大功率低频谐振波采油波场分布与近井渗流特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率低频谐振波采油技术对稠油、低渗透等特种油气藏的开采具有很强的针对性,它能有效的解除油层堵塞,改善油层的渗流状况,从而达到增产增注的目的。同时振动采油具有成本低、适应性强、操作简单和不污染环境等优点,使其成为一项具有良好应用前景的三次采油措施。
     本文系统的研究了低频谐振波在储层多孔介质中的固/液耦合传播理论,通过理论分析研究了振动频率、油层渗透率、孔隙度及流体粘度对低频谐振波振幅衰减的影响规律;通过室内实验研究了低频谐振波对油水渗流特性和对储层岩石造缝作用的协同影响机理;将物理模拟与数学模型相结合,研究了低频谐振波在多孔介质中传播的平面一维和平面径向渗流规律;建立了低频谐振波在多孔介质中单相渗流时的地层参数和振动作业参数之间相互耦合的数学模型,借助数学模拟方法考察了各项参数与振动作业效果之间的相互关系,根据数学模型编制了相应的计算实例,得到了振动作业前后地层压力分布曲线;分析了低频波动下套管的受力情况,通过对振动方程的求解得到了套管的纵向振动特性。研究结果表明:低频波场主要受储层渗透率和振动频率两大因素影响,随着振动频率的增大、油层渗透率的增大,低频振动振幅的衰减速度和幅度不断增大;低频波动可以较大地降低油水界面张力、改变岩心与流体的润湿性,降低产出油的含水率,对储层岩心的油水相渗流和水驱效率具有明显的促进作用。
     在以上理论研究及室内实验的基础上,优化了低频谐振波强化采油试验的工艺参数,进行了大功率低频谐振波采油的现场试验,动态监测了试验前后波及井组的生产数据,组建了高速数据采集系统进行了振动测试。通过分析地面监测系统测试出的数据,获得了振动范围内谐振波沿地面的衰减规律,并判断了生产井组的见效情况。
     上述工作的完成为现场施工提供了理论依据,为研究开发效果好、成本低、减少储层伤害与环境污染的大功率谐振波层内造缝与增渗增产新技术提供了重要的理论基础。
Low-frequency high-power resonance wave enhanced oil recovery has a strong pertinence to the exploitation of heavy crude and low permeability reservoir. It can release near wellbore reservoir choke efficiently, and improve flowability of reservoir. Accordingly, the productivity of wells is increased. Also it has the advantages of low cost, well-adapted, and easy in operation and enviroplast. So it is an excellent EOR technology with a good prospect of application.
     In this paper, the solid/liquid coupling propagation theory of low-frequency high-power harmonic wave in porous media has been studied. The effects of vibration frequency, reservoir permeability, porosity and fluid viscosity on low-frequency vibration are researched through theoretical analysis. The synergetic effects of oil-water filtration theory and making fracture ability under low-frequency resonance wave are investigated in this thesis through laboratory experiment. Combine physical analogue with mathematical model, the one-dimensional and radial filtration patterns of the low-frequency resonance wave in porous medium are studied in this article. A coupled mathematical model of formation properties and vibration parameters are built to study the relation between various parameters and its final working effect. According to the mathematical model, the pressure profile is developed. The casing longitudinal vibration under low-frequency resonance wave is analyzed and longitudinal vibration characteristics are obtained by solving the oscillation equation. The research results show that low-frequency wave field is mainly affected by reservoir permeability and vibration frequency. The decay and scope rate of low-frequency amplitude increase along with the increasing frequency and permeability. Low-frequency vibration can decrease oil and water interfacial tension and change the core and fluid wettability, reduce the water cut of output fluid and improve the single phase flow and waterflooding effect obviously.
     Based on the above theoretical research and laboratory experiment, the process parameters of low-frequency high-power resonance wave EOR technology are optimized. And field experiment is carried out, production data before and after the test is monitored, the high speed data acquisition system is also established to test the vibration. The neutron attenuation is acquired and the response behavior is decided by analyzing the data acquired from surface monitoring system.
     This paper provides theoretical foundation for field construction. And it supplies a foundation for the study of high-power resonance wave that can make fractures and increase permeability with high efficiency, low cost and no pollution.
引文
[1]雷光伦.国内外振动采油技术的发展简介[J].钻采工艺,2002,25(6):46-48
    [2]廖家汉,孙利,姜淑霞,等.人工地震采油技术的研究与应用[J].钻采工艺,2002,26(5):47-49
    [3]薛中天,杨卫宇.非常规采油增产方法研究现状及发展思路[J].西安石油学院学报,1996,11(1):15-18
    [4]肖曾利,蒲春生.振动采油技术的研究现状及展望[J].石油地质与工程,2007,21(4):33-39
    [5]张福仁,王东.声波采油技术在胜利油田的应用前景[J].断块油气田,1997,4(1):55-59
    [6]孙仁远,成国祥,陈建文,等.人工振动增产理论与试验研究[J].石油钻采工艺,2003,25(6):78-80
    [7]黄序韬,梁淑寰.声波采油的机理[J].石油学报,1993,14(4):105-110
    [8]李胜彪,杨玲,刘东奇,等.油藏人工振动增产技术机理研究[J].江汉石油学院学报,2004,26(3):100-101
    [9]李以农,闻邦椿.可控震源振动采油机理及实验研究[J].振动与冲击,2000,19(3):73-75
    [10]孙仁远,成国祥.人工振动对多孔介质中液体流动的影响[J].水动力学研究与进展,2004,19(4A):552-557
    [11]王杰,金友煌,蒋华义,等.压力波动采油机理的模拟实验[J].石油学报,2004,25(2):93-95
    [12]马建国,金友煌.机械振动影响岩心渗透率的实验研究[J].西安石油学院学报,1996,11(5):8-15
    [13]马建国,刘炜.机械振动提高岩心水驱采收率[J].西安石油学院学报,1997,12(4):19-22
    [14]邢春宇,李化钊,李庆,等.国内外振动采油技术的调研及展望[J].国外油田工程,2007,36(11):77-79
    [15]康美娟,蒲春生.复合振动增产增注技术的研究与展望[J].石油矿场机械,2007,36(11):77-79
    [16]杨顺贵,高鹰,吴旭光,等.谐波井下振动驱油技术先导性试验[J].石油矿场机械,2004,33(2):93-94
    [17]孙仁远.人工振动降粘试验研究[J].石油大学学报(自然科学版),2001,25(4):54-55
    [18]李明远,赵立志.声波振动与岩石表面润湿性[J].石油学报,1999,20(6):57-62
    [19] Biot M A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid,Ⅰ: Low-Frequency Range[J]. Journal of the Acoustical Society of America, 1956,V28(2):168-178
    [20] Biot M A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid,Ⅱ: Higher-Frequency Range[J]. Journal of the Acoustical Society of America, 1956,V28(2):179-191
    [21]张文飞,王东海.人工振动采油工艺中多孔渗流介质的耦合波传播模型[J],石油钻采工艺,1997,19(1):60-64
    [22]李骥,张焱,张红梅.振动采油中地层饱和多孔介质波动规律研究的新方法[J].石油钻采工艺,2000,22(4):48-51
    [23]雷光伦.油井自激压力波的产生及在油层中的传播[J].水动力学研究与进展,2001,15(2A):247-253
    [24]何义中,贺振华,张人雄.弹性波提高原油采收率机理研究[J].物探化探计算技术,2002,24(3):220-214
    [25]王瑞飞,孙卫,岳湘安.低频波在油层中衰减系数预测模型的实验研究[J].石油学报,2005,26(6):90-92
    [26]杨玲,郭福民.油藏人工振动增产技术室内机理初探[J].西北大学学报,2006,36(5):803-806
    [27]王瑞飞,孙卫,张荣军,等.井下低频振动提高采原油收率技术研究[J].西北大学学报,2006,36(3):457-460
    [28]刘兵.弹性波提高采收率方法综述[J].世界石油工业,1995,2(1):28-35
    [29] Maurice Dusseault, Brett Davidson. Pressure Pulsing: The Ups and Downs of Starting a New Technology[J]. Journal of Canadian Petroleum Technology, 2000,V39(4):13-17
    [30] Huh C. Improved Oil Recovery by Seismic Vibration: A Prelimeinary Assessment of Possible Mechanisms[C]. SPE 103870, 2006
    [31] Gassmann F. Uber die Elastizitat Poroser Medien[J]. Vierteliahrsschrift der Naturf orSchenden Gesellschaft in Zurich. 1951,V96(3):1-23
    [32] White J E. Computed Seismic Speeds and Attenuation in Rocks with Partial Gas Saturation[J]. Geophysics, 1975,V40(2):224-232
    [33] Kazi-Azoual M. Green's Functions in an Infinite Transversely Isotropic Saturated Poroelastic Medium[J]. Journal of the Acoustical Society of America, 1988,V84(5):1883-1889
    [34] Akbar N, Dvorkin J, Nur A. Relating P-wave Attenuation to Permeability[J]. Geophysics, 1993,V58(1):20-29
    [35] Mukerji T, Mavko G. Pore Fluid Effects on Seismic Velocity in Anisotropic Rocks[J]. Geophysics, 1994,V59(2):233-244
    [36] Sharma M D. Surface-Wave Propagation in a Cracked Poroelastic Half-Space Lying under a Uniform Layer of Fluid[J]. Geophysical Journal International, 1996,V127(1):31-39
    [37]王尚旭.双相介质中弹性波问题有限元数值解和AVO问题[M].北京:中国石油大学出版社,1990:32-39
    [38]刘银斌,李幼铭,吴如山.横向各向同性多孔介质中的地震波传播[J].地球物理学进展,1994,37(4):499-513
    [39]牛滨华,何樵登,孙春岩.六方各向异性介质方位矢量波动方程及其相速度[J].石油物探,1994,33(1):19-29
    [40]张应波.Biot理论应用于地震勘探的探索[J].石油物探.1994,33(4):29-38
    [41]牟永光.储层地球物理学[M].北京:石油工业出版社,1996:25-33
    [42]刘克安,刘宏伟.双相介质二维波动方程三参数同时反演的时卷正则迭代法[J].石油地球物理勘探,1997,32(5):615-622
    [43]杨顶辉,滕吉文,张中杰.各向异性动力学方程反演新算法[J].地震学报.1997,19(4):376-382
    [44]席道瑛,易良坤.砂岩中孔隙流体的黏性与衰减、模量和速度色散[J].石油地球物理勘探.1999,34(4):420-425
    [45]许肖梅.声学基础[M].北京:科学出版社,2003:1-25
    [46]邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J].石油学报,2001,22(4):72-78
    [47]刘月田.水平井整体井网渗流解析解[J].石油勘探与开发,2001,28(3):57-64
    [48]刘月田,葛家理.各向异性圆形地层渗流的解析解[J].石油大学学报(自然科学版),2000,24(2):40-44
    [49]刘月田,葛家理.椭圆形边界油藏稳定渗流解析解[J].中国海上油气(地质),2000,14(3):187-192
    [50]张荣军,蒲春生,董正远.振动条件下地层流体渗流的数学模型[J].石油学报,2004,25(5):80-83
    [51]胡宗武.工程振动分析基础[M].上海:上海交通大学出版社,1994:55-70
    [52]杜世通.地震波动力学[M].东营:石油大学出版社,1996:32-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700