C_(36)二聚脂肪酸基聚酯及其衍生物的合成、性能与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可持续发展战略在全球范围内的进一步推广,来自石油化工,对人类和环境能够造成危害的材料在应用上逐渐受到限制,“环境亲合”和“绿色环保”材料将成为现代材料与化工领域发展的主导方向。
     本文以天然油脂加工产物——二聚脂肪酸为主要原料,系统地研究了二聚脂肪酸与乙二醇、聚乙二醇、聚丙二醇之间二元或三元缩聚反应的理论问题及合成物应用性能。作为研究工作的延伸,也研究了原料二聚脂肪酸的生产工艺;用于脂肪酸二聚化反应的新型催化剂的制备、表征和催化性能。研究结果如下:
     (1)研究与开发了一种二聚脂肪酸合成新工艺——自升压工艺。新工艺的基本原理和操作方法是:将一定量的水和原料脂肪酸一起添加到反应体系中,利用水气化后的水蒸汽将反应器内空气所含之氧带出,然后在残留水分和原料脂肪酸共同产生的压力下进行二聚化反应。与传统通入高纯氮气排氧加压工艺相比,新工艺具有可有效降低生产成本;防止催化剂高温下失活;减少脂肪酸在高温下发生脱羧、裂解和多聚等副反应的特点,并可提高二聚脂肪酸的产率。
     自升压工艺中,水的加入量对二聚脂肪酸的产率影响较大,加入量以2.00%(与原料脂肪酸物质量的比,w/w)为宜,量过少或过多均影响二聚脂肪酸的产率。在自升压制备二聚脂肪酸的工艺中,Li_2CO_3具有较好的协同和助催化作用,可提高二聚脂肪酸的产率和选择性,并能使产物色泽得到一定的改善。
     (2)采用一次或二次插层的方法,制备了系列有机蒙脱土,并将其用于催化不饱和脂肪酸二聚化反应。研究发现,在不饱和脂肪酸二聚化反应中,有机蒙脱土比蒙脱土具有更高的催化活性和效能,且其活性受插层剂的种类与结构、离子交换量大小的影响,与蒙脱土层间距在一定范围内呈正线性关系。当蒙脱土层间距从1.26mm增至2.19mm过程中,其催化活性和效能是线性增加的,二聚脂肪酸产率和选择性比蒙脱土催化有明显的提高;当离子交换量超过40,其催化活性开始快速降低,原因是蒙脱土层间活性金属离子数量减少而影响其催化活性和效能;蒙脱土经有机化处理后,可提高其在不饱和脂肪酸二聚化反应体系中的分配性能,在达到二聚反应所需传热和传质要求的条件下,可以降低聚合反应所需要的搅拌速度,减少功耗。
     (3)以二聚脂肪酸与乙二醇酯化反应为研究对象,研究和改进了多元酸和多元醇缩聚反应的工艺,确定了二聚脂肪酸-乙二醇聚酯合成的工艺条件。改进后的工艺采用初始阶段充氮气,后期抽真空的方法来带走反应中所生成的水以提高反应速率,抽真空排出的含少量乙二醇的水使用精馏装置进行分离。工艺改进后,可以很好地克服传统工艺所存在的反应时间长及消耗大量氮气的缺点,用于合成DFA-EG聚酯,取得了很好的效果。
     研究了二聚脂肪酸和乙二醇缩聚反应的动力学问题。对二聚脂肪酸与乙二醇缩聚反应体系进行了分析和简化,基于单体和聚合物端基等活性及不等活性的假设,采用已加入最优保存策略(Elitist Model)、变量数值扰动、龙格库塔积分(Runge-Kutta)算法、均匀分布的随机数发生器算子的遗传算法,建立了模型Ⅰ和模型Ⅱ,并利用C~(++)计算机语言编程来估算动力学模型的参数。比较后发现,单体和聚合物端基不等活性条件下的动力学模型更接近于反应体系的实际情况,能更为精确地描述二聚脂肪酸和乙二醇缩聚反应。
     通过实验,确定了二聚脂肪酸与乙二醇缩聚反应速率对羧基为2.0875级,对羟基为1级;也确定了C_(36)二聚脂肪酸-乙二醇聚酯平均分子量与特性黏度的关系:[n]=0.02696(?)~(0.7758)(25℃,以环己烷为溶剂)。
     (4)以二聚脂肪酸为原料,制备了二聚脂肪酸基不饱和聚酯,固化后得到二聚脂肪酸基聚酯树脂材料,研究了二聚脂肪酸基聚酯树脂的制备和性能。研究结果显示,二聚脂肪酸的引入,使聚酯树脂具有很好的力学性能、耐水性、断裂伸长率、柔韧性、生物降解性及耐燃性能(耐燃性能可达到GB 2408—80Ⅱ级),但也会使聚酯树脂的耐溶剂性能、硬度和拉伸强度下降。
     热分析实验结果表明,制备的二聚脂肪酸基聚酯树脂有很好的热稳定性,分解温度高于370℃,约510℃全部热分解,失重率约50.10%。随二聚脂肪酸含量的增加,二聚脂肪酸基聚酯树脂热分解温度提高,聚酯的热稳定性也更好。
     (5)以二聚脂肪酸和聚乙二醇400为原料,首先合成了DFA-PEG聚酯,再以DFA-PEG聚酯为衍生体,硫酸化或用松香封端,合成了两种DFA-PEG聚酯衍生物——DFA-PEG聚酯硫酸酯盐和松香酸封端DFA-PEG聚酯,通过正交试验,对合成的条件进行了优化。
     合成的DFA-PEG聚酯数均分子量为6135,重均分子量为7798,分子量分布为1.212,分子量呈窄分布。
     DFA-PEG聚酯及其衍生物为新型的高分子表面活性剂,其分子中含有特殊结构的亲水亲油性基团。性能测试表明,DFA-PEG聚酯及其两种衍生物均具有优良的乳化性能,乳液细腻且稳定;DFA-PEG聚酯及其硫酸酯盐水溶液的表面张力和临界胶束浓度较低:DFA-PEG聚酯松香酸酯还具有一定的抑泡性能,与DFA-PEG聚酯及其硫酸酯盐比,其水溶液表面张力和临界胶束浓度有所增加。
     研究了SnCl_2催化条件下,DFA与PEG 400缩聚反应动力学和热力学问题,结果为,DFA与PEG 400缩聚反应级数为0.998级;活化能E=97.18kJ·mol~(-1);缩聚反应的Arrhenius方程为:1nk=21-39—11.689/T。
     (6)以二聚脂肪酸、聚乙二醇400和聚丙二醇2000为原料,系统研究了DFA-PEG-PPG共聚酯、封端的DFA-PEG-PPG共聚酯和(DFA-PEG)_m-(DFA-PPG)_n嵌段聚酯的合成规律及其应用性能,通过正交试验,优化了三种三元聚酯的合成工艺条件。
     通过实验,确定DFA与PPG 2000缩聚反应活化能E=108.4786 kJ·mol~(-1),Arrhenius方程为:1nk=25.166—13.043/T,活化能比DFA与PEG 400缩聚反应的活化能大,因此,对于DFA/PEG/PPG三元共聚反应,须选用合适的工艺及工艺条件来控制共聚酯产率和分子结构。
     实验比较后表明,合成DFA-PEG-PPG三元共聚酯,连续加料工艺酯化率比一次加料工艺酯化率更高,所合成聚酯的分子量分布更窄,数均分子量也更大。
     性能研究发现,PPG的引入,可使DFA/PEG/PPG三元聚酯高分子表面活性剂的亲水亲油特性调节更为容易:在DFA/PEG/PPG三元共聚体系中,加入长链脂肪酸或脂肪醇,合成的封端型DFA-PEG-PPG共聚酯,结构上既含有长链的亲油性基团,还含有聚醚型的亲水基团,具有脂肪醇型消泡剂和聚醚型消泡剂复配增效的特性,其消泡性能优秀。这种新型结构聚酯的合成,为消泡剂分子结构的设计提出了一种的思路;采用嵌段聚合方法所合成的(DFA-PEG)_m-(DFA-PPG)_n嵌段聚酯型高分子表面活性剂,其分子量比DFA-PEG和DFA-PEG-PPG三元共聚酯的分子量更大,所表现出的乳化性能更为优秀。采用嵌段聚合的方法所合成的(DFA-PEG)_m-(DFA-PPG)_n嵌段聚酯,其分子结构更具有规整性,同时,通过调节预聚体的摩尔比,可以得到水溶或油溶聚酯醚型高分子表面活性剂。
Along with the global further spreading of sustainable developrnent stratagem, thesematerials, which come froln petrochemicals and were harmful to human being andnatural environment, will be gradually restricted in application, the mainlydevelopment trend in the modern material industry and chemical industry field is toexplore "the environmental friendly material" and "the green chemicals".
     In this paper, the synthesis, performance and kinetics of C_(36) DFA (dimer fatty acid)based di-polyester or tri-polyester and its derivant, their polyesters were synthesizewith DFA and EG (ethylene glycol) or PEG (polyethylene glycol) and PPG(polypropylene glycol), were systemically and roundly studied. As the extending ofresearch work, at the same tirne rnanufacture process of DFA, synthesis and structurecharacterization as well as catalyzing performance of novel catalyst for dimerization offatty acid were studied, the research results were as follows:
     1. The dimerization reaction of the unsaturated fatty acid was catalyzed by a seriesof organ-intercalated montmorillomite, which was prepared by means of one ortwo-step intercalation. According to the research, it was found that organ-intercalatedmontmorillomite had better catalyzing activity and efficiency than montmorillomite indimerization reaction of the unsaturated fatty acid, and catalyzing activity oforgan-intercalated montmorillomite was influenced by kind and structure ofintercalating agent and CEC (cation exchange capacity). Catalyzing activity of organ-intercalated montmoriliomite had a positive linear relationship with its interlayerdistance on certain condition. The catalyzing activity and efficiency of organ-intercalated montmorillomite was linearly increased when interlayer distance wasraised from 1.26 mn to 2.19 nm, meanwhile yield and selectivity of DFA wereevidently increased. When CEC exceeded 40, catalyzing activity and efficiency oforgan- intercalated montmorillomite began to obviously decrease, the possible reasonwas that the active metal ions is littler in layers of organ-intercalated montmorillomite.Distribution performance of organ-intercalated montmorillomite was better thanmontmorillomite in reaction system. Stirring speed and consumption of energy can bedecreased in polyesterification reaction when the requirements for heat and masstransfer are fulfilled.
     A novel synthesis process of DFA under autogenous pressure was studied and developed with safflower oil fatty acid. The basic theory and operation method ofnovel process were as follows: certain water and fatty acid were added into thereaction system together, air containing oxygen was taken away from reactor byboiling vapor, and then the polyesterification reaction occurred at the collectivepressure produced by residual water and fatty acid. Comparing with the traditionalremoving oxygen process by pure nitrogen, novel technology can effectively reduceproduction costs, prevent catalyst losing activity and decrease secondary reaction, suchas decarboxylase, decompositiob and multi-polymerization, etc. at high temperature.The yield of DFA can be also increased.
     Amount of adding water had obviously influence on the yield of DFA in autogenouspressure process, the appropriate amount of water was 2.00%of total amount of DFA(w/w), too much or too little all affected the yield of DFA. Li_2CO_3 added in reactionsystem had well cooperative effect and assistant catalysis, could increase the yield andselectivity of DFA and get lighter color complex.
     3. The polyesterification reaction of DFA and EG was regarded as research object.The polyesterification reaction process of polyacid and polyalcohol was studied andimproved, and condition of synthesis reaction was determined. The improved processis as follows: the reactor was charged with nitrogen in the beginning, after certainreaction time the reactor was picked up suction in order to take away water producedin the course of reaction and elevates the reaction speed; water containing little EGwas separated with rectifier. The improved process could overcome the disadvantagesof the traditional process disadvantage such as long reaction time, consuming muchnitrogen, which was well used in synthesis of DFA-EG polyester.
     The kinetic of polyesterification reaction of DFA and EG was studied. The reactionsystem of polyesterification of DFA and EG was analyzed and simplified. Based on thehypothesis of equal and unequal activity of the end-group of monomer and polymer,the modelⅠand modelⅡfor estimating kinetic parameters were established usingimproved Genetic Algorithm, which was so improved by introducing the Elitist Model,Simulate annealing, Runge-Kutta method, proportional distribution randomizer etc.into the operators, and these models were more compatible with the estimation ofcomplex reaction kinetic model parameters. A program for calculating the parametersof modelⅠand modelⅡwas written with C~(++) computer language. By comparison, itwas found that the kinetic model based unequal activity of end-group monomer andpolymer was more close to the fact and more accurately depict the polyesterification reaction of DFA and EG.
     By experiment, it was proved that the speed degree of polyesterification reaction ofDFA and EG was 2.0875 to carboxyl and 1 to hydroxyl respectively, and therelationship between average molecular weight and the inherent viscosity of DFA-EGpolyester was as follows: [η]=0.02696(?)0.7758 (25℃, taking cyclohexane as solvent)
     4. The preparation and performance of DFA based polyester resin were studied,which was prepared with DFA based unsaturated polyester, curing fixture and filler.The research results showed that the DFA based polyester resin had better mechanicalperformance, the water-fast performance, rate of elongation, flexility, the performanceof biodegradation and the burning-fast performance, but the chemical solvent-fastperformance, rigidity, tensile-strength were decreased.
     The experimental results of thermogravimetry analysis and differential thermalanalysis showed that the DFA based polyester resin had excellent thermal stability,decomposition temperature exceeded 370℃. It was completely decomposed around510℃, ratio of mass loss is 50.10%. The thermal stability and decompositiontemperature of the DFA based polyester resin was increased as the increase of theamount of DFA in the resin.
     5. DFA-PEG polyester was synthesized with DFA and PEG 400 at first, and then bysulfating DFA-PEG polyester with NH_2SO_3H or terminating DFA-EG polyester withrosin acid, two derivant, these are sulfated DFA-PEG polyester and terminateDFA-PEG polyester, were synthesized. The reaction conditions of synthesis wereoptimized by orthogonal experiments.
     The molecular weight of product was analyzed by GPC. The number averagemolecular weight of DFA-PEG polyester is 6135, and average weight molecularweight is 7798. Distribution of molecular weight is 1.212, and it is distributed innarrow range.
     DFA-PEG polyester and its derivant were novel macromolecule surface activityreagent, its molecule contains special structural hydrophilic and lipophilic group.Results of test showed that DFA-PEG polyester and its derivant had excellentemulsification performance, and emulsion was exquisite and steady, the surfacetension and critical micelle concentration (CMC) of DFA-PEG polyester and sulfatedDFA-PEG polyester were very low, DFA-PEG polyester terminated with rosin acid hadcertain antifoaming performance, but surface tension and CMC increase to extent.
     Thermodynamics and dynamics of polyesterification reaction of DFA and PEG 400were studied taking SnCl_2 as catalyst. The research results showed that the speeddegree of polyesterification reaction of DFA and PEG 400 was 0.998, activation energywas 97.18 kJ·mol~(-1). Arrhenius equation is as follows: lnk=21.39-11.689/T.
     6. Synthetical regularity and applicable performance of DFA-PEG-PPG tripolymerpolyester synthesized with DFA, PEG 400 and PPG 2000 as reactant, DFA-PEG-PPGtripolymer polyester terminated with oleic acid, (DFA-PEG)_m-(DFA-PPG)_n blockcopolymer synthesized with DFA-PEG and DFA-PPG, were studied systemically. Atthe same time synthesis reaction conditions were optimized by orthogonal experiment.
     Activation energy of polyesterification reaction of DFA and PPG 2000 was108.4786 kJ·mol~(-1). Arrhenius equation is as follows: lnk=25.166-13.043/T. As forthe tripolyesterification reaction, it is necessary to choose appropriate processconditions to control the yield and molecular structure of tripolymer polyester. Bycomparison, it was found that esterification rate of continuously adding reactant washigher than one-off adding reactant for synthesis of DFA-PEG-PPG tripolymerpolyester, distribution of molecular weight was narrower and number averagemolecular weight was larger.
     It was also found that the balance of hydrophilic and lipophilic of DFA-PEG-PPGtripolymer polyester macromolecule surface activity reagent was easily adjusted bychanging the adding amount of PPG. Terminated DFA-PEG-PPG tripolymer polyester,which was synthesis by adding long chain fatty acid or fatty alkanol into the reactionsystem, contained not only chain lipophilic group but also polyester-polyether group,and had the building effection of alkanol antifoaming reagent and polyether one. Thenovel design theory for structure of antifoaming reagent was put forward by studyingperformance of product. The molecular weight of (DFA-PEG)_m-(DFA-PPG)_n blockcopolymer synthesized with DFA-PEG and DFA-PPG was larger than the molecularweight of DFA-PEG polyester and tripolymer DFA-PEG-PPG polyester, theemulsification performance was better. At the same time it is easy to obtainwater-solubility or oil-solubility polyester macromolecule surface activity reagent.
引文
1 王耀栋.我国“十一五”化工科技发展纲要[J].河北化工,2006,(1):1-3.
    2 林强,张睿.生物化工领域研究进展[J].北京联合大学学报(白然科学版),2006,20(1):58-60.
    3 张衡,费菲.二聚酸聚酰胺树脂制备工艺及问题探讨[J].粮食与油脂,1999,(2):13-18.
    4 Michael D S, William C B. Process for producing light color dimer acids from the d imerization of unsaturated fatty acids [J]. PCT Appl., 2000, 23: 712-719.
    5 Suzuki O, Tanabe K, Hashimoto T. Polymerization of unsaturated higher fatty acids [P]. JP: 0671466, 1976-02-16.
    6 Suzuki O, Yamashina T, Tanabe K. Studies on the synthesis of fatty acid derivatives by the flow method. I. Study of catalysts for the catalytic dimerization of unsaturated fatty acids or esters [J]. Yukagaku, 1978, 27(2): 76-82.
    7 Moehring H, Spiteller G. Dimerization products of unsaturated fatty acids. Part 8. The "intermediate" fraction obtained in the dimerization of unsaturated fatty acids [J]. Fett Wissenschaft Technologie, 1992, 94(7): 241-245.
    8 Rajadhyaksha R A, Chaudhari D D, Joshi G W. Super acid catalyzed dimerization of fatty acids derived from safflower oil and dehydrated castor oil [J]. Journal of American Oil Chemists' Society, 1988, 65(5): 793-797.
    9 Craven J. Polybacic acid obtained from polymerized fatty acids [P]. US: 121777, 1918-05-17.
    10 Scheiber J. High molecular weight polyhydric alcoholol [J]. Farbe Lack, 1929, 32: 585-592.
    11 Kappehneier C P A. Dimerization of fatty acid molecules studied byco-laser [J]. Farben-Z, 1933, (38): 1018-1077.
    12 Bradley T F, Johnston W B. A process for the manufacture of fatty acid esters [J]. Industrial & Engineering Chemistry Research, 1941, (33): 86-92.
    13 Johnston W B. Method of preparing dimeric fatty acids and/or esters [P]. US: 2347562, 1944-04-25.
    14 Barrett F O, Goebel C G, Peter R M. Method of making polymeric acids [P]. US: 2793220, 1957-05-21.
    15 Robert J S, Huber J S. Process for the recovery of polymeric acids from clays [P]. US: 3873585, 1975-03-25.
    16 Mamoru M, Masahiro S, Atsushi G. Process for polymerizing unsaturated fatty acids and their esters [P]. US: 3773806, 1971-05-26.
    17 Roland P F S, Pelham N Y. Polymerization of unsaturated materials [P]. US: 3925342, 1975-10-09.
    18 Krajca K E. Flow process for polymerizing unconjugated unsaturation of fatty acids [P]. US: 4164505, 1979-08-14.
    19 Thomas A F. Process for the preparation of branched chain fatty acids and esters [P]. US: 4371469, 1983-02-01.
    20 Kathryn S H. Polymerization of fatty acids [P]. US: 4776983, 1988-10-11.
    21 Kathryn S H. A process for polymerizing unsaturated dicarboxylic acids [P]. US: 5001260, 1991-03-19.
    22 Elsasser A, McCargar F, Laura A. Method of preparing dirneric fatty acids and/or esters there of containing low residual interesters and the resulting dimeric fatty acids and/or dimeric fatty esters [P]. US: 6187903, 2001-02-13.
    23 Rajadhyaksha R A, Chaudharl D D, Joshl G W. Super acid catalyzed dimerization of fatty acids derived from safflower oil and dehydrated castor oil [J]. Journal of American Oil Chemists' Society, 1988, 65(5): 793-797.
    24 Harrison S A. Possible structure of dimeric acids or their esters [J]. Journal of American Oil Chemists' Society, 1954, 76: 2379-2382.
    25 徐步青.二聚酸国内外研究进展综述[J].中国油脂,1990,(2):42-45.
    26 鈴木修,橘本哲太郎.日化協月報,1977,30(3):15-18.
    27 张金廷.脂肪酸及其深加工手册[M].北京:化学工业出版社,2002.
    28 刘增霞,欧阳海烨,邹璐.天然脂肪酸及其聚合物[J].贵州化工,1995,(4):14-19.
    29 Cowan F C, Falkenburg L B, Teeter t4 M. Dimer acids [J]. Analytica Chemica Acta, 1944, 16: 90-95.
    30 Paschke R F, Kerns J R, Wheeler D H. Process for dimering carboxylic acids in a corona discharge [J]. Journal of American Oil Chemists' Society, 1953, 31: 5-8.
    31 Hiroh I, Kazuo K, Norio T. Analysis of thermal polymeric fatty acids, methyl esters and alcohols on sephadex LH-20 [J]. Chromatogr, 1970, (47): 348-354.
    32 Harris W C, Crowell E P, Burnett B B. Quantitative analysis of polymerized fatty acids using gel permeation chromatography [J]. Journal of American Oil Chemists' Society, 1973, 50: 537-539.
    33 Jun Z, Susan O. Separation ofdimer acids using enhanced-fluidity liquid chromatography [J]. Analytica Chemica Acta, 2001, 449: 221-236.
    34 Nelson J P, Milun A J, Dimer acids: gas chromatographic analysis [J]. Journal of American Oil Chemists' Society, 1975, (3): 81-83.
    35 Robert L. Rapid analysis of dimer acids by HPLC/FID [J]. Journal of American Oil Chemists' Society, 1986, 63: 1043-1046.
    36 American Oil Chemists' Society, Composition of dimer acids by high-performance liquid chromatography (HPLC): AOCS recommended practice Tf 5-91 [M]. American Oil Chemists' Society, Champaign, IL, 1993.
    37 魏代军.国内外二聚酸的现状与市场前景[J].表面活性剂化学,1999,(4):11-12.
    38 Tolnita H, Nakata T, Moroboshi, et al. Polyester-based mat-like resin moldings with good cold resistance and recyclability and floor carpet structure therewith [P]. JP: 301509, 2001-11-02.
    39 Shimizu H, Igushi H, Nagano H. Polyester laminated films, metal plates laminated therewith, and metal conainers useful for food cans [P]. JP: 260295, 2001-07-23.
    40 Morimoto T, Nakamura K, Terada N. Hot-melt adhesive compositions containing polyamides and their use for bookbinding [P]. JP: 192638, 2001-06-30.
    41 Kobayashi Y, Matsumoto T M. Power coatings containing acid-modified epoxy resins.. powered thermoplastic resins, and flow controllers for metal cans [P]. JP: 08302242, 2002-03-11.
    42 张艳丽.服装用聚酰胺热熔胶的开发[J].精细与专用化学品,2002,(1):15-17.
    43 Kozlowska, Agnieszka. Kinetics of reaction ofC36 dimeric fatty acids and ethylene diamine in solution [J]. Polymers, 2002, 47(10): 730-733.
    44 Gareiss B, Plechatta C. Ulmerich [P]. EP: 623647, 2003-12-06.
    45 Gnedin E. Manufacture of polyurethane foams from polyester polyols [P]. US: 639334, 2003-05-03.
    46 Dragnet L R, North B. Paper opacifying composition [P]. WO: 010209, 1996-07-12.
    47 Iseluo K A.相稳定聚酯模制材料[P].CN:86104672,1987.04-09.
    48 Heucher R, Becher B, Rossini A. Dimer fatty acid-based polyamides containing PVC heat stabilizers for use with PVC in electrical applications [P]. WO: 124439, 1995-09-22.
    49 Yamalnoto M, Suzuki Y, Kobayashi N. Brominated epoxy resin compositions for printed circuit boards with good flexibility and fire resistance [P]. JP: 0853533, 1998-12-12.
    50 Nakajima N, Fukuda T, Endo H. Visoelastic polyesters and their compositions for vibration dampers [P]. JP: 06329770, 2000-04-24.
    51 布鲁德尔F K,海泽 W,维尔曼 R,等.聚酯碳酸酯及用其制作的数据载体[P].CN:01806863.4.2003-05-14.
    52 Piotr P, Miroslawa E F, Jerzy S. Biocompatibility studies of new multiblock poly (ester-ester)s composed of poly (butylene terephthalate) and dimerized fatty acid [J]. Biomaterials, 2002, 23 (14): 2973-2978.
    53 Renke-Gluszko M, Miroslawa E F. The effect of simulated body fluid on the mechanical properties of multiblock poly (aliphatic/aromatic-ester) copolymers [J]. Biomaterials, 2004, (25): 5191-5198.
    54 Wen-xun G, Kai-xun H. Preparation and properties of poly (dimer acidedodecanedioic acid) copolymer and poly (dimer acidetetradecanedioic acid) copolymer [J]. Polymer Degradation and Stability, 2004, (84): 375-381.
    55 周志彬,黄开勋,许铭飞.聚(二聚酸-癸二酸)的合成和药物释放性能[J].华中科技大学学报,2001,29(1):96-98.
    56 张韬,张忠强,刘宗霖,等.新型控释化疗系统的基础研究[J].生物医学工程学杂志,2003,20(4):686-688.
    57 牛洪泉,张韬.局部化疗缓释剂对大鼠C6脑胶质瘤的疗效观察[J].中国临床神经外科杂志,2002,7(1):14-16.
    58 吕英莹,酬友良.聚烯烃的功能化改性研究进展[J].化工进展,2005,24(8):825-831.
    59 Takuzo A, Shohei I. Living polymerization of epoxides with metalloporphyrin and synthesis of block copolymers with controlled chain lengths [J]. Macromolecules, 1981, 14: 1162-1173.
    60 Anthony J, O'Lenick J. Capped dimer acid polyesters in personal care applications [P]. US: 6800275, 2004-05-26.
    61 Kraack H, Deutsch M, Ocko B M, et al. The structure of organic langmuir films on liquid metal surfaces [J]. Nuclear Instruments and Methods in PhySics Research, 2003, 200: 363-370.
    62 Yasukawa I, Tsuzuki K. Anticorrosive epoxy resin coatings with excellent overcoatability [P]. JP: 0848914, 2001-09-12.
    63 Watanabe S, Fujita T, Sakamoto M. Characteristic Properties of water-soluble cutting fluid additives derived from ricinoleic acid oligomers and dimmer acid [J]. Kogakubu Kenkyu Hokoku, 1997, 49(1): 27-34.
    64 Mittelbach M, Enzelsberger H. Transesterification of heated rapeseed oil for extending diesel fuel [J], Journal of American Oil Chemists' Society, 1999, 76(5): 545-550.
    65 Caprotti R, Ledeore C. Reaction products of fatty acid dimmers with epoxides as lubricity additives for fuel oils and diesel fuels [P]. WO: 2015607, 1999-12-20.
    66 Burg D A, Robert K. Process for preparation of high-molecular-weight epoxy dimer acid ester resin [J]. Journal of American Oil Chemists' Society, 1991, 68(8): 600-603.
    67 Yamamoto H, Kajima T, Iwasaki Y. Cold-rolling lubricants [P]. JP: 07247490, 2002-08-18.
    68 Muehl C, Ritterbusch J, Lorenz W. Tribol [J]. Schmierungstch, 1996, 43(3): 109-112.
    69 剑持一仁,阿部英夫,左左水辙,等.用于金属材料的冷轧润滑油[P].CN:86101764,1989-12-02.
    70 剑持一仁,阿部英夫,左左木辙,等.用于钢的冷轧润滑油[P].CN:86102119,1990-09-09.
    71 Pavlin M S. Ink-jet printing ink compositions containing ester-terminated dimer acid-based oligoester and/or amide [P]. WO: 0078878, 2004-07-08.
    72 Jaeger C, Wayne B L V, Titterington D R. Use of polymeric dyes in hot-melt ink-jet inks [P]. US: 5621022, 2001-10-22.
    73 Aida K, Sakuma T, Ueno T. Water-thinned inks giving prints with excellent color, and ink-jet inks using the same [P]. JP: 10298467, 2003-07-28.
    74 Katayama T N. Preparation of dimer acid esters, oils for cosmetics, and cosmetics and external medicines [P]. JP: 199937, 2001-07-22.
    75 Ishibashi T, Mukai T, Yamamoto A. Water-based printing ink compositions with good curability and heat resistance [P]. JP: 10130561, 2005-07-22.
    76 Thullen H, Schmid E. Amorphous copolyamide from dimer acid, aromatic dicarboxylic acid and cycloaliphatic diamine [P]. US: 5177177, 1993-02-15.
    77 Burkhard K, Heinz P. Polyesters of dimer fatty acid and dimer fatty diol and their use for the production of polyester carbonates [P]. US: 5545692, 1996-03-25.
    78 Agnieszka K, Ryszard U. New type of thermoplastic multiblock elastomers poly (ester-block-amide) based on oligoamide 12 and oligoester preparedfrora dimerized fatty acid [J]. European Polymer Journal, 2004, (40): 2767-2772.
    79 托姆卡Ⅰ.可热塑性加工的淀粉和淀粉衍生物聚合物混合物——其制法和加途[P].CN:97197125.0,2003-09-01.
    80 Westfechtel H, Alfred G, Roland H. Polyurethanes with improved tear propagation resistance [P]. US: 6610811, 2003-08-26.
    81 Baba Y, Ikeda N. Waterless lithographic original plate using polymerizing polyamide [P]. JP: 08272084, 2005-06-25.
    82 Sakurai J, Kobayashi K, Uno k. Resin composition containing dimer acid ester for soft eye lens [P]. JP: 187186, 2000-11-15.
    83 Tokuno M, Yamane S. Fiber-reinforced epoxy resin-based flywheel [P]. JP: 9267399, 2004-11-06.
    84 Kuze K, Nagano H, Isaka T. Polyester composite films with good scratch resistance [P]. JP: 8256312, 2005-09-16.
    85 Nakamura T, Kawamura T, Shimazu T. Manufacture of modified phenolic resins for use in laminates [P]. JP: 6271634, 2005-11-22.
    86 Fray E, Miroslawa S. Dimer fatty acid-modified poly (ester-b-ether)s: Synthesis and properties [J]. Polymer-Plastics Technology and Engineering, 1999, 38(1): 51-69.
    87 Tomita H, Pponma T, Oonishi K. Polyester compositions with good antistatic properties and their extrusion moldings [P]. JP: 0948909, 2006-01-12.
    88 Anjali B, Joshy S. Evaluation of kinetic parameters of dimer acid based metal-containing Polyesters using thermogravimetric analysis [J]. Thermochimica Acta, 1999, 334(1): 73-87.
    89 Smith C L, Dennis H. Dimer acid derivatives as enhancers [P]. US: 6617394, 2003-09-09.
    90 Huybrechts J K, Stuart Alexander Vervoort. Scratch-resistant coating composition [P]. US: 5977256, 1999-11-02.
    91 Kaufman H S, Falctta J J. Introduction to Polymer Science and Technology [M]. New York: John Wiley & Sons, 1977.
    92 董炎明,张海良.高分子科学教程[M].北京:科学出版社,2004.
    93 Flory P J. Principles of Polymer Chemistry [M]. New York: Cornell University Press, 1953.
    94 Javad H, Nayef M G, Wan M A. Study on kinetics of polymerization of dimer fatty acids with ethylenediamine in the presence of catalyst [J]. Chemical Engineering Journal, 2004, 100: 85-93.
    95 Nalampang K, Johnson A F. Kinetics of polyesterification: modelling and simulation of unsaturated polyester synthesis involving 2-methyl-1, 3-propanediol [J]. Polymer, 2003, 44(19): 6103-6109.
    96 Richard W, McCabe A T. A thermogravimetric method for studying the kinetics of enzyme [J]. Thermochimica Acta, 2003, 406(2): 69-75.
    97 Parnell S, Min K, Cakmak M. Kinetic studies of polyurethane polymerization with Raman spectroscopy [J]. Polymer, 2003, 44(18): 5137-5144.
    98 魏瑛辉,赵清香,王玉尔,等.聚十二碳二酸乙二醇酯的合成反应动力学[J].高分子材料科学与工程,2003,19(1):41-44.
    99 Au-chin T, Kuo-sui Y. Mechanism of hydrogen ion catalysis in esterification Ⅱ. Studise on the kinetics of polyesterification reactions beween dibasic acids and glycols [J]. Polymer Science, 1959, 35(4): 219-233.
    100 Lin C C, Hsieh K H. The kinetics of polyesterification. I. Adipic acid and ethylene glycol [J] Journal of Applied Polymer Science, 1977, 21: 2711-2719.
    101 麦杭珍,汪朝阳,严冰,等.乳酸直接聚合的热力学、动力学研究[J].化学研究与应用,2002,14(5):534-536.
    102 张伟禄,刘春艳,乔迁,等.1,6-己二醇/顺丁烯二酸酐缩聚反应的动力学[J].长春工业大学学报,2003,24(1):13-15.
    103 张伟禄,乔迁,刘春艳,等.醇酸缩聚反应温度对反应级数的影响[J].粘接,2004,25(6):22-24.
    104 乔迁,张伟禄,张东,等.AA/HPHP与AA/NPG聚酯化反应的动力学研究[J].高等学校化学学报,2004,25(8):1545-1548.
    105 陈梁,吕满庚.水可分散型聚酯多元醇反应动力学研究[J].聚氨酯工业,2005,20(1):21-25.
    106 李泽国,黄关葆.新催化剂合成聚酯反应动力学研究[J].北京服装学院学报,2004,24(2):22-28.
    107 孙红旗,朱林,唐忠廉,等.存在逆反应的线性缩聚反应产物分子量分布利反应动力学的Monte Carlo模拟[J].青岛大学学报,1996,9(3):64-68.
    108 陆建明,孙猛,杨玉良.不等活性缩聚反应动力学及其分子量分布的Monte Carlo模拟[J].高分子学报,1994,(5):555-562.
    109 樊克,唐安斌,蔡兴贤.不等活性AA-BB型缩聚反应动力学的Monte Carlo模拟[J].四川大学学报(工程科学版),2000,32(2):59-62.
    110 唐敖庆.高分子反应统计理论[M].北京:科学出版社,1985.
    111 Moros R, Kalies H, Rex H G, et al. A genetic algorithm for generating initial parameter estimations for kinetic models of catalytic processes [J]. Computer and Chemical Engineering, 1996, 20(10): 1257-1270.
    112 Keith E, Edgar T F, Momusiouthakis V I. Kinetic model reduction using genetic algorithms [J]. Computer and Chemical Engineering, 1998, 22(1): 239-246.
    113 Balland L, Estet L, Cosmao J M, et al. A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters [J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 121-135.
    114 Balland L, Mouhab N, Cosmao J M, et al. Kinetic parameter estimation of solvent-free reactions: application to esterification of acetic anhydride by methanol [J]. Chemical Engineering and Processing, 2002, 41(5): 395-402.
    115 Harris S D, Elliott L, Ingham D B, et al. The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(8): 1065-1090.
    116 Elliott L, Ingham D B, Kyne A G, et al. The use of ignition delay time in genetic algorithms optimisation of chemical kinetics reaction mechanisms [J]. Engineering Applications of Artificial Intelligence, 2005, 18(7): 825-831.
    117 Elliott L, Ingham D B, Kyne A G, et al. Genetic algorithms for optimisation of chemical kinetics reaction mechanisms [J]. Progress in Energy and Combustion Science, 2004, 30(3): 297-328.
    118 Wei-fang Y, Hidajat K, Ray A K. Determination of adsorption and kinetic parameters for methyl acetate esterification and hydrolysis reaction catalyzed by Amberlyst 15 [J]. Applied Catalysis A: General, 2004, 260: 191-205.
    119 Zi-yang Z, Hidajat K, Ray A K. Determination of adsorption and kinetic parameters for methyl tert-butyl ether synthesis from tert-butyl alcohol and methanol [J]. Journal of Catalysis, 2001, 200(2): 209-221.
    120 Tae-yun P, Gilbert F F. A Hybrid Genetic Algorithm for the Estimation of Parameters in Detailed Kinetic Models [J]. Computers Chemical Engineerng, 1998, 22(1001): 103-110.
    121 Ramos P R, Borges P, Lemos M A N, et al. Kinetic modelling of the catalytic cracking of n-hexane and n-heptane over a zeolite catalyst [J]. Applied Catalysis A: General, 2004, 272(1-2): 23-28.
    122 Rui-qing Y, Bo-lun Y, Guang-xu C, et al. Kinetics research for the synthesis of branch ether using genetic-simulated annealing algorithm with multi-pattern evolution [J]. Chemical Engineering Journal, 2003, 94: 113-119.
    123 Long-yan W, Bo-lun Y, Zhi-wen W. Lumps and kinetics for the secondary reactions in catalytically cracked gasoline [J]. Chemical Engineering Journal, 2005, 109(1-3): 1-9.
    124 Wan-hua S, Hao-zhong H. Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion [J]. Fuel, 2005, 84(9): 1029-1040.
    125 Yang L, Wei Z, Xiao Y, et al. Quartz crystal biosensor for real-time kinetic analysis of interaction between human TNF-α and monoclonal antibodies [J]. Sensors and Actuators B, 2004, 99(2): 416-424.
    126 Hong-qing C, Jing-xian Y, Li-shan K, et al. The kinetic evolutionary modeling of complex systems of chemical reactions [J]. Computers & Chemistry, 1999, (23): 143-151.
    127 Krajca, Kenneth E. Flow process for polymerizing unconjugated unsaturation of fatty acids [P]. US: 4164505, 1979-08-14.
    128 Hui Y H主编.徐生庚,裘爱泳,主译.油脂化学与工艺学[M].北京:轻工业出版社,2001.
    129 Koster R M, Bogert M, Leeuw B, et al. Active sites in the clay catalysed dimerisation of oleic acid [J]. Journal of Molecular Catalysis A: Chemical, 1998, 134: 159-169.
    130 李同年,周持兴.乳液聚合法制备聚苯乙烯/蒙脱土插层复合材料fJ].中国塑料,2001,15(6):35-38.
    131 漆宗能,柯扬船,李强,等.一种聚酯/层状硅酸盐纳米复合材料及其制备方法[P].CN:97104055.2000-11-08.
    132 卢其明,余林梁,陈敏,等.聚乙二醇/蒙脱石插层复合物的制备及结构表征[J].华南农业大学学报,2004,25(1):112-114.
    133 郝向阳,刘吉平,冯顺山.插层剂对蒙脱土/PA6纳米塑料性能的影响[J].塑料工业,2002,30(3):48-51.
    134 王珂,朱湛,郭炳南,等.有机蒙脱土的制备及其结构表征[J].北京理工大学学报,2002,22(2):241-243.
    135 Michael A, Philippe D. Polymer-layered silicate nanocomposites: preparation, Properties and uses of a new class of materials [J]. Materials Science and Engineering, 2000, 28: 1-63.
    136 林祖稚,田顺宝,俞慧君.层间阳离子对蒙脱石性质的影响[J].无机材料学报.1992,(7):87-92.
    137 郭红英,冯光炷,李和平,等.脲包法寓集高纯度红花油亚油酸甲酯的研究[J].粮油加工与食品机械,2004,(12):41-43.
    138 吕建坤,秦明,柯毓才,等.几种高性能热塑性树脂与蒙脱土插层复合的研究[J].高分子学报,2002,(1):73-77.
    139 张小红,蔡立彬,尹国强,等.二次插层法制备有机蒙脱石的研究[J].现代化工,2003,23(11):38-40.
    140 武保华,王一中,余鼎声.有机蒙脱土的制备与表征[J].石油化工,1999,28(3):153-156.
    141 Mamora M, Masjhhiro S, Atsushi G. Process for polymering fatty acids and their esters [P]. US: 3773806, 1973-11-20.
    142 乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,(3):135-138.
    143 何平笙,杨海洋,朱平平,等.高分子物理实验[M].合肥:中国科学技术大学出版社,2002.
    144 王新兰,王利生.高温聚酯化反应动力学的研究(Ⅰ)聚酯化反应动力学模型[J].高分子材料科学与工程,2002,18(4):34-38.
    145 朱洪法,张宝臣,漆宗能,译.高分子材料的实验方法及评价[M].北京:化学工业出版社.1988.
    146 张培娜,黄发荣,王彬芳.改性脂肪族聚酯的生物降解性研究[J].华东理工大学学报,2001,27(1):64-67.
    147 金勇,董阳,魏德卿.高分子表面活性剂的合成[J].化学进展,2005,17(1):151-156.
    148 王学川,赵军宁.高分子表面活性剂的合成及其应用进展[J].皮革科学与工程,2004,14(6):24-30.
    149 宋照斌,宋启煌.高分子表面活性剂在水处理剂中的应用[J].精细化工,2000,17(12):700-703.
    150 潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2003.
    151 徐溢,曹京,郝明.高分子合成用助剂[M].北京:化学工业出版社精细化工出版中心,2002.
    152 李柚林,牛瑞霞,程杰成.亚甲基监-甲基橙混合指示剂测定三次采油用石油磺酸盐有效物含量[J].大庆石油地质与开发,2004,23(3):75-76.
    153 韩向丽.直接两相滴定法的应用研究[J].山两化工,2004,24(2):43-59.
    154 中国标准局.洗涤剂中阴离子活性物的测定.直接两相滴定法(GB 5173-85).北京:中国标准出版社,1985.
    155 葛虹,张胜利,陈丽英,等.辛基酚聚氧乙烯醚硫酸酯铵盐的合成与性能研究[J].精细石油化工,2000,(1):12-15.
    156 Hugh J S. Defoamer composition [P]. US: 3723342, 1973-03-27.
    157 胡惠仁,徐立新,董荣业.造纸化学品[M].北京:化学工业出版社,2002.
    158 季永新,黄李萍.聚醚酯消泡剂的制备[J].化工时刊,2004,18(11):55-56.
    159 季永新.松香聚醚酯消泡剂的制备研究[J].林产化学与工业,2005,25(4):71-73.
    160 毛培坤.表面活性剂产品工业分析[M].北京:化学工艺出版社,2002.
    161 梁百胜,王睿.有机硅消泡剂的应用[J].化学工业与化学技术,2002,23(4):6-7.
    162 Dussaud A, Han G B, Vignes A M, et al. Surface properties of protein alcoholic solutions [J]. Colloid Interface Sci., 1994, 167: 247-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700