Brown MA, Jennings GL, et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med.2003;348:583-592.
    
    25. Hansson L, Lindholm LH, Niskanen L, Lanke J, Hedner T, Niklason A, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomized trial. Lancet. 1999;353:611-616.
    
    26. Hansson L, Lindholm LH, Ekbom T, Dahlof B, Lanke J, Schersten B, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity: the Swedish Trial in Old Patients with Hypertension-2 study. Lancet. 1999;354:1751-1756.
    
    27. Hansson L, Hedner T, Lund-Johansen P, Kjeldsen SE, Lindholm LH, Syvertsen JO, et al. Randomised trial of effects of calcium antagonists compared with diuretics and beta-blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet. 2000;356:359-365.
    
    28. Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, et al. Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet. 2000;356: 366-372.
    
    29. Staessen JA, Wang JG, Thijs L. Cardiovascular prevention and blood pressure reduction: a meta-analysis. Lancet 2001; 358:1305-1315.
    
    30. Staessen JA, Wang JG, Thijs L. Calcium-channel blockade and cardiovascular prognosis: recent evidence from clinical outcome trials. Am J Hypertens 2002; 15:85S-93S.
    
    31. Turnbull F; Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395): 1527-35.
    
    32. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903-1913.
    33. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose asprin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancent, 1998,351: 1755-1762.
    34. Liu L, Zhang Y, Liu G, Li W, Zhang X, Zanchetti A; FEVER Study Group.The Felodipine Event Reduction (FEVER) Study: a randomized long-term placebo-controlled trial in Chinese hypertensive patients. J Hypertens. 2005 Dec;23(12):2157-72.
    35. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, Hua T, Laragh J, Mclnnes GT, Mitchell L, Plat F, Schork A, Smith B, Zanchetti A; VALUE trial group.Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet. 2004;363(9426):2022-31.
    36. DahlofB, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, Collins R, Kjeldsen SE, Kristinsson A, Mclnnes GT, Mehlsen J, Nieminen M, O'Brien E, Ostergren J; ASCOT Investigators.Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366(9489):895-906.
    37. Annals of Health of China Committee. 1999 annals of health of China [in Chinese]. Beijing, China: People's Health Press; 2000.
    38. Asia Pacific Cohort Studies Collaboration. Blood pressure and cardiovascular disease in the Asia Pacific Region. J Hypertens 2003; 21:707-716.
    39. Genest J.Progress in hypertension research: 1900-2000. Hypertension. 2001; 38(4):E13-8.
    40. Intersalt coperative research group. Intersalt: an intern ational study of electrolyte excretion an d blo d pressure. Results for 24—hour urinary sodium an d potassium excretion. Br Med J 1988; 97:319-328.
    41.刘治全.血压的盐敏感性和盐敏感性高血压.高血压杂志.2005:13(3)131-132.
    42.李印东,谷学军,吴涛,张松建,李卫.北京市顺义区35~70岁农村居民高血压患病情况及相关危险因素研究.中国慢性病预防与控制2006;14(4):245-248.
    43. Holzgreve H.Where now the diuretics in antihypertensive treatment? Eur Heart J. 1992;13 Suppl G:104-108.
    44. Savage PJ, Pressel SL, Curb JD, Schron EB, Applegate WB, Black HR, Cohen J, Davis BR, Frost P, Smith W, Gonzalez N, Guthrie GP, Oberman A, Rutan G, Probstfield JL, Stamler J. Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: The Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med. 1998;158(7):741-51.
    45. Curb JD, Pressel SL, Cutler JA, Savage PJ, Applegate WB, Black H, Camel G, Davis BR, Frost PH, Gonzalez N, Guthrie G, Oberman A, Rutan GH, Stamler J. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group. JAMA. 1996 Dec 18;276(23): 1886-92.
    46. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose asprin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancent, 1998,351: 1755-1762.
    47. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, Collins R, Kjeldsen SE, Kristinsson A, McInnes GT, Mehlsen J, Nieminen M, O'Brien E, Ostergren J; ASCOT Investigators.Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005; 366(9489):895-906.
    48. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee.The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560-2572.
    
    49. GuidelinesCommittee. 2003 European Society of Hypertension-European Society of Cardiology Guidelines for the management of arterial hypertension. J Hypertens. 2003;32(11): 1011-1053.
    
    50. Furberg CD, Pasty B, Cuter JA. Blood pressure and cardiovascular disease. In: Yusuf S, eds, E-dence Based Cardiology. London: BMJ Books, 1998. 235.
    
    51. Materson BJ. Variability in response to antihypertensive drug treatment. Hypertension, 2004; 43(6): 1166-7.
    
    52. Abad-Santos F, Novalbos J, Galvez-Mugica MA, Gallego-Sandin S, Almeida S, Vallee F, Garcia AG. Assessment of sex differences in pharmacokinetics and pharmacodynamics of amlodipine in a bioequivalence study. Pharmacol Res. 2005;51(5):445-52.
    
    53. Safar ME, Myers MG, Leenen F, Asmar R.Gender influence on the dose-ranging of a low-dose perindopril-indapamide combination in hypertension: effect on systolic and pulse pressure. J Hypertens. 2002;20(8): 1653-61.
    
    54. Psaty BM, Smith NL, Heckbert SR, et al. Diuretic therapy, the alpha-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. JAMA. 2002 Apr 3;287(13):1680-9.
    
    55. Turner ST, Schwartz GL, Chapman AB, et al. C825T polymorphism of the G protein beta(3)-subunit and antihypertensive response to a thiazide diuretic. Hypertension. 2001;37(2 Part 2):739-43.
    
    56. Maitland-van der Zee AH, Turner ST, Schwartz GL, et al. A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide. Pharmacogenet Genomics. 2005; 15(5):287-93.
    1. Chobanian, A.V. et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High blood pressure: the JNC 7 report. JAMA 289, 2560 -2572 (2003).
    2. Sciarrone, M.T. et al. ACE and α-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension 41,398-403 (2003).
    3. Cadman, P.E. O'Connor, D.T. Pharmacogenomics of hypertension. Curr. Opin. Nephrol. Hypertens. 12, 61-70 (2003).
    4. Marteau, J.B. Zaiou, M. Siest, G. Visvikis-Siest, S. Genetic determinants of blood pressure regulation. J. Hypertens. 23, 2127 - 2143 (2005).
    5. Kurland, L. et al. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy investigation vs AtenoloI(SILVHIA) trial. Am. J. Hypertens. 17, 8-13 (2004).
    6. Kurland, L. et al. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin Ⅱ receptor type Ⅰ antagonist treatment in hypertensive patients. J. Hypertens. 19,1783-1787 (2001).
    7. Tipnis, S.R. Hooper, N.M. Hyde, R. Karran, E. Christie, G. Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a Captopril -insensitive carboxypeptidase. J. BioL Chem. 275, 33238-33243 (2000).
    8. Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin Ⅰ to angiotensin 1-9. Circ. Res. 87, E1-9 (2000).
    9. Yagil, Y. Yagil, C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension 41, 871-873 (2003).
    10. Warner, F.J. Smith, A.I. Hooper, N.M. Turner, A.J. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cel.l Mol.l Life. Sci. 61, 2704-2713 (2004).
    11. Vickers, C. et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 277, 14838-14843 (2002).
    12. Ferrario, C.M. Chappell, M.C. Tallant, E.A. Brosnihan, K.B. Diz, D.I. Counterregulatory actions of angiotensin- (1-7). Hypertension 30, 535-541 (1997).
    13. Crackower, M.A. et al. Angiotensin -converting enzyme 2 is an essential regulator of heart function. Nature 417, 822-828 (2002).
    14. Gurley, S.B. et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J. Clin. Invest. 116, 2218-2225 (2006).
    15. Huang, L. et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 278, 15532-15540 (2003).
    16. Huentelman, M.J. et al. Protection from angiotensin Ⅱ-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp. Physiol. 90, 783-790 (2005).
    17. Reudelhuber, T.L. A place in our hearts for the lowly angiotensin 1-7 peptide? Hypertension 47, 811-815 (2006).
    18. der-Sarkissian, S. Huentelman, M.J. Stewart, J. Katovich, M.J. Raizada, M.K. ACE2:A novel therapeutic target for cardiovascular diseases. Prog. Biophys. Mol. Biol. 91, 163-198 (2006).
    19. Katovich, M.J. Grobe, J.L. Huentelman, M. Raizada, M.K. Angiotensin-converting enzyme 2 as a novel target for gene therapy for hypertension. Exp. Physiol. 90,299-305 (2005).
    20. Benjafield, A.V. Wang, W.Y. Morris, B.J. No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension. Am. J. Hypertens. 17, 624-628 (2004).
    21. Zhong, J. et al. Association of angiotensin-converting enzyme 2 gene A/G polymorphism and elevated blood pressure in Chinese patients with metabolic syndrome. J. Lab. Clin. Med. 147, 91-95 (2006).
    22. Liu, T.B. et al. [Association of angiotensin I converting enzyme 2 gene polymorphism with essential hypertension in Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22, 569-571 (2005).
    23. Huang, W. Yang, W. Wang, Y. Zhao, Q. Gu, D. Chen, R. Association study of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms and essential hypertension in northern Han Chinese. J. Hum. Hypertens. 20, 968-971 (2006).
    24. Yi, L. et al. Association of ACE, ACE2 and UTS2 polymorphisms with essential hypertension in Han and Dongxiang populations from north-western China. J. Int. Med. Res. 34, 272-283 (2006).
    25. Kruglyak, L. Power tools for human genetics. Nature Genetics 37, 1299-1300 (2005).
    
    26. Rigat, B. Hubert, C. Alhenc-Gelas, F. Cambien, F. Corvol, P. Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J.Clin.Invest. 86, 1343-1346 (1990).
    
    27. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ. Human blood pressure determination by sphygmomanometry. Circulation. 88, 2460-2470(1993).
    
    28. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299-1320 (2005).
    
    29. Lieb, W. et al. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J. Mol. Med. 84, 88-96 (2006).
    
    30. Frojdo, S. et al. Polymorphisms in the gene encoding angiotensin I converting enzyme 2 and diabetic nephropathy. Diabetologia 48, 2278-2281 (2005).
    
    31. Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 20(6): 1433 (1992).
    
    32. Lindpaintner K, Pfeffer MA, Kreutz R, Stampfer MJ, Grodstein F, LaMotte F, Buring J, Hennekens CH. A prospective evaluation of an angiotensin-converting enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med. 332(11),706-712 (1995).
    
    33. Diez-Freire, C. et al. ACE2 Gene Transfer Attenuates Hypertension Linked Pathophysiological Changes in the SHR. Physiol Genomics. Physiol. Genomics. 27, 12-19 (2006).
    
    34. Zisman, L.S. Meixell, G.E. Bristow, M.R. Canver, C.C. Angiotensin-(1-7) formation in the intact human heart: in vivo dependence on angiotensin II as substrate. Circulation 108, 1679-1681 (2003).
    
    35. Ferrario, C.M. et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int. 68, 2189-2196 (2005).
    36. Santos, R.A. et al. Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res. Bull. 35, 293-298 (1994).
    
    37. Fedorova, L. Fedorov, A. Introns in gene evolution. Genetica 118, 123-131 (2003).
    
    38. Blackwood, E.M. Kadonaga, J.T. Going the distance: a current view of enhancer action. Science 281, 60-63 (1998).
    
    39. Lewinsky, R.H. Jensen, T.G. Moller, J. Stensballe, A. Olsen, J. Troelsen, J.T. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 14, 3945-3953 (2005).
    
    40. Riviere, G. et al. Angiotensin-converting enzyme 2 (ACE2) and ACE activities display tissue-specific sensitivity to undemutrition-programmed hypertension in the adult rat. Hypertension 46, 1169-1174 (2005).
    
    41. Harmer, D. Gilbert, M. Borman, R. & Clark, K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 532,107-110(2002).
    
    42. Wakahara S, Konoshita T, Mizuno S, Motomura M, Aoyama C, Makino Y, Kato N, Koni I, Miyamori I. Synergistic expression of ACE and ACE2 in human renal tissue and confounding effects of hypertension on the ACE/ACE2 ratio. Endocrinology. 2007 Feb 15; [Epub ahead of print]
    
    43. Iyer, S.N. Ferrario, CM. & Chappell, M.C. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 31, 356-361 (1998).
    
    44. Ferrario, CM. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605-2610 (2005).
    
    45. Fleming, I. Signaling by the angiotensin-converting enzyme. Circ. Res. 98, 887-896 (2006).
    
    46. Oudit, G.Y. Crackower, M.A. Backx, P.H. Penninger, J.M. The role of ACE2 in cardiovascular physiology. Trends. Cardiovasc. Med. 13, 93-101 (2003).
    
    47. Arnett, D.K. et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation 111, 3374-3383 (2005).
    
    48. Schwartz, G.L. Turner, S.T. Chapman, A.B. Boerwinkle, E. Interacting effects of gender and genotype on blood pressure response to hydrochlorothiazide. Kidney Int. 62,1718-1723 (2002).
    
    49. Psaty, B.M. et al. Diuretic therapy, the a-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. JAMA 287, 1680-1689(2002).
    
    50. Bis, J.C. et al. Angiotensinogen Met235Thr polymorphism, angiotensin-converting enzyme inhibitor therapy, and the risk of nonfatal stroke or myocardial infarction in hypertensive patients. Am. J. Hypertens. 16, 1011-1017 (2003).
    
    51. Rice, G.I. Jones, A.L. Grant, P.J. Carter, A.M. Turner, A.J. Hooper, N.M. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 48, 914-920 (2006).
    
    52. Elased, K.M. Cunha, T.S. Gurley, S.B. Coffman, T.M. Morris, M. New mass spectrometric assay for angiotensin-converting enzyme 2 activity. Hypertension 47, 1010-1017 (2006).
    
    53. Chiu, R.W. et al. ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin. Chem. 50, 1683-1686 (2004)
    1. Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary disease. Part 2, Short-term reductions in blood pressure: overview of randomized drug trials in their epidemiological context. Lancet 1990;335: 827-38.
    
    2. Psaty BM, Smith NL, Siscovick DS, et al. Health outcomes associated with antihypertensive therapies used as first-line agents: a systematic review and meta-analysis. JAMA 1997; 277: 739-45.
    
    3. Kaplan RC, Psaty BM, Heckbert SR, et al. Blood pressure level and incidence of myocardial infarctin among patients treated for hypertension. Am J Public Health 1999; 89(9):1414-7.
    
    4. Klungel OH, Kaplan RC,Heckert SR, et al. Control of blood pressure and risk of stroke among pharmacologically treated hypertensive patients. Stroke 2000; 31(2):420-4.
    
    5. Chapman AB, Schwartz GL, Boerwinkle E, et al. Predictors of antihypertensive response to a standard dose of hydrochlorothiazide in African-American an Caucasians with essential hypertension. Kidney Int 2002; 1(3): 1047-55.
    
    6. Sander C. Genomic medicine and the future of health care. Science 2000;287(5460): 1977-8.
    
    7. Vesell ES. Therapeutic lessons from pharmacogenetics. Ann Intern Med 1997; 126(8):653-5.
    
    8. Kalow W, Tang BK, Endrenyil. Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 1998; 8:283-9.
    
    9. Wemshilboum R. Inheritance and drug response. N Engl J Med. 2003;348:529-37.
    
    10. Gonzalez FJ。Radek C, Daniel W , et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism [J]. Nature, 1988, 331(6155): 442.
    
    11. Evans WE, McLeod HL. Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538-49.
    
    12. International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437, 1299-1320.
    
    13. Evans WE, Relling MV. Moving towards individualized medicine with pharmacognomics. Nature 2004;429:464-468.
    
    14. Siest G, Jeannesson E, Berrahmoune H, et al. Pharmacogenomics and drug response in cardiovascular disorders. Pharmacogenomics 2004; 5(7):779-802.
    15. Wilkinson GR. Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination. In: Hardman JG, Limbird LE, Gilman AG, eds. Goodman &Gilman's the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill, 2001:3-29.
    
    16. Kalow W, Gunn DR. Some statistical data on atypical cholinesterase of human serum. Ann Hum Genet 1959,23:239-50.
    
    17. Drayer DE, Reidenberg MM. Clinical consequences of polymorphic acetylation of basic drugs. Clin Pharmacol Ther 1977; 22:251-8.
    
    18. Dalen P,Dahl ML,Ruiz MLB, et al. 10-Hydroxylation of nortriptyline in white persons with 0,1,2,3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998;63: 444-52.
    
    19. Nelson DR,Zeldin DC, Hoffman SM, et al. Comparison of cytochrome P450(CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004; 14(1):1-18.
    
    20. Turner ST, Schwartz GL. Pharmacogenetics of antihypertensive drug responses. Am J Pharmocogenomics 2004; 4(3)151-160.
    
    21. Vormfelde SV, Engelhardt S, Zirk A, et al. CYP2C9 polymorphisms and the interindividual variability in pharmacokinetics and pharmacodynamics of the loop diuretic drug torsemide. Clin Pharmacol Ther. 2004;76(6):557-66.
    
    22. Vormfelde SV,Bwckhardt G, Zirk A, et al. Pharmacogenomics of dirtetics drugs: data on rare monogenic disorders and on polymorphisms and requirements for further research. Pharmacogenomics 2003; 4(6):701-734.
    
    23. Lee CR, Pieper JA, Hinderliter AL, et al. Losartan and E3174 pharmacokinetics in cytochrome P450 2C9*1/*1, *1/*2, and *1/*3 individuals. Pharmacotherapy. 2003; 23(6):720-5.
    
    24. Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther, 2004, 76:536-544.
    
    25. Fux R, Morike K, Prohmer AM, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther, 2005,78:378-387.
    
    26. Kirchheiner J, Heesch C, Bauer S, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther, 2004,76:302-312.
    
    27. Chen B, Cai WM. Influence of CYP2D6*10B genotype on pharmacokinetics of propafenone enantiomers in Chinese subjects. Acta Pharmacol Sin,2003,24: 1277-1280.
    
    28. Rau T, Heide R, Bergmann K, et al. Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics, 2002, 12:465-472
    
    29. Horikiri Y, Suzuki T, Mizobe M. Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci. 1998;87(3):289-94.
    
    30. Katoh M, Nakajima M, Shimada N, et al. Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000 F;55(11-12):843-52.
    
    31. Oldham HG, Clarke SE. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab Dispos. 1997 Aug;25(8):970-7.
    
    32. Molden E, Johansen PW, Boe GH, et al. Pharmacokinetics of diltiazem and its metabolites in relation to CYP2D6 genotype. Clin Pharmacol Ther. 2002;72(3):333-42.
    
    33. Wolf CR, Smithe G. Pharmacogenetics. Br Med Bull 1999; 55(2):366-389.
    
    34. Sutton D, Butler AM, Nadin L, et al. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997 Jul;282(l):294-300.
    
    35. Shapiro LE, Shear NH.Drug interactions: proteins,pumps, and P450s. J Am Acad Dermatol. 2002;47(4):467-484.
    
    36. Yamaori S, Yamazaki H, Iwano S, et al. CYP3A5 Contributes significantly toCYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab Pharmacokmet. 2004; 19(2): 120-9.
    
    37. Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000;28(2):125-30.
    
    38. Mukherjee D, Topol EJ. Pharmacogenomics in cardiovascular disease. Curr Probl Cardiol 2003; 28(5):317-347.
    
    39. Ohno A, Saito Y, Hanioka N, Jinno H, et al. Involvement of human hepatic UGT1A1, UGT2B4, and UGT2B7 in the glucuronidation of carvedilol. Drug Metab Dispos. 2004;32(2):235-9.
    
    40. Caraco Y. Genes and the response to drugs. N Engl J Med, 2004, 351(27):2867-9.
    
    41. Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquine and S-mephenytoin. Clin Pharmacol Ther, 1992, 51: 388-397.
    
    42. Zhou HH, Wood AJ. Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther, 1995, 57(5):518-24.
    
    43. Honda M, Nozawa T, Igarashi N, et al. Effect of CYP2D6*10 on the pharmacokinetics of R- and S-carvedilol in healthy Japanese volunteers. Biol Pharm Bull, 2005,28(8): 1476-9.
    
    44. Wuttke H, Rau T, Heide R, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther, 2002,72(4):429-37.
    
    45. Taguchi M, Nozawa T, Igawa A, et al. Pharmacokinetic variability of routinely administered bisoprolol in middle-aged and elderly Japanese patients. Biol Pharm Bull, 2005,28(5):876-81.
    
    46. Nozawa T, Taguchi M, Tahara K, et al. Influence of CYP2D6 genotype on metoprolol plasma concentration and beta-adrenergic inhibition during long-term treatment: a comparison with bisoprolol. J Cardiovasc Pharmacol, 2005, 46(5):713-20.
    
    47.栾家杰,宋建国.药物转运体与药物体内过程.安徽医药 2005;9(10):721—723.
    48. Hasannejad H, Takeda M, Taki K, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004; 308(3):1021-1029.
    
    49. Vormfelde SV, Burckhardt G, Zirk A, et al. Pharmacogenomics of diuretic drugs: data on rare monogenic disorders and on polymorphisms and requirements for further research. Pharmacogenomics 2003;4(6):701-734.
    
    50. Iida A, S aito S, Sekine A, et al. Catalog of 258 single nucleotide polymorphisms (SNPs) in genes encoding three organic anion transporters, three organic anion transporting polypeptides, and three NADH:ubiquinone oxidoreductase flavoproteins. J Hum Genet 2001; 46:668-683.
    
    51. Sutton D, Butler AM, Nadin L, et al. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997 Jul;282(1):294-300.
    
    52. Darvari R, Boroujerdi M. Concentration dependency of modulatory effect of amlodipine on P-glycoprotein efflux activity of doxorubicin-a comparison with tamoxifen. J Pharm Pharmacol. 2004;56(8):985-91.
    
    53. Collett A, Tanianis-Hughes J, Warhurst G. Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions? Biochem Pharmacol. 2004 Aug 15;68(4):783-90.
    
    54. Yamaori S, Yamazaki H, Iwano S, et al. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab Pharmacokinet. 2004;19(2):120-9.
    
    55. Fromm MF. The influence ofMDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev 2002;54(10):1295-1310.
    
    56. Giessmann T, Modess C, Hecker U, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004 Mar;75(3):213-22.
    
    57. Kakumoto M, Sakaeda T, Takara K, et al. Effects of carvedilol on MDR1-mediated multidrug resistance: comparison with verapamil. Cancer Sci. 2003 Jan;94(1):81-6.
    
    58. Cadman PE, O'Connor DT. Pharmacogenetics of hypertension. Curr Opin Nephrol Hypertens 2003; 12(1): 61-70.
    
    59. Cusi D, Barlassina C, Azzani T, et al. Adducin polymorphism in primary hypertension: linkage and association study; relationship to salt sensitivity. Lancet 1997;349(9062):1353-7.
    
    60. Glorioso N Manunta P, Filigheddu F, et al. The role of alpha-adducin polymorphism in blood pressure and sodium handling regulation may not be excluded by negative association study. Hypertension 1999; 34(4Pt1):649-54.
    
    61. Sciarrone MT, Stella P, Barlassina C, et al. ACE and alpha-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension. 2003;41(3):398-403.
    
    62. Turner ST, Chapman AB, Schwartz GL,et al. Effects of endothelial nitric oxide synthase , α-adducin, and other candidate gene polymorphisms on blood pressure response to hydrochlorothiazide. Am J Hypertens 2003; 16:834-9.
    
    63. Psaty BM, Smith NL, Heckert ST, et al. Diuretic therapy the a-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. JAMA 2002;287(13):1680-9.
    
    64. Turner ST, Schwartz GL, Chapman AB, et al. C825T polymorphism of the G protein beta(3)-subunit and antihypertensive response to a thiazide diuretic. Hypertension. 2001;37(2 Part 2):739-43.
    
    65. Nurnberger J, Dammer S, Mitchell A, et al. Effect of the C825T polymorphism of the G protein beta 3 subunit on the systolic blood pressure-lowering effect of clonidine in young, healthy male subjects. Clin Pharmacol Ther. 2003;74(1):53-60.
    
    66. Jia H, Hingorani AD, Sharma P, et al. Association of the Gsagene with essential hypertension and response to pblockade. Hypertension 1999; 34(1):8-14.
    
    67. O'Shaughnessy KM, Fu B, Dickerson C, et al. The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond). 2000;99(3):233-8.
    
    68. Liu J, Liu ZQ, Tan ZR, et al. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003 ;74(4):372-9.
    
    69. Sofowora GG, Dishy V, Muszkat M, et al. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther. 2003;73(4):366-71.
    
    70. Johnson JA, Zineh I, Puchkett BJ,et al. Betal-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol 2003; 74(1): 44-52.
    
    71. Karlsson J, Lind L, Hallberg P, et al. Betal-adrenergic receptor gene polymorphisms and response to betal-adrenergic receptor blockade in patients with essential hypertension. Clin Cardiol. 2004;27(6):347-50.
    
    72. Jia H, Sharma P, Hopper R, et al. Beta2-adrenoceptor gene polymorphisms and blood pressure variations in East Anglian Caucasians. J Hypertens. 2000; 18(6):687-93.
    
    73. Huang G, Xing H, Hao K, et al. Beta2 adrenergic receptor gene Arg16Gly polymorphism is associated with therapeutic efficacy of benazepril on essential hypertension in Chinese. Clin Exp Hypertens. 2004;26(6):581 -92.
    
    74. Liljedahl U, Karlsson J, Melhus H, et al. Amicroarray minisequencing system for pharmacogenetic profiling of antihypertensive drug response. Pharmacogenetics. 2003; 13(1):7-17.
    
    75. Liljedahl U, Kahan T, Malmqvist K, et al. Single nucleotide polymorphisms predict the change in left ventricular mass in response to antihypertensive treatment. J Hypertens. 2004;22(12):2321-2328.
    
    76. Williams TA, Mulatero P, Filigheddu F, Role of HSD11B2 polymorphisms in essential hypertension and the diuretic response to thiazides. Kidney Int. 2005 Feb;67(2):631-7.
    
    77. Joshi R, Gilligan DM, Otto E, et al. Primary structure and domain organization of human alpha and beta adducin. J Cell Biol, 1991, 115 : 665-675.
    
    78. Matsuoka Y, Hughes CA, Bennett V. Adducin regulation. J Biol Chem, 1996, 271 : 25157-25166.
    
    79. Shin MH, Chung EK, Kim HN, et al. Alpha-adducin Gly460Trp polymorphism and essential hypertension in Korea. J Korean Med Sci. 2004;19(6):812-4.
    
    80. Manunta P, Burnier M, D'Amico M,et al. Adducin polymorphism affects renal proximal tubule reabsorption in hypertension. Hypertension. 1999; 33: 694-697.
    
    81. Frant FD, Romero JR, Jeunemaitre X, et al. Low-tenin hypertension, altered sodium homeostasis, and an aadducin polymorphism. Hypertension 2002;39:191-6.
    
    82. Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein β3 subunit variant with hypertension. Nat Genet. 1998;18:45-48.
    
    83. Schunkert H, Hense H-W, Doring A, et al. Association between a polymorphism in the G protein 63-subunit gene and lower renin and elevated diastolic blood pressure levels. Hypertension. 1998;32:510-513.
    
    84. Siffert W, Forster P, Jockel K-H, et al. Worldwide ethnic distribution of the G protein β3 subunit 825T allele and its association with obesity in Caucasians, Chinese, and black African individuals. J Am Soc Nephrol. 1999;10:1921-1930.
    
    85. Naber CB, Husing J, Wolfhard U, et al. Interaction of the ACE D Allele and the GNB3 825T Allele in Myocardial Infarction. Hypertension 2000; 36: 986 - 989.
    
    86. Poch E, Gonzalez D, Gomez-Angelats E, et al. G-Protein beta(3) subunit gene variant and left ventricular hypertrophy in essential hypertension. Hypertension. 2000;35(1 Pt2):214-8.
    
    87. Abe M, Nakura J, Yamamoto M, et al. Association of GNAS1 gene variant with hypertension depending on smoking status. Hypertension. 2002;40(3):261-5.
    88. Chen Y, Nakura J, Jin JJ, et al. Association of the GNAS1 gene variant with hypertension is dependent on alcohol consumption. Hypertens Res. 2003;26(6):439-44.
    
    89. Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev, 2001, 53:319-356.
    
    90. Ishy V, Sofowora GG, Xie HG, et al. The effect of common polymorphisms of the β2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med, 2001, 345: 1030-1035.
    
    91. Kaye DM, Smirk B, Williams C, et al. β-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics, 2003, 13:379-382.
    
    92. Johnson JA, Lima JJ. Drug receptor/effector polymorphisms and pharmacogenetics: current status and challenges. Pharmacogenetics 2003;13:525-534.
    
    93. Leineweber K, Buscher H, Bruck H, et al. P-Adrenoceptor polymorphisms. Naunyn-Schmiedeberg's Arch Pharmacol 2004;369:1-22.
    
    94. Levin MC, Marullo S, Muntaner O, et al. The myocardium-protective Gly49 variant of the beta1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 2002;277(34):30429-35.
    
    95. Bengtsson K, Melander O, Orho-Melander M, et al. Polymorphism in the beta(1)-adrenergic receptor gene and hypertension. Circulation. 2001; 104(2): 187-90.
    
    96. Ranade K, Jorgenson E, Sheu WH, et al. A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate. Am J Hum Genet. 2002;70(4):935-42.
    
    97. Small KM, Wagoner LE, Levin AM, et al. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002; 347(15):1135-42.
    
    98. Pereira AC, Floriano MS, Mota GF, et al. Beta2 adrenoceptor functional gene variants, obesity, and blood pressure level interactions in the general population. Hypertension. 2003; 42(4):685-92.
    
    99. Bray MS, Krushkal J, Li L, et al. Positional genomic analysis identifies the beta(2) -adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation. 2000;101(25):2877-82.
    100. Heckbert SR, Hindorff LA, Edwards KL, et al. Beta2-adrenergic receptor polymorphisms and risk of incident cardiovascular events in the elderly. Circulation. 2003; 107(15):2021-4.
    
    101. Ge D, Huang J, He J, Li B, et al. Beta2-Adrenergic receptor gene variations associated with stage-2 hypertension in northern Han Chinese. Ann Hum Genet. 2005; 69(Pt 1):36-44.
    
    102. Walston J, Silver K, Bogardus C, et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β3-adrenergic-receptor gene. N Engl J Med 1995; 333:343-347.
    
    103. Widen E, Lehto M, Kanninen T, et al. Association of a polymorphism in the 133-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 1995;333:348-351.
    
    104. Tonolo G, Melis MG, Secchi G, et al. Association of Trp64Arg β3-adrenergic receptor gene polymorphism with essential hypertension in the Sardinian population. J Hypertens 1999;17:33-38
    
    105. Ringel J, Kreutz R, Distler A, et al. The Trp64Arg polymorphism of the beta3-adrenergic receptor gene is associated with hypertension in men with type 2 diabetes mellitus. Am J Hypertens. 2000; 13(9): 1027-31.
    
    106. Guimaraes S and Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 2001;53: 319-356.
    
    107. Kurland L, Melhus H, Karlsson J, et al. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin II receptor type I antagonist treatment in hypertensive patients. J Hypertens 2001; 19(10):1783-7.
    
    108. Ohmichi N, Iwai N, Uchida Y, et al. Relationship between the response to the angiotensin converting enzyme inhibitor imidapril and the angiotensin converting enzyme genotype. Am J Hypertens 1997; 10:951-5.
    
    109. Stavroulakis GA, Makris TK, Krespi PG, et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin converting enzyme gene polymorphism. Cardiovasc Drugs Ther 2000;14(4):427-32.
    
    110. Dudley C,Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of rennin-angiotensin system genes. J Hypertens 1996;14(2):259-262.
    
    111.Redon J, Luque-Otero M, Martell N, et al. Renin-angiotensin system gene polymorphisms: relationship with blood pressure and microalbuminuria in telmisartan-treated hypertensive patients. Pharmacogenomics J. 2005; 5(1): 14-20.
    
    112. Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation. 2005 Jun 28;111(25):3374-83.
    
    113. Kurland L, Lijedahl U, Karlsson J, et al. angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Result from the Swedish Irbesartan Left Ventricular Hypertrophy investigation Versus Atenolol(SILVHIA) trial. Am J Hypertens 2004;17(1):8-13.
    
    114. Frazier L, Turner ST, Schwartz GL, et al. Multilocus effects of the rennin-angiotensin-aldosterone system genes on blood pressure response to a thiazide diuretic. Pharmacognet J 2004; 4:17-23.
    
    115.Benetos A, Cambien F, Gautier S, et al. Influence of the angiotensin II type 1 receptor gene polymorphism on the effects of perindopril and nitrendipine on arterial stiffness in hypertensive individuals. Hypertension 1996;28:1081-4.
    
    116. Kurland L, Melhus H,Karlsson J, et al. Aldosterone synthase (CYP11B2)-344C/T polymorphism is related to antihypertensive response: results frome the Swedish Irbesartan Left Ventricular Hypertrophy Investigation Versus Atenolol(SILVHIA)Trial. Am J Hypertens 2002;15: 389-93.
    
    117. Ortlepp JR, Hanrath P, Mevissen V, et al. Variants of the CYP11B2 gene predict response to therapy with candesartan. Eur J Pharmacol 2002;445:151-2.
    
    118. Liljedahl U, Lind L, Kurland L, et al. Single nucleotide polymorphisms in the apolipoprotein B and low density lipoprotein receptor genes affect response to antihypertensive treatment. BMC Cardiovasc Disord. 2004 Sep 28;4(1):16.
    
    119. Hallberg P, Lind L, Michaelsson K, et al. Adipocyte-derived leucine aminopeptidase genotype and response to antihypertensive therapy. BMC Cardiovasc Disord. 2003 Sep 18;3(1):11.
    
    120. Hallberg P, Karlsson J, Lind L, et al. Gender-specific association between preproendothelin-1 genotype and reduction of systolic blood pressure during antihypertensive treatment-results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA). Clin Cardiol. 2004;27(5):287-90.
    
    121. Zhang Y, Zhang M, Niu T, et al. D919G polymorphism of methionine synthase gene is associated with blood pressure response to benazepril in Chinese hypertensive patients. J Hum Genet. 2004;49(6):296-301.
    
    122. Jiang S, Hsu YH, Xu X, et al. The C677T polymorphism of the methylenetetrahydrofolate reductase gene is associated with the level of decrease on diastolic blood pressure in essential hypertension patients treated by angiotensin-converting enzyme inhibitor. Thromb Res. 2004;113(6):361-9.
    
    123.Hallberg P, Lind L, Michaelsson K, et al. B2 bradykinin receptor (B2BKR) polymorphism and change in left ventricular mass in response to antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J Hypertens. 2003;21(3):621-4.
    
    124. Brownley Ka, Hurwitz BE, Schneiderman N. Ethnic variations in the pharmacological and nonpharmacological treatment of hypertension: biopsychosocial perspective. Hum Biol 1999; 71(4):607-639.
    
    125. Materson BJ, Reda DJ, Cushman WC, et al. Single-drug therapy for hypertension in men: a comparison of six antihypertensive agents with placebo. N Engl J Med 1993;328: 914-21. [Erratum, N Engl J Med 1994;330: 1689.]
    
    126. Schwartz JB. Gender-specific implications for cardiovascular medication use in the elderly optimizing therapy for older women. Cardiol Rev 2003; 11(5):275-298.
    
    127. Hubacek JA, Pitha J, Skodova Z, et al. Czech MONICA Study. Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in an 8 year follow-up; results from the Czech MONICA Study. Clin Biochem 2003; 36(4),263-267.
    
    201: http://medicine.iupui.edu/flockhart/ Drug-Interactions website.
    202: http://www.edhaves.com/startp450.html The CYP enzyme system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700