用户名: 密码: 验证码:
工程健康监测的分布式光纤传感技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程结构的健康监测关系到工程质量和运营安全,其经济、社会效益极为显著。目前,大型土建工程的健康监测已成为国内外的发展趋势。
    近年来,我国钢-混凝土组合结构特别是钢管混凝土结构发展迅速,广泛应用于桥梁、建筑、地下工程等。但钢-混凝土的界面损伤(脱空),会严重影响工程质量和安全,受到工程界普遍关注。然而,钢管混凝土的脱空-裂缝损伤的发生发展具有隐蔽性、随机性,其有效监测是国内外尚未解决的难题。脱空传统检测有开孔法和超声法。钻孔损伤管壁,超声法须依赖经验综合定性评判,而非定量; 误差多; 属点式检测,检测范围小,现场工作量大,限用于施工期,不可长期使用。故迄今尚无监测管内混凝土损伤状态的有效方法。
    作为工程结构健康监测和智能材料-结构领域的前沿研究热点,光纤传感以其独特的优势获得了较多关注,国内外已开始应用于土建工程,特别是桥梁,主要应用光纤光栅监测应变、温度等,但尚无监测钢管混凝土界面损伤的分布式光纤传感见诸报道。
    本文研究结构健康监测的分布式光纤传感监测技术,采用理论分析、数值模拟、模型与仿真试验及工程应用相结合的研究路线,研制出分布式光纤脱空-裂缝传感监测技术和系统,成功应用于巫峡长江大桥工程。
    (1)首次提出非正交构型的力-光直接转换机制的传感型式和光纤优化组
Health monitoring on civil structures is related to project quality and operation safety. Therefore, it is of striking economic and social benefits and has become the trend in large civil projects all over the world.
    In recent years, our country has witnessed the fast development in steel-concrete composite structures, especially in concrete-filled steel tube (CFST) structures, which are broadly applied in bridges, buildings, and underground works and so on. However, interfacial damages (disengaging) in CFST have seriously weakened structure quality and safety, thus they attract much attention in engineering field. Since the occurrence and development of disengaging-cracking is invisible and unpredictable, effective detection of it is not yet developed by now both at home and abroad. Drilling hole on tube wall and ultrasonic detection are two conventional detecting methods. The former one may cause damage on the tube wall, while the latter results in a qualitative evaluation by experiences rather than by quantitative detection; it is a kind of point-type detection, which means lots of practical operational work but limited range detected; it can only be applied during the construction period.
     As the focus of the frontier researches in intelligent material-structure field and on health monitoring of structures, optic-fiber sensing has attracted much attention with its unique features, and it has been applied to civil works (especially the bridges), mostly to the monitoring of strain and temperature etc. by the Fiber Bragg Grating. Nevertheless, there is little report about the research on distributed
    fiber sensing for monitoring of interfacial damages in large CFST structures. This paper is devoted to distributed fiber sensing for health monitoring of structures. The combination of theoretical analyses, numerical analyses, model and emulation tests, and practical application has been applied to study distributed fiber disengaging-crack sensing technology and monitoring system. As a practical case, its application in the Wu Gorge Yangtze River Bridge Project has been realized successfully. (1) For the first time, the core technology is presented, which includes the non-orthogonal sensing pattern of the direct microbending transduction mechanism between mechanical and optic effects as well as the combination and optimization of optic fibers, which have established the distributed fiber sensing technology and system for interfacial damage detection. The optic fiber is laid in non-orthogonal broken line against the crack. In case of disengaging (or cracking), microbending will be induced on fiber by composite force of pulling-shearing and thus leads to high power loss of guided light wave, which realizes direct modulation of the mechanical parameter(disengaging deformation) and optical parameter(optic loss) without any need of deformer. For optimum composite sensing fiber, different types of fibers are combined to attain high sensibility, reliability and large dynamic range. The monitoring system developed is able to realize large-scale, continuous, long-term and quantificational monitoring on damages. (2) For the first time, micromechanical theoretical model containing bi-surface for fiber-concrete complex and its nonlinear numerical analyses are presented. Mechanical model of the complex is established, and its basic equation and solution conditions are given. In addition, mechanical parameters on the interface are determined by tests, and the effects of friction on contact surface and that of rigid protecting structures on micromechanical field around fiber are taken into accounts. The nonlinear finite element algorithm, which is realized by augmented Lagrangian method, is given. Several analysis cases, such as fiber bearing pulling, fiber bearing shearing-pulling, and fiber with the protecting structure bearing shearing-pulling forces, are computed. Special micro-behaviors and relative rules of fiber and interface in the microbending area are obtained by numerical analyses: bi-surface separating, interface slippage (mainly on coating-concrete interface), extruded deformation of coating, stress concentration and breaking. It is concluded that coating improves dynamic range but greatly attenuates the transmission of stress and strain; that when distance between the fiber and the protecting structure is less, sensing accuracy will be influenced. By the criteria of ultimate strain, dynamic ranges of fiber of type I and II are computed, and the results fit that of tests well. This proves the correctness of the theoretical methods and provides
    theoretical means for mechanical analysis on optic fiber embedded in concrete. (3) New concept of mechanical-optic constitutive relation is presented. A digital mechanics-optics coupling test system is established to realize automatic gathering of data in disengaging sensing model test; large-scale prestrained CFST model experiments are carried out for disengaging sensing. Mechanical-optic constitutive relation and technical performance characteristics (disengaging resolution: 0.02mm; dynamic range: 4.8mm) of fiber sensing are acquired, based on which the algorithm for disengaging quantification is defined and special software for optic fiber monitoring system is prepared, which forms up the integral software-hardware system. (4) The contrast between fiber refinement and civil construction is remarkable, causing embedding technology of fiber a key problem for its practical application. For the first time, this paper has initiated a research using large-scale emulation tests with engineering machinery employed, and thus developed the embedment-protecting technique that was proved feasible in practical works. With the experiences from the practical application, effective measures to improve fiber survival probability are obtained. (5) The paper gives a detailed practical project case using obtained research results on health monitoring for Wu Gorge Yangtze River Bridge Project. A fiber sensing net is installed on 12 key monitoring areas and their disengaging situations are monitored. Large-scale disengaging is detected, and its values, locations, ranges and develop processes are determined. The results coincide with that of the ultrasonic detection qualitatively and in particular confirmed by “drilling hole” inspection. Monitoring results provide evidence for evaluation of project quality. Based on these data, treatment is performed to improve safety of bridge. It is for the first time that distributed fiber monitoring is successfully applied to bridge health monitoring both at home and abroad, and the first time that applied for damage detection in civil works too. Therefore, the works follow the technical development way of combination of multi-discipline, as well as the link of hi-tech fiber sensing and traditional civil engineering field, and progresses are made in aspects such as distributed sensing type based on non-orthogonal pattern of fibers and sensing fiber optimization and composition, the micromechanical model and theory on nonlinear analyses of fiber embedded in concrete, embedment-protecting technology and practical application and so on. Tangible benefits are attained on a key project in the Three Gorge Reservoir Area, and an integrated progress of “theory-test-project application” is fulfilled. It proves preliminarily the result of the study is scientific, advanced and applicable. It has developed the health monitoring technology in engineering
    structures and thus shows great academic value and practical importance.
引文
1. Chase, S.B.& Aktan, A.E., Editors, Health Monitoring and Civil Infrastructure Systems, Proc. of SPIE Vol.4337,2001
    2. Feng, M.Q. et al., Instrumentation of bridges for long-term performance monitoring, SPIE, Vol.4337, 2001
    3. Housner G. W., Bergman L. A., Caughey T. K. et al. Structural Control: Past, Present, and Future[J]. ASCE, Journal of Engineering Mechanics, 1997, 123(9): 897-971
    4. 李宏男,李东升.土木工程结构安全性评估、健康监测及诊断评述[J]. 地震工程与工程振动,2002,vol(22),No.3:82-9
    5. 黄尚廉. 智能结构系统——减灾防灾的研究前沿[J]. 土木工程学报,2000,vol(34),No.9:1-5
    6. Iwaki H, Yamakawa H., Shiba K. et al. Structural health monitoring system using FBG-based sensors for a damage tolerant building[J]. SPIE, 2002:4696:20
    7. Habel W. et al. Complex measurement system for long-term monitoring of station in the New Lether Bahnhof in Berlin[J] SPIE, 2002,4694:31
    8. Whelan M. et al. Remote structural monitoring of the Cathedral of Como using an optical fiber bragg sensor system[J]. SPIE, 2002, 4696:17
    9. Yuan R. L. et al. Health monitoring of light-rail aerial-structural system[J]. SPIE, 2002,4702:31
    10. 张启伟,袁万城等.大型桥梁结构安全监测的研究现状与发展[J]. 同济大学学报,1997,Vol(25)增刊:76-81
    11. 杨杰,吴中如. 大坝安全监控的国内外研究现状与发展[J]. 西安理工大学学报,2002,vol(18),No.1:26-30
    12. 钟善桐.钢管混凝土结构[M]. 哈尔滨:黑龙江科学技术出版社,1995
    13. Hu, H. T. et al., Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect, J. Struct. Eng., ASCE, 129 (10), 2003
    14. 韩林海.钢管混凝土结构[M]. 北京:科学出版社,2000 年
    15. 陈宝春.钢管混凝土拱桥设计与施工[M],北京:人民交通出版社,2000
    16. 童寿兴等.超声波检测拱桥的拱肋钢管混凝土质量[J]. 桥梁建设,2002, No.4
    17. 中国工程建设标准化协会.《钢管混凝土结构设计与施工规程》[S]. CECS28:90
    18. 中国工程建设标准化协会.《超声法检测混凝土缺陷技术规程》CECS21:2000
    19. 童寿兴等.拱桥拱肋钢管混凝土质量的超声波检测,无损检测[J]. 2002, Vol(24),No.11
    20. 张俊平.桥梁检测,北京:人民交通出版社,2002
    21. 林维正.混凝土超声检测的进展,无损检测,24(10),2002
    22. Turner, J. A., Diffuse ultrasonics for inspection of concrete, SPIE Vol. 4337, 2001
    23. 童寿兴等.钢-混凝土组合结构的超声检测方法,建筑材料学报,5(4),2002
    24. 潘绍伟等.钢管混凝土拱桥超声波检测研究,桥梁建设[J]. 1997,No.1
    25. 王惠文.光纤传感技术与应用,北京:国防工业出版社,2001
    26. (美)D. K. Mynabev and L.L.Scheiner 著,徐公权等译,光纤通信技术,北京机械工业出版社,2002
    27. 赵仲刚等.光纤通信与光纤传感,上海:上海科技文献出版社
    28. 刘浩吾,杨朝晖.三峡工程的混凝土裂缝分布式光纤传感检测,《现代力学与科技进步》,(庄逢甘主编),第 2 卷,北京:清华大学出版社,1997
    29. 彭吉虎等.光纤技术及应用,北京:北京理工大学出版社
    30. Krohn, D. A. Fiber Optic Sensors――Fundamental and Applications (second edition), 1992
    31. Cancellieri, G., Single-Mode Optical Fiber Measurement: Characterization and Sensing, Artech House, 1993
    32. Goltermann P. Integrated monitoring systems for durability assessment of concrete structure-project summary with status[A]. 5th annual workshop in targeted research action. Environmentally friendly construction technologies[C]. 2001
    33. Goltermann P. SMART STRUCTURES: Monitoring of concrete structures[A]. Symposium on Nordic concrete research[C].2002
    34. Meltz G et al. Fiber optic temperature and strain sensors[J]. SPIE, 1987, 798:104-115
    35. Fuhr, P.I. and Huston, D.R., Intelligent civil structures efforts in Vermont--an overview. SPIE. Vol. 1918, 1993
    36. Escobar P, Gusmeroli V, Martinelli M, Fiber-optic interferometer sensors for concrete structures. Proc. 1st European Conference on Smart Structures and Materials, Glasgow(1992):215-218
    37. Kruschwitz B, Claus R O, Murphy K A et al, Optical fiber sensors for the quantitative measurement of strain in concrete structures. Proc. 1st European Conference on Smart Structures and Materials, Glasgow(1992):241-244
    38. Inaudi, D., Application of fiber optic sensors to structural Montoring, SPIE, Vol. 4763, 2002
    39. Inaudi D., Casanova N. et al., SOFO: Tunnel monitoring with fiber hydropower conference, aqua media international [A]. 1999:709-717
    40. Hendrick R O. et al. Measuring stress distribution in pavements using single-mode fiber[J]. SPIE, 1992, 1798:200-204
    41. Fuhr, P.I., et al., Embedded sensors results from the Winooske One hydroelectric dam, SPIE, Vol. 2910. 1994
    42. Toshio Kurashima, Tomonori Usu et al. Application of fiber optic distributed sensors for strain measurement in civil engineering [C] SPIE,3241:247-258
    43. Davis M A et al. High-sensor-count Bragg grating instrumentation system for large-scale structureal monitoring applications[J]. SPIE, 1996, 2718,:303-309
    44. Udd E. et al Fiber grating systems for traffic monitoring[J]. SPIE. 2002,4337:510-514
    45. Seim J, Udd E,et al. Health monitoring of an oregan historical bridge with fiber grating strain sensors[J]. SPIE, 1999, 3671:123
    46. Nellen P M, et al. Fiber optical bragg grating sensors embedded in CFRP wires[J] SPIE,1999, 3670:440-449
    47. Idriss R. L. Monitoring of a high performance prestressed concrete bridge with embedded optical fiber sensors during fabrication [A]. Construction and service, structural faults and repair conference [C]. 2001
    48. Hale K F, Hockenbull B S et al. The application of optical fibers for witness devices for the detection of elastic strain and cracking. Rep. Nmi R-2, OT-R-8 006, Natl. Maritime Inst., Feltham, England
    49. Rossi P, Lemaou F. New method for detecting cracks in concrete using fiber optics, Materials and Structures, Research and Testing (RILEM), 22,132(1989): 437-442
    50. Voss, K. et al., Fiber sensors for monitoring structural starain and cracks, Proc. 2nd Euro. Conf. on Smart Structures & Materials, Glasgow, 1994
    51. Ansari.F, “Theory and Applications of Integrated Fiber Optic Sensors in Structures” in Intelligent Civil Engineering Materials and Structures, edited by Ansari, Maji and Leung, 1997
    52. Carolyn D, Willian M. Crack and damage assessment in concrete and polymer materials using Liquids released internally from hollow optical fibers [J]. SPIE,1996,2718:448-451
    53. Wolff R, Miesseler H, Monitoring of prestressed concrete structures with optical fiber sensors. Proc. 1st European Conference on Smart Structures and Materials, Glasgow(1992): 23-29
    54. Caussignac J M, Chabert A, Morel G et al., Bearing of a bridge fitted with load measuring devices based on an optical fiber technology. Proc 1st European Conference on Smart Structure and Materials, Glasgow(1992):207-210
    55. Kronenberg P., Casanova N., Inaudi D et al. Dam monitoring with fiber optic sensors [R]. SPIE, Smart structure and materials, 3043:2-11
    56. Chan P K C, et al. Strain monitoring of composite-bond concrete specimen measurements by use of a FMCW multiplexed fiber Bragg grating sensor array[J]. SPIE, 2000, 4077:56-59
    57. 梁磊,姜德生等. 光纤 Bragg 光栅传感器在桥梁工程中的应用[J],光学与光电技术,2003,vol(1),No.2:36-39
    58. 姜德生,何伟. 光纤光栅传感器的应用概况[J],光电子·激光,2002,vol(13), No.4:420-430
    59. 黄尚廉,梁大巍. 分布式光纤温度传感器系统的研究[J],仪器仪表学报,1991,No.4
    60. 赵廷超,黄尚廉,陈伟民. 机敏土建结构中光纤传感技术的研究综述[J],重庆大学学报,1997,vol(20),No.5:104-109
    61. 赵廷超,黄尚廉,陈伟民. 光纤传感器用于混凝土结构状态检测的研究[J],传感技术学报,1997,No.3:32-37
    62. 欧进萍,周智,莫淑华等. 黑龙江呼兰河大桥的光纤光栅智能监测技术[J]. 土木工程学报,2004,vol(37), No.1:45~49
    63. 莫淑华,王殿富. 钢筋混凝土桥梁结构健康监测新技术研究[J]. 桥梁建设. 2003,No.2:73-77
    64. Measures, R. M. et al., Multiplexed Bragg grating laser sensors for civil engineering, SPIE Vol. 2071,1994
    65. 赵占朝,刘浩吾,蔡德所.光纤传感无损检测混凝土,力学进展[J]. 1995,Vol(25), No.2
    66. Hoist, A. et al., Fiber-optic intensity-modulated sensors for continuous observation of concrete and rock-fill dams. Proc. 1st Euro. Conf. on Smart Structures & Materials. Glasgow. May 1992
    67. 张巍,吕志涛.光纤传感技术用于桥梁监测[J]. 公路交通科技,2003, vol(20), No.3:91-95
    68. Culshaw.B, “Monitoring Systems and Civil Engineering--Some Possibilities for Fiber Optic Sensors” in Fiber Optic Sensors for Construction Materials and Bridges, edited by E Ansari, 1998
    69. Huston D, Fuhr P,Kajenski P,Snyder D. Concrete beam testing with optical fiber sensors. ibid:60-69
    70. Ansari F. Real-time monitoring of concrete structures by embedded optical fibers. Proceedings of the ASCE, San Autonio, Tx., April(1992):49-59
    71. Nanni A, Yang C C, Pan K et al, Fiber-optic sensors for concrete strain/stress measurement, ACI, Mat, Jor.,88,3(1991):257-264
    72. Teral S., Vehicle weighing in motion with fiber optic sensors. Proc. 1st European Conference on Smart Structure and Materials, Glasgow(1992):139-142
    73. Pope C, Wu S P, Chuang S L, Caler J et al, An integrated fiber optic strain sensor. SPIE, 1779(1992):113-121
    74. Tardy A, Jurczyszyn M, Caussignac J M et al, High sensitivity transducer for fiber optic pressure sensing to dynamic mechanical testing and vehicle detection on roads. Springer Proceedings in Physics, 44(1989):215-221
    75. Bock W J, Voot M R H, Beaulien M et al, Design and performance of optic-fiber pressure cell based on polarimetric sensing. SPIE, 1795(1992):28-35
    76. Bock W J, Wolinski T R. Temperature-compensated fiber-optic strain sensor based on polarization-rotated reflection[J]. SPIE-Int. Soc. Opt. Eng., 1996, 1370:189-196
    77. Cowle G J, Dakin J P et al, Optical fiber sources, amplifiers and special fibers for application in multiplexed and distributed sensor systems[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1586:130-145
    78. Cox D A, Thomas D, Reichard K et al. Model domain fiber optic sensor for closed loop vibration control of a flexible beam[J], Proc. SPIE-Int. Soc. Opt. Eng.,1990, 1170:372
    79. Dunphy J R et al. Fiber-optic strain sensor multi-function, distributed optical fiber sensor for composite cure and response monitoring[J]. Proc.SPIE-Int. Soc. Opt. Eng., 1991, 1370:116-118
    80. Hogg D, Janzen D, Valis T et al. Development of a fiber Fabry-Perot strain gauge[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1588:300-307
    81. Hogg D, Turner R D et al. Polarimetric fiber optic structural strain sensor characterization [J]. Proc. SPIE-Int. Soc. Opt. Eng., 1990, 1170:542-550
    82. Kersey A D. Recent progress in interferometric fiber sensor technology[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1991, 1367:2
    83. Lu Z J, Blaha F A. A fiber optic strain and impact sensor system for composite materials[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1990, 1170:239-242
    84. Mason B, Hogg D et al. Fiber optic strain sensing for smart adaptive structures[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1777
    85. Melle S M, Liu K et al. Strain sensing using a Fiber Optic Bragg Grating[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1992:1588:255
    86. Sansonetti P, Lequime M et al. Intelligent composites containing measuring fiber optic networks for continuous self diagnosis[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1990, 1170: 211-223
    87. Spillman W B. Fiber optic sensors for composite monitoring[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1989, 986:6
    88. Sirkis J A, Haslach H W. Complete phase-strain model for structurally embedded interferometric optic fiber sensors[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1991, 1370:248-259
    89. Udd E, Theriault J P et al. Microbending fiber optic sensors for smart structures[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1990, 1170:478
    90. Urruti E H, Blaszyk P E et al. Optical fibers for structural sensing application[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1989, 986:158
    91. Wood R L, Tay A K et al. Design and fabrication considerations for composite structures with embedded fiber optic sensors[J]. Proc. SPIE-Int. Soc. Opt. Eng., 1990, 1170:160
    92. Gander M J, et al. Measurement of bending in two dimension using multicore optical fiber[J]. SPIE, 1998, 3483:64-68
    93. Blanchard P M, et al. Two-dimensional bend sensing with a single multiple-core optical fiber[J]. SPIE, 1998, 3483:54-58
    94. Craig M. Lawrence, et al. Multi-parameter sensing with Fiber Bragg Gratings[J]. SPIE, 1996, 2872:104-109
    95. Eric udd. Three axis strain and temperature fiber optic grating sensor[J]. SPIE, 1996, 2718:104-109
    96. Heather J. Patrick, et al. Fiber bragg grating with long period fiber grating superstructure for simultaneous strain and temperature measurement[J]. SPIE,1998, 3483:264-267
    97. Crosby P A, et al. A comparative study of optical fiber cure monitoring methods[J]. SPIE, 1997,3042:141-153
    98. Craig M. Lawrence, et al. Measurement of process-induced strains in composite materials using embedded fiber optic sensors. SPIE, 1996,2718:60-68
    99. Craig M. Lawrence, et al. Determination of process-induced residual stress in composite materials using embedded fiber optic sensors[J]. SPIE,1997, 3042:154-165
    100. Rao Yun-Jiang. Recent progress in fiber bragg grating sensors: applications[J]. SPIE, 1998,3555:429-441
    101. Rao Y.J, et al. Recent developments in fiber optic sensors for point and distributed sensing in large structures[J]. SPIE, 1998, 3483:138-141
    102. Grace J. L, Embedded fiber optic sensors for structural damage detection[J]. SPIE, 1996, 2718:196-201
    103. Rogers A J, et al. Advances in distributed optical fiber sensing[J]. SPIE, 1998, 3483:5-10
    104. Eshelby J D. Elastic inclusions and inhomogeneities. Prog. Solid Mech.
    105. Nanni A. Fiber-optic sensors for concrete strain/stress measurement. ACI Mat., 1991, vol(88), No.3:257-264
    106. 涂亚庆,刘兴长.光纤智能结构[M],重庆:重庆出版社,2000
    107. Dasgupta A; Ying Wang; Sirkis, J.S, et al. Micro-mechanical investigation of an optical fiber embedded in a laminated composite [A]. SPIE[C],1990, 1370: 119-128
    108. Davidson R; Roberts SSJ. Finite element analysis of composite laminates containing transversely embedded optical fiber sensors [A]. Proc.1st. Euro. Conf. on structures and materials [C], Glasgow, 1992, 1777:115-122
    109. Noah G. Olson; Christopher K. Leung; Aidong Meng., Mechanical behavior of optical fiber strain sensors, SPIE Vol.4578, 2002:328-335
    110. Noah G. Olson; Christopher K. Leung; Aidong Meng et al., Recent results on a novel distributed optical crack sensor for concrete structure, SPIE Vol.4578, 2002:346-354
    111. Gambling W A. 张志鹏译. 光纤传感器原理[M], 北京:中国计量出版社,1991
    112. 安毓英,曾小东. 光学传感与测量[M], 北京:电子工业出版社,1995
    113. 刘德明,向清,黄德修. 光纤技术及其应用[M],成都:电子科技大学出版社,1994
    114. Griffiths, R.W., Structural integrity monitoring of bridges using fiber optics, SPIE Vol, 2446, 1995
    115. 欧进萍等,土木工程智能结构体系的研究与发展,地震工程与振动[J]. 1999, Vol(19), No.2
    116. 黄国兴. 混凝土的收缩[M],北京:中国铁道出版社,1990
    117. 廖延彪. 光纤光学[M],北京:清华大学出版社,2000
    118. 吕海宝,黄锐,楚兴春.分布式光纤传感技术[J],光学仪器,1997,vol(19),No.3:11-17
    119. 田大超,李平,李亚荣.光纤微弯损耗式拉压传感器的研究[J],大连铁道学院学报,1995,vol(16), No.2:43-48
    120. 田大超,黄彬,马军山.光纤微变损耗效应及其在检测与自动控制技术中的应用[J],1995,vol(16), No.1:37-42
    121. 范崇澄,彭吉虎. 导波光学. 北京:北京理工大学出版社,1988
    122. 刘浩吾.混凝土重力坝裂缝观测的光纤传感网络[J],水利学报,1999,vol(16), No.10
    123. 刘浩吾.混凝土坝裂缝监测的光纤传感网络[C],99 大坝安全及监测国际研讨会,宜昌,1999
    124. Dakin, J.P., Distributed optical fiber sensors. SPIE, Vol. 1797, 1992
    125. 刘浩吾,文利,杨朝晖.混凝土裂缝的分布式光纤传感网络试验[C],全国第七届光纤通讯学术会议论文集,桂林,1995
    126. Liu Haowu, Yang Zhaohui, Distributed optical fiber sensing of cracks in concreter[J], SPIE. Vol. 3555, 1998
    127. 刘浩吾.混凝土重力坝裂缝观测的光纤传感网络[J],水利学报,1999,vol(16), No.10
    128. 刘浩吾.混凝土坝裂缝监测的光纤传感网络[C],99 大坝安全及监测国际研讨会,宜昌,1999
    129. 杨朝晖.工程结构安全监测的光纤传感技术及神经网络方法研究[D],成都,四川大学,1996
    130. 丁睿,刘浩吾,罗凤林等. 光纤检测钢管混凝土界面脱空模型试验研究[J],压电与声光,2004,Vol(26), No.4:268~271
    131. 丁睿,刘浩吾,罗凤林等. 钢管混凝土拱桥界面脱空光纤传感研究[J],实验力学,2004.12,Vol(19),No.4:493~499
    132. 丁睿,刘浩吾,罗凤林等. Model Test and Research on Crack Sensing Using Distributed Fiber Sensor[J],四川大学学报,2004,Vol(36),No.3:24~27
    133. 丁睿,刘浩吾. 分布式光纤传感技术在土木工程裂缝检测中的应用[J], 西南交通大学学报,2003.12,Vol(38),No.6:651~654
    134. Leblanc M, Measures R M. Micromechanical considerations for embedded single-ended sensors[J]. SPIE, 1993, 1918:215-227
    135. Maslach W Jr, Sirkis J S. Strain or stress component separation in surface mounted interferometric optical fiber strain sensors[J]. SPIE, 1777
    136. Roberts S S J, Davidson R. Mechanical properties of composite materials containing embedded fiber optic sensors[J]. SPIE, 1992, 1588:326-341
    137. Tay A, Wilson D A, Wood L. Strain analysis of optical fibers embedded in composite materials using finite element modeling[J]. SPIE, 1990, 1170:521-533
    138. Singh H S, Sirkis J S, Dasgupta A. Micro-interaction of optical fibers embedded in laminated composites. SPIE, 1992, 1588:76-85
    139. H.L. Cox. The elasticity and strength of paper and other fibrous materials. Brit. J. Appl. Phys., 3(1952)
    140. 康国政.短纤维增强金属基复合材料力学行为的细观力学研究[D]. 西南交通大学博士学位论文,1997
    141. 孙林松,王德信. 弹性接触问题的常刚度迭代方法及加速[J]. 应用力学学报,2002,vol(19),No.4:58-61
    142. 陈万吉,胡志强. 三维摩擦接触问题算法精度和收敛性研究[J]. 大连理工大学学报,2003, vol(43), No.5:541-547
    143. 朱昌铭. 基于虚功原理德弹性接触问题的线性互补方法[J]. 力学学报,1995,vol(27),No.2:189-197
    144. 丁睿,刘浩吾,侯静. 光纤-混凝土复合体三维非线性有限元分析[J],光电子?激光,2004,Vol(15),No.12:1467~1471
    145. G.M.L.Gladwell Contact problems in the classic theory of elasticity[M]. Sijthoff and Noordhoff, 1980
    146. 王晓春,孔祥安. 接触力学及其计算方法[J],西南交通大学学报,1996,vol(31),No.3:230-233
    147. 郭小明,赵惠麟. 工程结构接触问题的研究及进展[J]. 东南大学学报,2003,vol(33), No.5:577-582
    148. 刘浩吾,吴永红,丁睿,文利. 光纤应变传感检测的非线性有限元分析和试验[J],光电子?激光,2003.5,Vol(14),No.5:526~528
    149. 周杏鹏,仇国富. 现代检测技术[M]. 高等教育出版社,2004
    150. Clarence A.Miller, P.Neogi 界面现象——平衡和动态效应[M],北京:石油工业出版社,1992
    151. 中国力学协会,第三届全国多相流、非牛顿流、物理化学流学术会议论文集[C],杭州:浙江大学出版社,1990
    152. 夏德宏,周军等.宾汉流体管流减阻机理及措施[J],冶金能源,2002,Vol(21), No.1: 31~34
    153. 丁睿,刘浩吾,罗凤林,牟廷敏. 光纤传感技术在巫峡长江大桥中应用研究,四川大学学报,2004.11,Vol(26), No.6: 24~27
    154. 丁睿,刘浩吾,侯静,沈国青. 钢管混凝土拱桥无损检测技术研究,压电与声光,2004.12,Vol(26), No.6:447~450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700