联咪唑类金属配合物的合成、表征及其与DNA作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咪唑具有特异的质子接受性能、共轭酸碱性能及识别配位性能,享有“生命配体”之美誉。在自然界中,咪唑作为酶的活性中心功能基团,参与了不少重要的生物化学反应,对生命活动起着十分重要的作用。而含有两个咪唑环的2,2′-联咪唑(H_2biim)是一个多质子给予双齿配体,可以与许多金属形成结构独特的配合物,是配位化学、超分子化学及其相关领域的重要研究对象之一;而且它还是一个重要的生物分子,在生物学上有非常广泛的用途,特别是在合成模拟酶方面。因此,一方面,研究联咪唑类金属配合物的结构及其与DNA之间的作用机理,进一步探讨小分子的结构与其生物活性之间的关系,不仅能帮助人们从分子水平理解人的生命过程及其某些疾病的发病机理,而且还为人们通过分子设计来寻求临床上更为有效的药物和开发出新一代高效的DNA结构探针提供理论指导;另一方面,研究联咪唑及其金属配合物的氢键组装对于构建超分子体系具有重要意义。
     本文首先合成了几个含联咪唑及其衍生物的金属配合物,用元素分析、红外光谱、晶体衍射等对其结构进行了表征,并用紫外、荧光、电化学、粘度、凝胶电泳等实验技术和分子模拟理论技术,研究了这些配合物与DNA之间的相互作用。其次,合成了五个联咪唑及其金属配合物与苯羧酸通过氢键组装的超分子化合物,研究了其中的多种氢键模式和π-π相互作用。主要的研究结果概括如下:
     1.合成了联咪唑锰配合物Mn(H_3biim)_2(NCS)_2Cl_2和联咪唑镉配合物Cd(H_3biim)_2(NCS)_2Cl_2,晶体结构表明这两个配合物结构相似,均为中性化合物,联咪唑的一个氮原子被质子化,形成一价阳离子(H_3biim~+),它采取单齿配位,中心Mn(Cd)原子是六配位,其配位环境为畸变的八面体。摩尔电导实验和量化计算结果表明,它们在溶液中发生离解,形成配合物阳离子[Mn(H_3biim)_2(H_2O)_2]~(4+),[Cd(H_3biim)_2(H_2O)_2]~(4+)。与DNA相互作用的实验表明,这两个配合物主要是在沟面与DNA发生静电结合。DNA对锰配合物、镉配合物的荧光有猝灭作用,从中得到配合物与DNA的结合常数分别为1.48×10~4 L/mol(锰配合物)和1.98×10~4 L/mol(镉配合物)。凝胶电泳实验表明锰配合物在pH=7.2、37℃条件下能够切割质粒pBR322 DNA,其表观速率常数为0.20h~(-1),我们对其切割机理进行了初步探讨,推断其为水解切割;镉配合物也能在pH=7.2、37℃条件下切割质粒pBR322 DNA。
     合成了双甲基联咪唑双核铜(Ⅱ)配合物[Cu_2(Dmbiim)_4(H_2O)_2](ClO_4)_4·6H_2O(Dmbiim,1,1′-二甲基-2,2′-联咪唑),晶体结构表明,整个分子呈笼状,两个铜原子由1,1′-二甲基-2,2′-联咪唑桥联,两个铜原子之间的距离为3.065A。整个分子形成了两个互相交叉的通道,这样的通道在超分子材料中有着非常重要的意义。研究了该配合物与DNA之间的相互作用,实验结果发现该配合物通过静电作用与小牛胸腺DNA的小沟键合。另外,凝胶电泳实验表明该配合物在抗坏血酸存在的情况下,能够在pH=8.0、37℃条件下有效切割质粒pBR322 DNA。
     2.利用2,2′-联咪唑与4-氨基苯甲酸(PABA),3,4,5-三羟基苯甲酸(THBA),磺基水杨酸(5-SSA)之间的氢键作用合成了三个超分子化合物:4-氨基苯甲酸-2,2′-联咪唑盐酸盐(Ⅰ),3,4,5-三羟基苯甲酸-2,2′-联咪唑盐(Ⅱ),磺基水杨酸-2,2′-联咪唑盐(Ⅲ)。由于联咪唑中的氮原子被质子化,化合物中存在着各种各样的氢键作用模式。在化合物(Ⅰ)中,晶体结构中的基本单元是一个通过氢键模式R_2~2(9)和R_2~1(7)构成的氢键三聚体PABA…H_3biim~+…Cl~-,这个三聚体基本单元又通过N-H…Cl氢键相互作用形成了一维带状结构。这个一维带状结构进一步通过带与带之间的N-H…O弱氢键、相邻苯环和咪唑环之间的π-π堆积作用形成了三维网状结构。在化合物(Ⅱ)中,晶体中的基本单元是一个通过氢键模式R_2~2(9)构成的氢键三聚体THBA~-…H_4biim~(2+)…THBA~-,这个三聚体单元又通过O-H…O氢键进一步延伸成了三维网状结构。相邻的苯环与咪唑环之间、苯环与苯环之间的π-π堆积作用进一步稳定了该化合物的三维网状结构。在化合物(Ⅲ)中,含有两个构型不同的联咪唑阳离子H_3biim~+-1(N1,N2,N3,N4)和H_3biim~+-2(N5,N6,N7,N8)。由于H_3biim~+-1比H_3biim~+-2扭曲的更厉害,两个相邻的H_3biim~+-2通过R_2~2(10)环氢键肩并肩地连接,形成了中心对称的二聚体:[H_3biim~+-2…H_3biim~+-2];而两个相邻的H_3biim~+-1形成了不对称的二聚体:[H_3biim~+-1…H_3biim~+-1]。同时,H_3biim+-1与相邻的5-SSA~(2-)通过R_2~2(9)环氢键连接,而H_3biim~+-2与相邻的5-SSA~(2-)通过R_2~1(7)环氢键连接。而且,水分子与5-SSA~(2-)中的磺酸基团之间存在着O-H…O氢键作用,晶体中还有弱的C-H…O氢键,咪唑环和苯环之间还存在着π-π堆积作用。这些作用力共同促成了该化合物的三维网状结构。
     还合成了联咪唑镍配合物[Ni(H_2biim)_2(PABA)_2]Cl_2·2H_2O(PABA,4-氨基苯甲酸)和联咪唑钴配合物[Co(H_2biim)_2(H_2O)_2](isophthalate)·4H_2O(isophthalate,间苯二甲酸)。在镍配合物中,阳离子[Ni(H_2biim)_2(PABA)_2]~(2+),阴离子Cl~-和水分子通过N-H…Cl,O-H…Cl,O-H…O氢键相连形成二维网状结构,氢键模式为R_2~1(7)和R_4~4(12)。该二维网状结构进一步通过相邻苯环之间的π-π堆积作用形成了层状结构。在钴配合物中,阳离子[Co(H_2biim)_2(OH_2)_2]~(2+)与相邻的两个间苯二甲酸根阴离子通过环氢键R_2~2(9)相连,形成一维链状结构。由于间苯二甲酸中的两个羧酸基团处于间位位置,使这个链呈现波浪式。水分子通过O-H…O氢键把链连接成了二维网状结构。相邻的咪唑环和苯环之间,咪唑环和咪唑环之间的π-π堆积作用进一步稳定了该配合物的二维网状结构。
Imidazole, with the prestige of 'life ligand', has distinguished talents of proton acceptor, conjugated acid-base and recognition ability for coordination. In nature, imidazole participates in many important biochemical reactions, acting as the functional group in enzymes' active centers. 2,2'-biimidazole (Hzbiim), as a bidentate chelating ligand with multi-proton donor sites, has two imidazole rings and can coordinate to many metals, forming complexes with particular structures. Therefore, it is one of the most important objects that interested in coordination chemistry, supramolecular chemistry and other related fields. At the same time, it is an important biological molecule that used abroad in biology, especially in enzyme mimics. Therefore, on the one hand, a more profound study on the mechanism of the interaction of the complexes involving H_2biim with DNA, and the relationships between the molecular structure and biological activity will not only help us to understand the process of life on a molecular level and pathogenic mechanism of some illness, but also provide rationales for new drug designs, as well as a means to develop novel agents for exploring the structures of nucleic acids. On the other hand, it is significant to study hydrogen-bonded assemblies involving H_2biim and its complexes to build supramolecular system
     In this thesis, firstly, we synthesized several metal complexes from H_2biim and its derivatives, characterized their structures with the methods of elemental analyses (EA), IR and X-ray Crystallography. We also investigated the interaction between these complexes and DNA by using UV, fluorescent spectra, electrochemistry, viscosity measurements, gel electrophoresis and molecular modeling. Secondly, starting from H_2biim, we synthesized five supramolecular compounds assemblied through hydrogen-bonding, investigated the H-bonding patterns andπ-πinteractions. The main results include:
     1. Two complexes, i.e. Mn(H_3biim)_2(NCS)_2Cl_2 and Cd(H_3biim)_2(NCS)_2Cl_2 have been synthesized from H_2biim, their structures were determined by X-ray crystallography. The two complexes have similar structures and both are neutral compounds. One N atom in H_2biim is protonated, forming a H3biim+ cation. The later is an unidentate ligand, the central metal, Cd or Mn is six coordinated and adopts a distorted octahedral environment. Molar electrolytic conductivity and quantum chemistry calculations reveal that the two complexes are disociated in solution, forming the cations, [Mn(H_3biim)_2(H_2O)_2]~(4+) or [Cd(H_3biim)_2(H_2O)_2]~(4+). Investigations on the interaction between DNA and the complexes show that the binding mode of the two complexes with DNA is mainly electrostatic. We found that DNA can quench the fluorescence intensity of the complexes, and thus obtained their, binding constants to be 1.48×10~4 L/mol for Mn(H_3biim)_2(NCS)_2Cl_2 and 1.98×10~4 L/mol for Cd(H_3biim)_2(NCS)_2Cl_2, respectively. We also found that the complex [Mn(H_3biim)_2(NCS)_2Cl_2] can cleave plasmid pBR322 DNA at pH 7.2 and 37℃. Studies on the mechanism of DNA cleavage implicate that DNA cleavage mediated by [Mn(H_3biim)_2(NCS)_2Cl_2] occurs via a hydrolytic path. Also, the complex [Cd(H_3biim)_2(NCS)_2Cl_2] can cleave plasmid pBR322 DNA at pH 7.2 and 37℃.
     The binuclear copper(Ⅱ) complex with 1,1'-dimethyl-2,2'-biimidazole ligand, [Cu_2(Dmbiim)_4(H_2O)_2](ClO_4)_4·6H_2O (Dmbiim=1,1'-dimethyl-2,2'-biimidazole) was synthesized and determined by X-ray crystallography. The crystal structure reveals that the complex is cage-shaped, with two Cu atoms bridged by Dmbiim. The distance between the two Cu atoms is 3.065A and two channels crossed each other were formed. Such type of channels would be significant in the field of supramolecuar material. DNA-binding investigations show that the copper(Ⅱ) complex interacts with DNA through minor groove binding. In addition, we found that the copper(Ⅱ) complex can cleave circular plasmid pBR322 DNA efficiently in the presence of AH_2 (ascorbic acid) at pH 8.0 and 37℃.
     2. Supramolecular assemblies of 2,2'-biimidazole with 4-aminobenzoic acid(PABA), 3,4,5-trihydroxy benzoic acid(THBA) and 5-sulfosalicylic acid(5-S SA), i.e. 2-(2-1H-imidazolyl)-1H-imidazolium chloride-4-aminobenzoic acid (Ⅰ), 2,2'-bi-1H-imidazolium bis(3,4,5-trihydroxy benzoate) tetrahydrate (Ⅱ) and bis(2-(2-1H-imidazolyl)-1H-imidazolium) 3-carboxy-4-hydroxybenzene-sulfonate monohydrate (Ⅲ) have been synthesized and characterized by X-ray diffraction methods. Various H-bonds modes were found in these compounds owing to the protonization of N atoms in H_2biim. In compound (Ⅰ), a fundamental unit of the crystal structure consisting a hydrogen-bonded trimer: PABA…H_3biim~+…Cl~- via R_2~2 (9) and R_2~1 (7) forms a 1D ribbon through H-bond interactions. This 1D structure then extends into 3D via further H-bond andπ-πinteractions. In compound (Ⅱ), a fundamental unit of crystal structure consists of a hydrogen-bonded trimer: THBA~-…H_4biim~(2+)…THBA via R_2~2 (9), which forms a 3D network by H-bonds. The 3D stacking is strengthened in further byπ-πinteractions between phenyl and adjacent imidazole rings, phenyl and phenyl rings. In compound (Ⅲ), there are two different H_3biim~+ (H_3biim~+-1 involving N1, N2, N3, N4 and H_biim~+-2 involving N5, N6, N7, N8). Two adjacent H_3biim~+-2 species connect each other by a direct side-by-side interaction, forming a centrosymmetric [H_3biim~+-2…H_3biim~+-2] dimer via R_2~2 (10). While two adjacent H_3biim~+-1 species connect each other, yielding an unsymmetrical [H_3biim+-1…H_3biim~+-1] dimer via R_2~2 (10), which maybe the result of the more contorted H_3biim~+-1 than H_3biim~+-2. In addition, the H_3biim~+-1 cation and adjacent 5-SSA~(2-) anion species connect each other through cyclic R_2~2 (9) interaction, the H_3biim~+-2 cation and adjacent 5-SSA~(2-) anion species connect each other through cyclic R_2~2 (7) interaction. And more, there exist some O—H…O hydrogen-bonds between water molecules and O atoms of sulfonate groups in 5-SSA~(2-), weak C—H…O H-bonds and cation-anionπ-πstacking interactions in the compound. The overall interactions aforesaid result in the formation of the 3D network.
     Another two complexes, [Ni(H_2biim)_2(PABA)_2]Cl_2·2H_2O (PABA=4-aminobenzoic acid) and [Co(H_biim)_2(H_2O)_2](isophthalate)·4H_2O, deriving from H_2biim, have been synthesized and characterized by. X-ray crystallography. In Ni(Ⅱ) complex, the cation [Ni(H_2biim)_2(PABA)_2]~(2+), Cl~- anion and H_2O molecule connects together via R_2~1(7) and R_4~4(12), forming 2D network. This network then forms to layer structure byπ-πinteractions between adjacent benzene rings. In Co(Ⅱ) complex, the cation [Co(H_2biim)_2(OH_2)_2]~(2+) connects with two isophthalate anions via R_2~2 (9), forming a 1D-extended chain. The relative position of the carboxylate groups confers a wavy form to the 1D-array. This 1D structure then extends into 2D network structure via further O—H…O H-bonds andπ-πinteractions between imidazole and adjacent phenyl rings, imidazole and imidazole rings.
引文
[1] Cromer, D. T.; Ryan, R. R.; Storm, C. B. Structure of 2, 2'-biimidazole Acta Cryst. 1987, C43: 1435-1437.
    [2] Holmes, F.; Jones, K. M.; Torrible, E. G. Complex-forming agents similar to 2, 2'- bipyridyl. Part Ⅰ. Some ligands containing imidazole J. Chem. Soc. 1961, 4790-4794.
    [3] Mighell, A. D.; Reimann, C. W.; Mauer, F. A. The crystal and molecular structure of diaquobis- (2, 2'-biimidazole)niekel(Ⅱ) dinitrate, Ni(C_6H_6N_4)_2(H_2O)_2(NO_3)_2 Acta Cryst. 1969, B25: 60-66.
    [4] Barquin, M.; Garmendia, G. M. J.; Bellido, V. Synthesis and characterization of complexes of the first transition series cations with 2, 2'-biimidazole and 2, 2'-biimidazolate Trans. Met. Chem. 2003, 28: 356-360.
    [5] Kirchner, C.; Krebs, B. Pentacoordinate Zinc Complexes of Imidazole Nitrogen Donors as Structural Models for the Active Site in Enzymes: Preparation and Crystal Structures of (μ-2, 2'-Biimidazole)tetrakis(2, 2'-biimidazole)dizinc(Ⅱ) Tetraperchlorate Trihydrate and Bis(2, 2'-biimidazole)(formato)zinc(Ⅱ) Perchlorate Inorg. Chem. 1987, 26: 3569-3576.
    [6] Ye, B. H.; Xue, F.; Xue, G. Q.; Ji, L. N.; Mak, T. C. W. Syntheses and characterization of two monomeric zinc complexes containing aqua ligands Polyhedron 1999,18: 1785-1790.
    [7] Sang, R. L.; Xu, L. A Series of Single, Double, and Triple Me_2biim-Bridged Dinuclear, Trinuclear, and Polymeric Complexes: Syntheses, Crystal Structures, and Luminescent Properties Inorg. Chem. 2005, 44: 3731-3737.
    [8] Dance, I. G.; Abushamleh, A. S.; Goodwin, H. A. The crystal and molecular structure of Cis-dichlorobis(2,2'-biimidazole)iron(III) chloride monohydrate Inorg. Chim. Acta. 1980,43:217-221.
    [9] Didier, B.; Patrick, C, et al. Iron(II) Complexes of 2,2'-Biimidazole and 2,2'-Bibenzimidazole as Models of the Photosynthetic Mononuclear Non-Heme Ferrous Sites. Synthesis, Molecular and Crystal Structure, and Mossbauer and Magnetic Studies Inorg Chem. 1990,29: 4114-4122.
    [10] Martinez Lorente, M. A.; Dahan, F., et al. New Ferrous Complexes Based on the 2,2'-Biimidazole Ligand: Structural, Mossbauer, and Magnetic Properties of [ Fe~(II)(H_2biim)_2(CH_3OH)_2]OAc_2, [Fe~(II)(H_2bim)_3]CO_3, [Fe~(II)HbiM)_2]_n, and {Fe~(II)(bim)}_n Inorg Chem. 1995,34: 5346-5357.
    [11] Abushamleh, A. S.; Goodwin, H. A. Coordination of 2,2'-Biimidazole with Iron, Cobalt, Nickel and Copper Aust. J. Chem. 1979,32(3): 513-518.
    [12] Sakaguchi, U.; Addison, A. W. Spectroscopic and redox studies of some copper(II) complexes with biomimetic donor atoms: implications for protein copper centers J. Chem. Soc, Dalton. Trans. 1979, 4: 600-608.
    [13] Bencini, A.; Mani, F. Copper(II) complexes with 2,2'-Biimidazole Preparation and crystal structure determination of a complex of stoichiometry Cu_(1.5)Cl_3(H_2biim)_2 Inorg. Chim. Acta. 1988,154: 215-219.
    [14] Liu, S. J.; Su, C. C. Bonding Properties and electronic structures of mixed-ligand diethylenetriamine copper(II) complexes. Molecular structure of [Cu(biimidazole) (diethylenetriamine)](ClO_4)_2 Polyhedron 1996,15(7): 1141-1149.
    [15] Taokoro, M.; Toyoda, J., et al. Dimeric Hydrogen-Bonded Transition Metal Complex Containing Bidentate Mono-deprotonated 2,2'-Biimidazolate Ligand Chem. Lett. 1995, 24(8): 613-614.
    [16] Gao, X. L.; Wei, Y. B.; Li, Y. P.; Yang, P. Aqua(2,2'-bi-lH-imidazole)chloro- copper(II)chloro(iminodiacetato)-copper(II)monohydrate Acta Cryst. 2005, C61: 10-12.
    [17] Haddad, M. S.; Duesler, E. N.; Hendrickson, D. N. Magnetic-Exchange Interactions in Binuclear Transition-Metal Complexes. Imidazolate- and Biimidazolate-Bridged Copper(II) Complexes. Crystal Structure of μ-Biimidazolato-bis(1,l,4,7,7- Pentamethyldiethylenetriamine)dicopper(II) Tetraphenylborate Inorg. Chem. 1979, 18(1): 141-148.
    [18] Haj, M. A.; Quiros, M.; Salas, J. M. Structure of the adduct of bis(2,2'-biimidazole)copper(II) perchlorate with 4,7-dihydro-l,2,4-triazolo[l,5-a] pyrimidine-7-one J. Chem. Cryst. 2004,34(8): 549-552.
    [19] E1-Hefnawy, G. B.; E1-Kersh, M.; Etaiw, S. H.; E1-Tabbakh, R. Synthesis and structures of Octaaza Ni~(II) and Cu~(II) macrocyclic complexes containing biimidazole Polyhedron 1997,16(23): 3997-4004.
    [20] Sang, R. L.; Xu, L. Unprecedented quadruple Me2biim-bridged di- and tetranuclear complexes: Syntheses, structures and magnetic properties Inorga. Chim. Acta 2006, 359(8): 2337-2342.
    [21] Bhalla, R.; Helliwell, M.; Garner, C. D. Synthesis and structure of a 2 Cu~(II)2 Cu~I constellation ligated by the new biimidazole, bis(1-methyl-4,5-diphenylimidaz-2- oyl)carbinol Chem. Commun. 1996,8:921-922.
    [22] Sang, R.; Xu, L. Aquabis(2,2'-biimidazole)copper(II) dinitrate Acta. Cryst. 2005, E61: 793-795.
    [23] Nikolenko, L. N.; Tolmachevas, N. S., et al. "Complexing of Nickel(II) and Cobalt(II) Salts with 2,2'-Biimidazolyl and its Methyl Derivatives" Koord. Khim. (U.S.S.R.) 1975,1(8): 1054-1058.
    [24] Tadokoro, M.; Isobe, K., et al. Cation-Dependent Formation of Superstructures by One-Pot Self-Organization of Hydrogen-Bonded Nickel Complexes Angew. Chem. Int. Ed. 1999,38:95-98.
    [25] Mori, H.; Miyoshi, E. The Hydrogen Bond of the One-Dimensional Assembled Complex [Ni(2,2'-biimidazole)_2]: The Effect of Transition Metals on the Hydrogen Bond Bull. Chem. Soc. Jpn. 2004, 77(4): 687-690.
    [26] Comba, P.; Mayboroda, A.; Pritzkow, H. Homogeneous Hydrogenation Catalyzed by Trinuclear Rh~I-Os~(III)Rh~I Complexes Eur. J. Inorg. Chem. 2003,16: 3042-3046.
    [27] (a) Kaiser, S.W.; Saillant, R.B.; Butler, W.M.; Rasmussen, P. G. Rhodium and Iridium Complexes of Biimidazole. 1. Mononuclear and Dinuclear Species Inorg. Chem. 1976,15(11): 2681-2687.
    
    (b) Kaiser, S.W.; Saillant, R.B.; Butler, W.M.; Rasmussen, P. G Rhodium and Iridium Complexes of Biimidazole. 2. Tetranuclear Carbonyl Derivatives Inorg. Chem. 1976,15(11): 2688-2694.
    [28] Majumdar, P.; Peng, S. M.; Goswami, S. Biimidazole complexes of ML_2~(2+) [M = Ru or Os, L=2-(phenylazo)-pyridine]. Synthesis, structure and redox properties of mono- and di-nuclear complexes J. Chem. Soc, Dalton Trans. 1998,10: 1569-1574.
    [29] Majumdar, P.; Kamar, K. K.; Castifieirasb, A.; Goswami, S. Unusual binding mode of the biimidazolate bridging ligand in two novel heteropolynuclear complexes with an M_2Ag_2 [M = Ru(II) or Os(II)] core Chem. Commun. 2001,14: 1292-1293.
    [30] Panda, B. K.; Sengupta, S.; Chakravorty, A. Synthesis, Structure, and Properties of Biimidazole-Chelated Arylruthenium Complexes Eur. J. Inorg. Chem. 2004, 1: 178-184.
    [31] Majumdar, P.; Goswami, S.; Peng, S. M. Synthesis and redox properties of trinuclear ruthenium and osmium complexes containing 2,2'-biimidazolate as bridging ligand Polyhedron 1999,18: 2543-2548.
    [32] Kamar, K. K.; Falvello, L. R.; Fanwick, P. E.; Kim, J.; Goswami, S. Designed synthesis of a multimetallic system having Ru_4CU_2 core using trimetallic coordination of 2,2'-biimidazolate Dalton Trans. 2004,12: 1827-1831.
    [33] Ion, L.; Morales, D.; Perez, J., et al. Ruthenium biimidazole complexes as anion receptors Chem. Commun. 2006,1: 91-93.
    [34] Maiboroda, A.; Rheinwald, G.; Lang, H. Synthesis and X-ray structure of the homobinuclear 2,2'-biimidazole-bridged palladium(II) complex [{Pd(dppp)}_2(μ- biim)](OTf)_2 Inorg. Chem. Commun. 2001, 4: 381-383.
    [35] Casas, J. S.; Castineiras, A., et al. Pd(II) and Pt(II)complexes of 2,2'-biimidazole and its N,N'-dimethyl derivative. The cystal structure of [{PtBr(DMSO)}_2(Me_2bim)] (Me2bim=N,N'-dimethyl-2,2'-biimidazole) Polyhedron 2003, 22: 1113-1121.
    [36] Mayboroda, A.; Comba, P.; Pritzkow, H.; Rheinwald, G.; Lang, H.; Koten, G. van Heterotrinuclear Complexes of the Platinum Group Metals with 2,2'-Biimidazole as a Bridging Ligand Eur. J. Inorg. Chem. 2003, 9: 1703-1710.
    [37] Casas, J. S.; Castineiras, A.; Parajo, Y.; Sanchez, A.; Sanchez-Gonzalez, A.; Sordo, J. Synthesis and cytotoxicity of new Pt(IV) complexes of 2,2'-biimidazole and derivatives Polyhedron 2005, 24: 1196-1202.
    [38] Fortin, S.; Beauchamp, A. L. Preparation and Characterization of Oxorhenium(V) Complexes with 2,2'-Biimidazole: The Strong Affinity of Coordinated Biimidazole for Chloride Ions via N —H…Cl~- Hydrogen Bonding Inorg. Chem. 2000, 39: 4886-4893.
    [39] Fortin, S.; Beauchamp, A. L. Preparations, Characterizations, and Structures of (Biimidazole)dihalobis(triphenylphosphine)rhenium(III) Salts: Strong Ion-Pairing and Acid-Base Properties Inorg. Chem. 2001,40: 105-112.
    [40] Fortin, S.; Fabre, P.L.; Dartiguenave, M.; Beauchamp, A. L. Neutral and cationic biimidazoledihalogenobis(trimethylphosphine)-rheniurn(III) complexes: ion-pairing, acid-base and redox properties J. Chem. Soc., Dalton Trans. 2001, 23: 3520-3527.
    [41] Sang, R. L.; Xu, L. Counteranion-Induced Formation of cis and trans Singly and Doubly H_2biim-Bridged Di-, Hexa-, and Polymeric Ag-H_2biim Complexes Eur. J. Inorg. Chem. 2006, 6: 1260-1267.
    [42] Hester, C. A.; Baughman, R. G; Collier, H. L. A simple helix based on 2,2'-biimidazole. Crystal and molecular structure of [Ag(NO_3)(H_2biim)]_n Polyhedron 1997,16(16): 2893-2895.
    [43] Hester, C. A.; Collier, H. L. Synthesis and Characterization of Polymeric [CdBr_2(H_2biim)]_n Polyhedron 1996,15(23): 4255-4258.
    [44] Cancela, J.; Garmendia, M. J. G.; Quiros, M. Crystal structure, spectroscopy and magnetism of chlorobis(2,2'-biimidazole)oxovanadium(IV) chloride: the chloride anion as hydrogen bond acceptor forming infinite chains Inorg. Chim. Acta. 2001, 313: 156-159.
    [45] Sang, R. L.; Zhu, M. L.; Yang, P. Triaqua(2,2'-biimidazole)oxovanadium(IV) sulfate dehydrate Acta Cryst. 2002,E58: 172-175.
    [46] Sanchez Gonzalez, A.; Casas, J. S.; Sordo, J.; Umberto Russo, M. Diorganotin dihalide complexes of 2,2'-biimidazole. A preliminary study of their inhibitory effects on cell division J. Inorg. Biochem. 1990, 39(3): 227-235.
    [47] Piero M., Emanuele D., Willy L. Synthesis and Antiprotozoal Activity of Methylnitro Derivatives of 2,2'-Biimidazole J. Med. Chem. 1972,15(9): 926-930.
    [48] Matthews, D. P.; McCarthy, J. R., et al. Synthesis and Cardiotonic Activity of Novel Biimidazoles J. Med. Chem. 1990,33: 317-327.
    [49] Akutagawa, T.; Saito, G.; Kusunoki, M.; Sakaguchi, K. I. Multiplex Proton-Transfer and Electron-Transfer Natures Based on the 2, 2'-Bi-lH-imidazole System. II. Crystal Structures and Charge-Transfer Complex Formations Bull. Chem. Soc. Jpn. 1996,69:2487-2511.
    [50] Belanger, S.; Beauchamp, A. L. 2,2'-Bi(1H-imidazolium) Dichloride Acta Cryst. 1996, C52: 2588-2590.
    [51] Tadokoro, M.; Nakasuji, K. Hydrogen bonded 2,2'-biimidazolate transition metal complexes as a tool of crystal enginerring Coord. Chem. Rev. 2000,198: 205-218.
    [52] Tadokoro, M.; Shiomi, T.; Isobe, K.; Nakasuji, K. Cesium(I)-Mediated 3-D Superstructures by One-Pot Self-Organization of Hydrogen-Bonded Nickel Complexes Inorg. Chem. 2001, 40: 5476-5478.
    [53] Tadokoro, M.; Kanno, H., et al. Self-organizing super-structures formed from hydrogen-bonded biimidazolate metal complexes PNAS, 2002, 99: 4950-4955.
    [54] Ramirez, K.; Julian, A. R., et al. Supramolecular building blocks from modular self-assembly of biimidazole species. Crystal structure of 2-(2-lH-imidazolyl)-lH- imidazolium chloride monohydrate CrystEngComm. 2002, 4(38): 208-212.
    [55] Larssona, K.; Ohrstrom; L. A. (10,3)-b net by sulfate hydrogen-bonded biimidazolate complexes CrystEngComm. 2003, 5(38): 222-225.
    [56] Larssona, K.; Ohrstrom, L. Cobalt 2,2'-biimidazoIe complexes co-crystallised with di-acids —synthesis, structure and quantum chemical calculations CrystEngComm. 2004, 6(62): 354-359.
    [57] Atencio, R.; Chacon, M., et al. Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)_2(OH_2)_2]~(2+) (M= Co~(2+) Ni~(2+)) complexes and carboxylate modules Dalton Trans. 2004, 4: 505-513.
    [58] Atencio, R.; Bamirez, K., et al. Modular assembly between biimidazole complexes and chloride anions. Crystal structures of [Cu(biimidazole)_2]Cl_2 and [Zn(Cl)(biimidazole)_2]Cl Inorg. Chim. Acta. 2005, 358: 520-526.
    [59] Ye, B. H.; Ding, B. B.; Weng, Y. Q.; Chen, X. M. Multidimensional Networks Constructed with Isomeric Benzenedicarboxylates and 2, 2'-Biimidazole Based on Mono-, Bi-, and Trinuclear Units Cryst. Growth Des. 2005, 5(2): 801-806.
    [60] Ding, B. B.; Weng, Y. Q., et al. Pillared-Layer Microporous Metal-Organic Frameworks Constructed by Robust Hydrogen Bonds. Synthesis, Characterization, and Magnetic and Adsorption Properties of 2, 2'-Biimidazole and Carboxylate Complexes Inorg. Chem. 2005, 44: 8836-8845.
    [61] Ding, B. B.; Weng, Y. Q., et al. Robust Heteromeric Hydrogen-bonded Selfassemblies Based on [M(H_2biim)_2(H_2O)_n]~(2+)(M=Cd~(2+), Co~(2+), Zn~(2+); n=1, 2) Building Blocks and Carboxylates Supramol. Chem. 2005, 17(6): 475-483.
    [62] Yang, L. N.; Li, J.; Zhang, F. X. Tris(2, 2'-biimidazole)nickel(Ⅱ) phthalate Acta Cryst. 2005, E61: 2169-2171.
    [63] Hu, M. L.; Cai, X. Q.; Chen, J. X. catena-Poly[[(2, 2'-biimidazole-κ~2N, N') chlorocopper(Ⅱ)]-μ-chloro] Acta Cryst. 2005, C61: 403-405.
    [64] Sang, R. L.; Xu, L. Supramolecular architectures built of biimidazole complexes and sulfate or nitrate anions Polyhedron 2006, 25(10): 2167-2174.
    [65] Ghosh, A. K.; Jana, A. D., et al. Toward the Recognition of Enolates/Dicarboxylates: Syntheses and X-ray Crystal Structures of Supramolecular Architectures of Zn(Ⅱ)/Cd(Ⅱ) Using 2, 2'-Biimidazole Cryst. Growth Des. 2006, 6(3): 701-707.
    [66] Uson, R.; Gimeno, J., et al. Bi-imidazole (H_2bim) and bibenzimidazole η~3-allylic complexes of palladium(Ⅱ). Mono- and tetra-nuclear palladium(Ⅱ) and heteronuclear palladium(Ⅱ)-rhodium(Ⅰ) complexes. Crystal structure of [Pd_4(η~3-C_3H_6)_4(μbim)_2]-CH)2Cl_2 J. Chem. Soc. Dalton Trans. 1983, 8: 1729-1737.
    [67] Tadokoro, M.; Isobe, K., et al. Varieties of Crystalline Architecture by Using Hydrogen Bonding in Biimidazolate Metal Complex Systems. Part 1: Dimer Complex Mol. Cryst. Liq. Cryst. 1996, 278: 199-208.
    [68] (a) Tadokoro, M.; Isobe, K.; Nakasuji, K. Varieties of Crystalline Architecture by Using Hydrogen Bonding in Biimidazolate Metal Complex Systems. Part 2: One-Dimensional Linear Chains Mol. Cryst. Liq. Cryst. 1996, 278: 209-212.
    (b) Tadokoro, M.; Isobe, K.; Nakasuji, K. Varieties of Crystalline Architecture by Using Hydrogen Bonding in Biimidazolate Metal Complex Systems. Part 3: Zigzag One-Dimensional Chains Mol. Cryst. Liq. Cryst. 1996, 278: 213-216.
    (c) Tadokoro, M.; Isobe, K.; Nakasuji, K. Varieties of Crystalline Architecture by Using Hydrogen Bonding in Biimidazolate Metal Complex Systems. Part 4: Channel Structures Mol. Cryst. Liq. Cryst. 1996, 278: 217-220.
    (d) Tadokoro, M.; Isobe, K., et al. Varieties of Crystalline Architecture by Using Hydrogen Bonding in Biimidazolate Metal Complex Systems. Part 5: Double-Interlocking Honeycomb Sheet Mol. Cryst. Liq. Cryst. 1996, 278: 221-224.
    [69] Tadokoro, M.; Shiomi, T.; Shiromizu, T.; Isobo, K.; Matsumoto, K.; Nakasuji, K. Preparation of Nanoporous Molecular Based-Solid Produced by Tris-2, 2'-Biimidazolate Co~Ⅲ Complexes Mol. Cryst. Liq. Cryst. 1997, 306: 235-239.
    [70] Ohrstrom, L.; Larsson, K.; Borg, S.; Norberg, S. T. Crucial Influence of Solvent and Chirality—The Formation of Helices and Three-Dimensional Nets by Hydrogen-Bonded Biimidazolate Complexes Chem. Eur. J. 2001, 7(22): 4805-4810.
    [71] Yuan, J. X. 2, 2'-Biimidazol-1-ium trichloroacetate Acta Cryst. 2005, E61: 3294-3296.
    [72] Yarmoluk, S. M.; Kovalska, V. B.; Kovtan, Y. P. Interaction of cyanine dye with nucleic acids V: toward model of "half intercalation" of monomethyne cyanine dyes into double stranded Biopolim. Kletka 1999, 15(1): 75-82.
    [73] Carvlin, M. J.; Fiel, R. J. Intercatative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA Nucleic Acids Res. 1983, 11(17): 6121-6139.
    [74] Huang, C. Z.; Li, Y. F., et al. Long range assembly of Nile blue sulphate on the molecular surface of nucleic acids and the determination of nucleic acids by triple wavelength resonance light-scatting technique Chin. J. Anal Chem. (in Chinese) 1999, 27(11): 1241-1247.
    [75] Gielen, M.; Lelieveld, P., et al. In vitro effect of organotin-substituted steroids in human tumor cell lines Inorg. Chim. Acta. 1992, 196(1): 115-117.
    [76] Shakked, Z; Guzikevich-Guerstein, G.; Frolow, F. Determinanats of repressor/operator recognition from the structure of the trp operator binding site Nature 1994, 368: 469-473.
    [77] 杨频,郭茂林.金属抗癌剂研究进展与两极互补理论 化学通报 1996,1:6-11.
    [78] 张立金.甲萘威、乙霉威和克百威与DNA的相互作用 中国农业大学硕士学位论文 2004.
    [79] 计亮年,张黔玲,刘劲刚.生物医学中DNA的结构、构象、作用机制及其生物功能的研究进展 中国科学(B辑),2001,31(3):193-204.
    [80] Reedijk, J. Improved understanding in platinum antitumour chemistry Chem. Commun. 1996, 7: 801-806.
    [81] 万荣,赵刚,陈晶,麻远,赵玉芬.人工核酸切割试剂研究进展 科学通报 2000,45(8):785-798.
    [82] Pogozelski, W. K.; Tullius, T. D. Oxidative Strand Scission of Nucleic Acids: Routes Initiated by Hydrogen Abstraction from the Sugar Moiety Chem. Rev. 1998, 98: 1089-1107.
    [83] Drew, H. R.; Wing, R. M., et al. Structure of a B-DNA Dodecamer: Conformation and Dynamics Proc. Natl. Acad. Sci. U. S. A. 1981, 78(4): 2179-2183.
    [84] Miaskiewicz, K.; Osman, R. Theoretical study on the deoxyribose radicals formed by hydrogen abstraction J. Am. Chem. Soc. 1992, 116(1): 232-238.
    [85] Alden, C. J.; Kim, S. J. Solvent-accessible surfaces of nucleic acids J. Mol. Biol. 1979, 132(3): 411-434.
    [86] Sigman, D. S.; Graham, D. R.; D'Aurora, V.; Stem, A. M. Oxygen-dependent cleavage of DNA by the 1, 10-phenanthroline cuprous complex. Inhibition of Escherichia coli DNA polymerase I J. Biol. Chem. 1979, 254: 12269-12272.
    [87] Pope, L. M.; Reich, K. A.; Graham, D. R.; Sigma, D. S. Products of DNA cleavage by the 1, 10-phenanthroline-copper complex. Inhibitors of Escherichia coli DNA polymerase I J. Biol. Chem. 1982, 257: 12121-12128.
    [88] Gopne, T. E.; Sigma, D. S. Nuclease activity of 1, 10-phenanthroline-copper ion. Chemistry of deoxyribose oxidation J. Am. Chem. Soc. 1987, 109(9): 2846-2948.
    [89] Kuwabara, M.; Yoon, C.; Goyne, T. Nuclease activity of 1, 10-phenanthroline-copper ion: reaction with CGCGAATTCGCG and its complexes with netropsin and Ecori Biochem. 1986, 25(23): 7401-7408.
    [90] Meijler, M. M.; Zelenko, O.; Sigma, D. S. Chemical Mechanism of DNA Scission by (1, 10-phenanthroline)copper. Carbony Oxygen of 5-Methylenefuranone Is Derived from Water J. Am. Chem. Soc. 1997,119(5): 1135-1136. [91] Burger, R. M. Cleavage of Nucleic Acids by Bleomycin Chem. Rev. 1998, 98(3): 1153-1170.
    [92] Hildebrand, K.; Schulte-Frohlinde, D. ESR Studies on the Mechanism of hydroxyl Radical-induced Strand Breakage of Polyuridylic Acid Int. J. Radiat. Biol. 1989, 55(5): 725-738.
    [93] Goodman, B. K.; Greenberg, M. M. Independent Generation and Reactivity of 2'-Deoxyurid-l'-yl J. Org. Chem. 1996, 61: 2-3.
    [94] Cook, G. P.; Greenberg, M. M. A Novel Mechanism for the Formation of Direct Strand Breaks upon Anaerobic Photolysis of Duplex DNA Containing 5-Bromodeoxyuridine J. Am. Chem. Soc. 1996,118(42): 10025-10030.
    [95] Sugiyama, H.; Tsutsumi, Y.; Fujimoto, K.; Saito, I. Photoinduced deoxyribose C2' oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction J. Am. Chem. Soc. 1993,115(11): 4443-4448.
    [96] Sugiyama, H.; Fujimoto, K., et al. Evidence for Intrastrand C2'-Hydrogen Abstraction in Photoirradiation of 5-Halouracil-Containing Oligonucleotides by Using Stereospecifically C2'-Deuterated Deoxyadenosine Tetrahedron Lett. 1996, 37(11): 1805-1808.
    [97] Shields, T. P.; Barton, J. K. Sequence-Selectiw DNA Recognition and Photocleavage: A comparison of Enantiomers of Rh(en)_2phi~(3+) Biochem. 1995, 34(46): 15037-15048.
    [98] Sitlani, A.; Long, E. C; Pyle, A. M.; Barton, J. K. DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(III): shape-selective recognition and reaction J. Am. Chem. Soc. 1992,114(7): 2303-2312.
    [99] Miaskiewicz, K.; Osman, R. Theoretical study on the deoxyribose radicals formed by hydrogen abstraction J. Am. Chem. Soc. 1992,116(1): 232-238.
    [100] Stubbe, J.; Kozarich, J. W. Mechanisms of bleomycin-induced DNA degradation Chem. Rev. 1987,87(5): 1107-1136.
    
    [101] Herzberg, R. P.; Dervan, P. B. Cleavage of DNA with methidiumpropyl-EDTA- iron(II): reaction conditions and product analyses Biochem. 1984, 23(17): 3934-3935.
    [102] Balasubramanian, B. The Johns Hopkins University, Baltimore, MD, 1996.
    [103] Hecht, S. M. Chemistry of activated bleomycin Acc. Chem. Res. 1986, 19(12): 383-391.
    [104] Burger, R. M.; Peisach, J.; Horwitz, S. B. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA J. Biol. Chem. 1981, 256: 11636-11644.
    [105] Burger, R. M.; Kent, T. A.; Horwitz, S. B.; Munck, E. Mossbauer study of iron bleomycin and its activation intermediates J. Biol. Chem. 1983,258: 1559-1564.
    [106] Sigman, D. S. Nuclease activity of 1,10-phenanthroline-copper ion Acc. Chem. Res. 1986,19(6): 180-186.
    [107] Jin, Y.; Cowan, J. A. DNA Cleavage by Copper-ATCUN Complex. Factors Influencing Cleavage Mechanism and Linearization of dsDNA J. Am. Chem. Soc. 2005,127: 8408-8415.
    [108] Alden, C. J.; Kim, S. J. Solvent-accessible surfaces of nucleic acids J. Mol. Biol. 1979,132(3): 411-434.
    [109] Pratviel, G.; Pitie, M; Bernadou, J.; Meunier, B. Furfural as a Marker of DNA Cleavage by Hydroxylation at the 5 Carbon of Deoxyribose Angew. Chem. Int. Ed. 1992, 30(6): 702-704.
    [110] Mohler, D. L.; Downs, J. R., et al. DNA Cleavage by the Photolysis of Cyclopentadienyl Metal Complexes: Mechanistic Studies and Sequence Selectivity of Strand Scission by CpW(CO)_3CH_3 J. Org. Chem. 2005, 70: 9093-9102.
    [111] Burrows, C. J.; Muller, J. G. Oxidative Nucleobase Modifications Leading to Strand Scission Chem. Rev. 1998, 98: 1109-1151.
    [112] Wetterhahn, K. E.; Hamilton, J. W.; Aiyar, J.; Borges, K. M.; Floyd, R. Mechanism of chromium(VI) carcinogenesis. Reactive intermediates and effect on gene expression Biol. Trace Elem. Res. 1989, 21: 405-411.
    [113] Misra, M.; Alcedo, J. A.; Wetterhahn, K. E. Two pathways for chromium(VI)- induced DNA damage in 14 day chick embryos: Cr-DNA binding in liver and 8-oxo-2'-deoxyguanosine in red blood cells Carcinogenesis 1994,15: 2911-2917.
    [114] Kawahishi, S.; Inoue, S.; Yamanoto, K. Environ. Health Perspect 1994, 102(3): 17-20.
    [115] Gravert, D. J.; Griffin, J. H. Steric and Electronic Effects, Enantiospecificity, and Reactive Orientation in DNA Binding/Cleaving by Substituted Derivatives of [SalenMn~(III)] Inorg. Chem. 1996,35(17): 4837-4847.
    [116] Mastre, B.; Pratviel, G.; Meunier, B. Preparation and nuclease activity of hybrid "metallotris(methylpridinium)porphyrin oligonucleotide" molecules having a 3'-loop for protection against 3'-exonucleases Bioconjugate Chem. 1995, 6(4): 466-472.
    [117] Carter, P. J.; Cheng, C. C.; Thorp, H. H. Cleavage of Functionally Relevant Sites in Ferritin mRNA by Oxidizing Metal Complexes Inorg. Chem. 1996, 35(10): 2773-2779.
    
    [118] Pyle, A. M.; Barton, J. K. Probing nucleic acids with transition metal complexes Prog. Inorg.Chem. 1990,38: 413-475.
    [119] Burrows, C. J.; Muller, J. G. Oxidative Nucleobase Modifications Leading to Strand Scission Chem. Rev. 1998,98(3): 1109-1151.
    [120] Iverson, B. L.; Dervan, P. B. Adenine specific DNA chemical sequencing reaction Nucleic Acids Res. 1987,15: 7823-7830.
    [121] Muller, J. G.; Burrows, C. J. Metallodrug complexes that mediate DNA and lipid damage via sulfite autoxidation: copper(II) famotidine and iron(III) bis(salicyglycine) Inorg. Chim. Acta. 1998,275-276: 314-319.
    [122] Maheswari, P. U.; Roy, S., et al. The Square-Planar Cytotoxic [Cu~(II)(pyrimol)Cl] Complex Acts as an Efficient DNA Cleaver without Reductant J. Am. Chem. Soc. 2006,128:710-711.
    [123] Peng, B.; Chao, H.; Sun, B., et al. Synthesis, DNA-binding and photocleavage studies of cobalt(III) mixed-polypyridyl complexes: [Co(phen)_2(dpta)]~(3+) and [Co(phen)_2(amtp)]~(3+) J. Inorg. Biochem. 2007,101: 404-411.
    [124] Selvakumar, B.; Rajendiran, V., et al. Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: The novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage J. Inorg. Biochem. 2006,100(3): 316-330.
    [125] Chin, J.; Banaszczyk, M., et al. Cobalt(III) complex-promoted hydrolysis of phosphate diesters: comparison in reactivity of rigid cis-diaquo(tetraaza)cobalt(III) complexes J. Am. Chem. Soc. 1989,111(1): 186-190.
    [126] Bruice, T. C.; Teubouchi, A., et al. One-metal and 2-metal ion catalysis of the hydrolysis of adenosine 3'-alkyl phosphate-esters models for one-metal and 2-metal ion catalysis of RNA hydrolysis J. Am. Chem. Soc. 1996, 118(41): 9867-9875.
    [127] Basile, L. A.; Raphael, A. L.; Barton, J. K. Metal-activated hydrolytic cleavage of DNA J. Am. Chem. Soc. 1987, 109(24): 7550-7551.
    [128] Rossi, L. M.; Neves, A., et al. Hydrolytic activity of a dinuclear copper(Ⅱ, Ⅱ) complex in phosphate diester and DNA cleavage Inorg. Chim. Acta. 2002, 337: 366-370.
    [129] De Iuliis, G. N.; Lawrance, G. A.; Fieuw-Makaroff, S. Superior hydrolytic DNA cleavage by a dinuclear copper(Ⅱ) N_4S_4-donor complex compared with a mononuclear N_2S_2-donor close analogue Inorg. Chem. Commun. 2000, 3: 307-309.
    [130] Humphreys, K. J.; Karlin, K. D.; Rokita, S. E. Efficient and Specific Strand Scission of DNA by a Dinuclear Copper Complex: Comparative Reactivity of Complexes with linked Tris(2-pyridylmethyl)amine Moieties J. Am. Chem. Soc. 2002, 124: 6009-6019.
    [131] Takenaka, S.; Ihara, T.; Tagaki, M. Cleavage of double helical DNA by Cu~(2+) ion in the presence of bisintercalator containing penta(ethylene glycol) connector chain J. Mol. Recognit. 1990, 3(4): 156-162.
    [132] Scarpellini, M.; Neves, A., et al. Phosphate Diester Hydrolysis and DNA Damage Promoted by New cis-Aqua/Hydroxy Copper(Ⅱ) Complexes Containing Tridentate Imidazole-rich Ligands Inorg. Chem. 2003, 42(25): 8353-8365.
    [133] Cheng, C. C.; Huang, Y. C.; Liu, M. C. DNA hydrolysis by tris-triazacyclononanes metal complexes J. Inorg. Biochem. 2003, 96(1): 115-115.
    [134] Rossi, L. M.; Neves, A., et al. Synthesis, structure and properties of unsymmetrical μ-alkoxo-dicopper(Ⅱ) complexes: biological relevance to phosphodiester and DNA cleavage and cytotoxic activity Inorg. Chem. Acta. 2005, 358(6): 1807-1822.
    [135] Surendra Babu, M. S.; Hussain Reddy, K.; Krishna, P. G. Synthesis, characterization, DNA interaction and cleavage activity of new mixed ligand copper(Ⅱ) complexes with heterocyclic bases Polyhedron 2007, 26: 572-580.
    [136] 余四旺,刘长林,李东风,廖展如,徐辉碧.双核锌配合物Zn_2(DTPB)Cl_4水解DNA 无机化学学报 2002,18(11):1112-1118.
    [137] Kaminskaia, N. V.; He, C; Lippard, S. J. Reactivity of μ-Hydroxodizinc(II) Centers in Enzymatic Catalysis through Model Studies Inorg. Chem. 2000,39: 3365-3373.
    [138] Sissi, C.; Rossi, P., et al. Dinuclear Zn~(2+) Complexes of Synthetic Heptapeptides as Artificial Nucleases J. Am. Chem. Soc. 2001,123: 3169-3170.
    [139] Korupoju, S. R.; Mangayarkarsi, N., et al. Synthesis, Structure, and DNA Cleavage Activity of New Trinuclear Zn_3 and Zn_2Cu Complexes of a Chiral Macrocycle: Structural Correlation with the Active Center of P1 Nuclease Inorg. Chem. 2002, 41(16): 4099-4101.
    [140] Kong, D. Y.; Reibenspies, J.; Mao, J. G. Novel 30-membered octaazamacrocyclic ligand: synthesis, characterization, thermodynamic stabilities and DNA cleavage activity of homodinuclear copper and nickel complexes Inorg. Chim. Acta. 2003, 342: 158-170.
    [141] Dixon, N. E.; Geue, R. J., et al. DNA hydrolysis by stable metal complexes Chem. Commun. 1996,11: 1287-1288.
    [142] Hettich, R.; Schneider, H. J. Supramolecular chemistry. Part 71. Evidence for hydrolytic DNA cleavage by lanthanide(III) and cobalt(III) derivatives J. Chem. Soc, Perkin Trans. 2, 1997,10: 2069-2072.
    [143] Tian, J. L.; Feng, L., et al. Synthesis, crystal structure, magnetic property and nuclease activity of a new binuclear cobat(II) complex J. Inorg. Biochem. 2007,101: 196-202.
    [144] Neves, A.; Ternzi, H., et al. Hydrolytic DNA cleavage promoted by a dinuclear iron(III) complex Inorg. Chem. Commun. 2001, 4: 388-391.
    [145] Liu, C. L.; Wang, M.; Zhang, T. L.; Sun, H. Z. DNA hydrolysis promoted by di- and multi-nuclear metal complexes Coord. Chem. Rev. 2004,248: 147-168.
    [146] Branum, M. E.; Tipton, A. K., et al. Double-Strand Hydrolysis of Plasmid DNA by Dicerium Complexes at 37°C J. Am. Chem. Soc. 2001,123: 1898-1904.
    [147] Branum, M. E.; Que, L. Double-strand DNA hydrolysis by dilanthanide complexes J. Biol. Inorg. Chem. 1999, 4(5): 593-600.
    [148] Rammo, J.; Hettich, R.; Roigk, A.; Schneider, H. J. Catalysis of DNA cleavage by lanthanide complexes with nucleophilic or intercalating ligands and their kinetic characterization Chem. Commun. 1996,1: 105-107.
    [149] Zhu, B. Z.; Zhao, D. Q., et al. Lanthanide binuclear macrocyclic complexes as synthetic enzymes for the cleavage of DNA J. Mol. Catal. A: Chemical 1998, 135(1): 107-110.
    [150] Kovacic, R. T.; Welch, J. T.; Franklin, S. J. Sequence-Selective DNA Cleavage by a Chimeric Metallopeptide J. Am. Chem. Soc. 2003,125(22): 6656-6662.
    [151] Kitamura, Y.; Sumaoka, J.; Komiyama, M. Hydrolysis of DNA by cerium(IV)/EDTA complex Tetrahedron 2003, 59(52): 10403-10408.
    [152] Chen, W.; Kitamura, Y., et al. Site-Selective DNA Hydrolysis by Combining Ce(IV)/EDTA with Monophosphate-Bearing Oligonucleotides and Enzymatic Ligation of the Scission Fragments J. Am. Chem. Soc. 2004,126: 10285-10291.
    [153] Zelder, F. H.; Mokhir, A. A.; Kramer, R. Sequence Selective Hydrolysis of Linear DNA Using Conjugates of Zr(IV) Complexes and Peptide Nucleic Acids Inorg. Chem. 2003, 42(26): 8618-8620.
    [154] Tan, J.; Wang, B.; Zhu, L. Hydrolytic cleavage of DNA by quercetin manganese(II) complexes Colloids and surfaces B: Biointerfaces, 2007, 55: 149-152.
    [155] Tan, J.; Wang, B.; Zhu, L. Hydrolytic cleavage of DNA by quercetin zinc(II) complex Bioorganic & Medicinal Chemistry Letters 2007,17: 1197-1199.
    [156] Reddy, P. R.; Rao, K. S.; Satyanarayana, B. Synthesis and DNA cleavage properties of ternary Cu(II) complexes containing histamine and amino acids Tetrahedron Letters 2006, 47: 7311-7315.
    [157] Uma, V.; Kanthimathi, M.; Subramanian, J.; Balachandran Unni Nair A new dinuclear biphenylene bridged copper(II) complex: DNA cleavage under hydrolytic conditions Biochimica et Biophysica Acta 2006,1760: 814-819.
    [158] Chen, W.; Kitamura, Y, et al. Site-Selective DNA Hydrolysisby Combining Ce(IV)/EDTA with Monophosphate-Bearing Oligonucleotides and Enzymatic Ligation of the Scission Fragments J. Am. Chem. Soc. 2004,126: 10285-10291.
    [159] Schnaith, L. M. T.; Hanson, R. S.; Que, L. J. Double-Stranded Cleavage of pBR322 by a Diiron Complex via a "Hydrolytic" Mechanism Proc. Natl. Acad. Sci. U.S.A. 1994, 91(1): 569-573.
    [160] Ren, R.; Yang, P.; Zheng, W. A Simple Copper(II)-L-Histidine System for Efficient Hydrolytic Cleavage of DNA Inorg. Chem. 2000,39(26): 5454-5463.
    [161] Song, Y. F.; Yang, P. Synthesis, DNA Scission Chemistry, and Investigation of the Reactive Oxygen Species of Two 2, 6-Dimethoxyhydroquinone-3-Mercaptoacetic Acid-Peptide Conjugates Austr. J. Chem. 2001, 54(4): 253-259.
    [162] Yang, P.; Ren, R., et al. Double-strand hydrolysis of DNA by a magnesium(Ⅱ) complex with diethylenetriamine J. Biol. Inorg. Chem. 2004, 9(4): 495-506.
    [163] 杨频,周春琼.两种新稀土双核配合物的合成、表征及其对磷酸二酯键模型物(BDNPP)和DNA的作用研究 化学学报 2003,361(9):1455-1460.
    [164] 杨频,周春琼,李树娥.Ni(Ⅱ)与Hbbimp的配合物的合成、表征及晶体结构 无机化学学报 2003,19(4):415-418.
    [165] 周春琼,高飞,李树娥,杨频.Eu(Ⅲ)与Hbbimp的配合物的合成、表征及与活化磷酸二酯键模型物BDNPP的水解动力学研究 中国稀土学报 2003,21(5):499-503.
    [166] Wright, D. J.; Jack, W. E.; Modrich, P. The Kinetic Mechanism of EcoRI Endonuclease J. Boil. Chem. 1999, 274(45): 31896-31902.
    [167] Behrnoaras, T.; Toulme, J. J.; Helene, C. A. tryptophan-containing peptide recognizes and cleaves DNA at apurinic sites Nature 1981, 292: 858-859.
    [168] Pierre, J.; Laval, J. Specific nicking of DNA at apurinic sites by peptides containing aromatic residues J. Biol. Chem. 1981, 256: 10217-10220.
    [169] Zamecnik, P. C.; Stephenson, M. L. Inhibition of Rous sarcoma Virus Replication and Cell Transformation by a Specific Oligodeoxynucleotide Proc. Natl. Acad Sci. USA 1978, 75(1): 280-284.
    [170] Sigman, D. S.; Chen, C. B. Chemical nucleases: new reagents in molecular biology Annu. Rev. Biochem. 1990, 59: 207-236.
    [171] Chen, C. H. B.; Gorin, M. B.; Sigman, D. S. Sequence specific scission of DNA by the chemical nuclease activity of 1, 10-phenanthroline-copper(Ⅱ) targeted by RNA Proc. Natl. Acad Sci. USA 1993, 90(9): 4206-4210.
    [172] 刘长林,徐辉碧,周中炎.特异性识别和切割DNA的金属配合物 化学通报 1995,8:26-31.
    [173] 原彩霞,杨频.金属配合物-寡聚核苷酸定位断裂剂研究进展 化学进展 2005,17:78-84.
    [174] Ebright, R. H.; Ebright, Y. W., et al. Conversion of a helix-ture-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent Proc. Natl. Acad Sci. USA 1990, 87(8): 2882-2886.
    [175] Mack, D. P.; Dervan, P. B. Sequence-specific oxidation cleavage of DNA by a designed metalloprotein, Ni(Ⅱ)·GGH(Hin 139-190) Biochem. 1992, 31(39): 9399-9405.
    [176] White, S.; Szewczyk, J. W., et al. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands Nature 1998, 391(6666): 468-471.
    [177] Schultz, P. G.; Taylor, J. S.; Dervan, P. B. Design synthesis of a sequence-specific DNA cleaving molecule. (Distamycin-EDYA)iron(Ⅱ) J. Am. Chem. Soc. 1982, 104(24): 6861-6863.
    [178] Pitíe, M.; van Horn, J. D., et al. Targeting the DNA Cleavage Activity of Copper Phenanthroline and Clip-Phen to A·T Tracts via Linkage to a Poly-N-methylpyrrolle Bioconjugate Chem. 2000, 11: 892-900.
    [179] Nielsen, P. E.; Egholm, M.; Buchardt, O. Peptide nucleic acid (PNA)-A DNA mimic with a peptide backbone Bioconjugate Chem. 1994, 5(1): 3-7.
    [180] Egholm, M.; Buchardt, O., et al. Peptide nucleic acids (PNA) oligonucleotide analogues with an achiral peptide backbone J. Am. Chem. Soc. 1992, 114: 1895-1897.
    [181] Lohse, J.; Hui, C.; Sonnichsen, S. H.; Nielson, P. E. Sequence selective DNA cleavage by PNA-NTA conjugates. DNA and RNA cleavers and chemoyherapy of cancer and viral diseases, Meunier B ed, Dordrecht/Boston/London: Kluwer Academic Publishers, 1995, 133-141.
    [182] 何忠效,张树政.电泳科学出版社,1999,11.
    [183] 杨频,高飞.生物无机化学原理 科学出版社 2002.
    [184] Liu, J.; Zhang, T., et al. DNA-binding and cleavage studies of macrocyclic copper(Ⅱ) complexes J. Inorg. Biochem. 2002, 91: 269-276.
    [185] Sastri, C. V.; Eswaramoorthy, D.; Giribabu, L.; Maiya, B. G. DNA interactions of new mixed-ligand complexes of cobalt(Ⅲ) and nickel(Ⅱ) that incorporate modified phenanthroline ligands J. Inorg. Biochem. 2003, 94: 138-145.
    [186] 沈同,王镜岩.生物化学 第二版,高等教育出版社 1990,347.
    [187] Pasternack, R. F.; Gibbs, E. J.; Villafranca, J. J. Interactions of porphyrins with nucleic acids Biochem. 1983, 22(10): 2406-2414.
    [188] Kumar, C. V.; Turner, R. S.; Asuncion, E. H. Groove binding ofa styrylcyanine dye to the DNA double helix: the salt effect J. Photochem. Photobiol. A: Chem. 1993, 74: 231-238.
    [189] Lincoln, P.; Norden, B. DNA Binding Geometries of Ruthenium(Ⅱ) Complexes with 1, 10-Phenanthroline and 2, 2'-Bipyridine Ligands Studied with Linear Dichroism Spectroscopy. Borderline Cases of Intercalation J. Phys. Chem. B. 1998, 102(47): 9583-9594.
    [190] Rehmann, J. P.; Barton, J. K. Proton NMR studies of tris(phenanthroline) metal complexes bound to oligonucleotides: characterization of binding modes Biochem. 1990, 29(7): 1701-1709.
    [191] 孙雪光,曹恩华.双链,三链,四链DNA与溴乙锭相互作用的荧光研究 中国科学(B辑)1998,28(6):554-560.
    [192] Kumar, C. V.; Asuncion, E. H. Sequence dependent energy transfer from DNA to a simple aromatic chromophore J. Chem. Soc., Chem. Commun. 1992, 6: 470-472.
    [193] Yang, G.; Ji, L. N., et al. Synthesis and crystal structures of ruthenium(Ⅱ) complexes with polypyridyl: [Ru(bpy)_2(AFO)](ClO_4)_2·H_2O and [Ru(dmp)_2(AFO)](ClO_4)_2·1/2DMF·1/2MeCN Transit. Met. Chem. 1998, 23(3): 273-276.
    [194] Kumar, C. V.; Asuncion, E. H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe J. Am. Chem. Soc. 1993, 115(19): 8547-8553.
    [195] Pang, D. W.; Abruna, H. D. Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules Anal Chem. 1998, 70(15): 3162-3169.
    [196] Zhao, Y. D.; Pang, D. W., et al. DNA-modified electrodes. Part 2. Electrochemical characterization of gold electrodes modified with DNA J. Electroanal. Chem. 1997, 413: 203-209.
    [197] Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Tris(phenanthroline)ruthenium (Ⅱ) enantiomer interactions with DNA: Mode and specificity of binding Biochem. 1993, 32(10): 2573-2584.
    [198] Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Neither A- nor A-tris (phenanthroline)ruthenium(Ⅱ) binds to DNA by classical intercalation Biochem. 1992, 31(39): 9319-9324.
    [199] Brun, A. M.; Harriman, A. Energy- and Electron-Transfer Processes Involving Palladium Porphyrins Bound to DNA J. Am. Chem. Soc. 1994, 116(23): 10383-10393.
    [1] Shi, S.; Liu, J.; Zheng, K. C.; Huang, X. M.; Tan, C. P.; Chen, L. M.; Ji, L. N. Synthesis, Characterization and DNA-binding of novel chiral complexes Δ- and Λ-[Ru(bpy)_2L]~(2+) (L=o-mopip and p-mopip) J. Inorg. Biochem. 2006, 100(3): 385-395.
    [2] Nordell, P.; Lincoln, P. Mechanism of DNA Threading Intercalation of Binuclear Ru Complexes: Unior Bimolecular Pathways Depending on Ligand Structure and Binding Density J. Am. Chem. Soc. 2005, 127: 9670-9671.
    [3] Wu, J. Z.; Yuan, L.; Yu, Y. Effect of copper ion on DNA intercalating behavior of a chelation unsaturated diruthenium polypyridyl complex Inorg. Chim. Acta. 2006, 359: 718-720.
    [4] Han, M. J.; Gao, L. H.; Lu, Y. Y.; Wang, K. Z. Ruthenium(II) Complex of Hbopip: Synthesis, Characterization, pH-Induced Luminescence "Off-On-Off" Switch, and Avid Binding to DNA.J Phys. Chem. B 2006,110: 2364-2371.
    [5] Arjmand, F.; Mohani, B.; Ahmad, S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex Eur. J. Med. Chem. 2005,40: 1103-1110.
    [6] Kapp, T.; Dullin, A,; Gust, R. Mono- and Polynuclear [Alkylamine]platinum(II) Complexes of [l,2-Bis(4-fluorophenyl)ethylenediamine]platinum(II): Synthesis and Investigation on Cytotoxicity, Cellular Distribution, and DNA and Protein Binding J. Med. Chem. 2006,49: 1182-1190.
    [7] Chin, J.; Banaszczyk, V.; Jubian, V. Cobalt(III) complex-promoted hydrolysis of phosphate diesters: comparison in reactivity of rigid cis-diaquo(tetraaza)cobalt(III) complexes J. Am. Chem. Soc. 1989,111(1): 186-190.
    [8] Dervan, P. B. Design of sequence-specific DNA-binding molecules Science 1986, 232(4749): 464-471.
    [9] Giese, B.; Beyrich-Graf, X.; Burger, J.; Kesselheim, C; Senn, M.; Schafer, T. The Mechanism of Anaerobic, Radical-Induced DNA Strand Scission Angew. Chem. Int. Ed. 1993,32(12): 1742-1743.
    [10] Scarpellini, M.; Neves, A.; Horner, R.; Bortoluzzi, A. J.; Szpoganics, B.; Zucco, C; Nome Silva, R. A.; Drago, V.; Mangrich, A. S.; Ortiz, W. A.; Passos, W. A. C; de Oliveira, M. C. B.; Terenzi, H. Phosphate Diester Hydrolysis and DNA Damage Promoted by New cis-Aqua/Hydroxy Copper(II) Complexes Containing Tridentate Imidazole-rich Ligands Inorg. Chem. 2003, 42(25): 8353-8365.
    [11] Kovacic, R. T.; Welch, J. T.; Franklin, S. J. Sequence-Selective DNA Cleavage by a Chimeric Metallopeptide J. Am. Chem. Soc. 2003,125: 6656-6662.
    [12] Zelder, F. H.; Mokhir, A. A.; Kramer, R. Sequence Selective Hydrolysis of Linear DNA Using Conjugates of Zr(IV) Complexes and Peptide Nucleic Acids Inorg. Chem. 2003, 42(26): 8618-8620.
    [13] Kitamura, Y.; Sumaoka, J.; Komiyama, M. Hydrolysis of DNA by cerium(IV)/EDTA complex Tetrahedron 2003, 59(52): 10403-10408.
    [14] Yang, P.; Ren, R.; Guo, M.; Song, A.; Meng, X.; Yuan, C; Zhou, Q.; Chen, H.; Xiong, Z.; Gao, X., Double-strand hydrolysis of DNA by a magnesium(Ⅱ) complex with diethylenetriamine J. Biol. Inorg. Chem. 2004, 9(4): 495-506.
    [15] Hu, M. L.; Cai, X. Q.; Chen, J. X. catena-Poly[[(2, 2'-biimidazole- κ~2N, N') chlorocopper(Ⅱ)]-μ-chloro] Acta Cryst. 2005, C61: 403-405.
    [16] Sang, R. L.; Xu, L. Supramolecular architectures built of biimidazole complexes and sulfate or nitrate anions Polyhedron 2006, 25(10): 2167-2174.
    [17] Ghosh, A. K.; Jana, A. D.; Ghoshal, D.; Mostafa, G.; Ray Chaudhuri, N. Toward the Recognition of Enolates/Dicarboxylates: Syntheses and X-ray Crystal Structures of Supramolecular Architectures of Zn(Ⅱ)/Cd(Ⅱ) Using 2, 2'-Biimidazole Crystal Growth & Design 2006, 6(3): 701-707.
    [18] Boinnard, D.; Cassoux, P.; Petrouleas, V.; Savariault, J. M. Iron(Ⅱ) complexes of 2, 2'-biimidazole and 2, 2'-bibenzimidazole as models of the photosynthetic mononuclear non-heme ferrous sites. Synthesis, molecular and crystal structure, and Moessbauer and magnetic studies. Inorg. Chem. 1990, 29: 4114-4122.
    [19] Casas, J. S.; Castineiras, A.; Parajo, Y.; Perez-Paralle, M. L.; Sanchez, A.; Sanchez-Gonzalez, A.; Sordo, J. Pd(Ⅱ) and Pt(Ⅱ)complexes of 2, 2'-biimidazole and its N, N'-dimethyl derivative. The cystal structure of [{PtBr(DMSO)}_2(Me_2bim)] (Me_2bim=N, N'-dimethyl-2, 2'-biimidazole) Polyhedron, 2003, 22: 1113-1121.
    [20] Yang, P.; Guo, M. L. Interaction of some non-platinum metal anticancer complexes with nucleotides and DNA and Two-Pole Complementary Principle (TPCP) arising therefrom Met. Based Drugs 1998, 5(1): 41-58.
    [21] Thummel, R. P.; Goulle, V.; Chen, B. Bridged Derivatives of 2, 2'-Biimidazole J. Org. Chem. 1989, 54: 3057-3061.
    [22] Han, G. Y.; Yang, P. Synthesis and Characterization Water-insoluble and Water-soluble Dibutyltin(Ⅳ) Porphyrinate Based On Tris(pridinyl)porphtyrin Miotie and Their Activity of anti-Tumor in Vitro and Interaction With DNA J. Inorg. Biochem. 2002, 91(1): 230-236.
    [23] 曹瑛,何锡文.DNA与邻苯二胺—过氧化氢—过氧化物酶体系相互作用的光谱研究 分析化学 1998,26(10):1165-1168.
    [24] Son, G. S.; Yeo, J.A.; Kim, M. S.; Kim, S. K.; Holmén, A.; Akerman, B.; Nordén, B. Binding Mode of Norfloxacin to Calf Thymus DNA J. Am. Chem. Soc. 1998, 120(26): 6451-6457.
    [25] Lepecq, J. B.; Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids: Physical-Chemical characterization J. Mol. Biol. 1967, 27(1): 87-106.
    [26] Sigman, D. S., Mazurnder, A., Perrin, D. M. Chemical Nucleases Chem. Rev. 1993, 93: 2295-2316.
    [27] Satyanarayana, S., Dabrowiak, J. C., Chaires, J. B. Neither Δ- nor ΛTris(phenanthroline)ruthenium(Ⅱ) Binds to DNA by Classical Intercalation Biochem. 1992, 31(39): 9319-9324.
    [28] 卢圣栋.现代分子生物学实验技术 高等教育出版社,1993.
    [29] Grover, N.; Gupta, N.; Singh, P.; Thorp, H. H. Studies of electrocatalytic DNA cleavage by oxoruthenium(Ⅳ). X-ray crystal structure of [Ru(tpy)(tmen)OH_2] (ClO_4)_2 (tmen=N, N, N', N'-tetramethylethylenediamine, tpy=2, 2', 2"-terpyridine) Inorg. Chem. 1992, 31(11): 2014-2020.
    [30] Hester, C.; Baughrnan, R. G.; Collier, H. Crystal structure of trans-tetrachlorobis[2-(2-1H-imidazolyl)-1H-imidazolium]cadmium(Ⅱ), [Cd(H_3biim)_2Cl_4] J. Chem. Cryst. 1996, 26(10): 695-699.
    [31] 杨频,郭茂林,杨斌盛.二氯二钛与DNA作用的研究 科学通报 1993,38(22),2049-2052.
    [32] Pang D. W.; Abruna H. D. Micromethod for the investigation of the interactions between DNA and redox-active molecules Anal. Chem. 1998, 70: 3162-3169.
    [1] Goulle, V.; Thummel, R. P. Ruthenium(Ⅱ) Complexes of N, N'-Bridged Derivatives of 2, 2'-Biimidazole Inorg. Chem. 1990, 29: 1767-1772.
    [2] López, C.; Sanchez Gonzalez, A.; García, M. E.; Casas, J. S.; Sordo, J.; Graziani, R.; Casellato, U. Organotin compounds with 2, 2'-biimidazole derivatives. The crystal structure of dibromo(N, N'-dimethyl-2, 2'-biimidazole)dimethyltin(Ⅳ) J. Organomet. Chem. 1992, 434: 261-268.
    [3] Leal, M. P.; Sanchez Gonzalez, A.; García, M. E.; Casas, J. S.; Sordo, J. Complexes of diorganotin(Ⅳ) dihalides with N, N'-dimethyl-2, 2'-bisimidazole Appl. Organomet. Chem. 1993, 7: 421-424.
    [4] Casas, J. S.; Castineiras, A.; Parajó, Y.; Sordo J.; Varela, J. M (1, 1'-Dimethyl-2, 2'-biimidazole-N~3,N~(3'))diiodoplatinum(Ⅱ) Acta Cryst. 1998, C54: 1777-1779.
    [5] Casas, J. S.; Castineiras, A.; Parajo, Y.; Perez-Paralle, M. L.; Sanchez, A.; SanchezGonzalez, A.; Sordo, J. Pd(Ⅱ) and Pt(Ⅱ)complexes of 2, 2'-biimidazole and its N, N'dimethyl derivative The cystal structure of [{PtBr(DMSO)}_2(Me_2bim)] (Me_2bim=N, N'-dimethyl-2, 2'-biimidazole) Polyhedron 2003, 22: 1113-1121.
    [6] Casas, J. S.; Castineiras, A.; Parajo, Y.; Sanchez, A.; Sanchez-Gonzalez, A.; Sordo, J. Synthesis and cytotoxicity of new Pt(Ⅳ) complexes of 2, 2'-biimidazole and derivatives Polyhedron 2005, 24: 1196-1202.
    [7] Fortin, S.; Beauchamp, A. L. Preparation and Characterization of Oxorhenium(Ⅴ) Complexes with 2, 2'-Biimidazole: The Strong Affinity of Coordinated Biimidazole for Chloride Ions via N—H…Cl~- Hydrogen Bonding Inorg. Chem. 2000, 39: 4886-4893.
    [8] Sang, R. L.; Xu, L. A Series of Single, Double, and Triple Me_2biim-Bridged Dinuclear, Trinuclear, and Polymeric Complexes: Syntheses, Crystal Structures, and Luminescent Properties Inorg. Chem. 2005, 44: 3731-3737.
    [9] Sang, R. L.; Xu, L. Unprecedented quadruple Me_2biim-bridged di- and tetranuclear complexes: Syntheses, structures and magnetic properties Inorga. Chim. Acta 2006, 359(8): 2337-2342.
    [10] Yang, P.; Guo, M. L. Interaction of some non-platinum metal anticancer complexes with nucleotides and DNA and Two-Pole Complementary Principle (TPCP) arising therefrom Met. Based Drugs 1998, 5(1): 41-58.
    [11] Herzberg, R. P.; Dervan, P. B. Cleavage of double helical DNA by methidium-propyl-EDTA-iron(Ⅱ) J. Am. Chem. Soc. 1982, 104(1): 313-315.
    [12] Kovacic, R. T.; Welch, J. T.; Franklin, S. J. Sequence-Selective DNA Cleavage by a Chimeric Metallopeptide J. Am. Chem. Soc. 2003, 125: 6656-6662.
    [13] Melloni, P.; Dradi, E.; Logemann, W. Synthesis and antiprotozoal activity of methylnitro derivatives of 2, 2'-biimidazole J. Med. Chem. 1972, 15(9): 926-930.
    [14] 桑瑞丽.联咪唑类配体配合物的合成、表征及其切割DNA活性研究 山西大学硕士学位论文.2003.
    [15] Sang, R.; Xu, L. Aquabis(2, 2'-biimidazole)copper(Ⅱ) dinitrate Acta. Cryst. 2005, E61: 793-795.
    [16] Gao, X. L.; Wei, Y. B.; Li, Y. P.; Yang, P. Aqua(2, 2'bi-1H-imidazole)chlorocopper(Ⅱ) chloro(iminodiacetato)-copper(Ⅱ) monohydrate Acta Cryst. 2005, C61: 10-12.
    [17] Tadokoro, M.; Nakasuji, K. Hydrogen bonded 2, 2'-biimidazolate transition metal complexes as a tool of crystal enginerring Coord Chem. Rev. 2000, 198: 205-218.
    [18] Ohrstrom, L.; Larsson, K.; Borg, S.; Norberg, S. T. Crucial influence of solvent and chirality-the formation of helices are three-dimensional nets by hydrogen-bonded biimidazolate complexes Chem. Eur. J. 2002, 7(22): 4805-4810.
    [19] Reinhardt C. G., Krugh T. R.. A Comparative Study of Ethidium Bromide Complexes with Dinucleotides and DNA: Direct Evidence for Intercalation and Nucleic Acid Sequence Preferencest Biochem. 1978, 17(23): 4845-4854.
    [20] Baguley, B. C.; Le Bret, M. Quenching of DNA-Ethidium Fluorescence by Amsacrine and Other Antitumor Agents: A Possible Electron-Transfer Effect Biochem. 1984, 23(5): 937-943.
    [21] Lakowicz, J. R.; Weber, G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules Biochem. 1973, 12(21): 4161-4170.
    [22] Liu, J.; Zhang, T. X.; Lu, T. B.; Qu, L. H.; Zhou, H.; Zhang, Q. L.; Ji, L. N., DNA-binding and cleavage studies of macrocyclic copper(Ⅱ) complexes J. Inorg. Biochem. 2002, 91: 269-276.
    [23] Lepecq, J. B.; Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids: Physical—Chemical characterization J. Mol. Biol. 1967, 27(1): 87-106.
    [24] Sigman, D. S., Mazumder, A., Perrin, D. M. Chemical Nucleases Chem. Rev. 1993, 93: 2295-2316.
    [25] Satyanarayana, S., Dabrowiak, J. C., Chaires, J. B. Neither Δ- nor ΛTris(phenanthroline)ruthenium(Ⅱ) Binds to DNA by Classical Intercalation Biochem. 1992, 31(39): 9319-9324.
    [26] 李青山,刘锐铃,黄计军,杨频.二氯二乙基锡与DNA作用的研究 高等学校化学学报 2000,21(4):513-516.
    [27] Carter, M. T.; Bard, A. J. Voltammetric Studies of the Interaction of Metal Chelates with DNA. 2. Tris-Chelated Complexes of Cobalt(Ⅲ) and Iron(Ⅱ) with 1, 10-Phenanthroline and 2, 2'-Bipyridine J. Am. Chem. Soc. 1989, 111: 8901-8911.
    [28] Wu, Y. B.; Chen, H. L.; Yang, P.; Xiong, Z. H. Racemic D, L-[Co(phen)_2dpq]~(3+)-DNA interactions: Investigation into the basis for minor-groove binding and recognition J. Inorg. Biochem. 2005, 99(5): 1126-1134.
    [29] Wu, Y. B.; Zhang, C. P.; Yang, P. Molecular modeling on the recognition of DNA sequence and conformational repair of sheared DNA by novel chiral metal complex D, L-[Co(phen)_2hpip]~(3+) Sicence In China (Ser. B) 2006, 49(2), 177-185.
    [30] Zhang, C. P.; Wu, Y. B.; Yang, P. Molecular Modeling on the Recognition of Wobble DNA Including G: T Mismatched Pairs by Two Structures of Chiral Metal Complex Δ, Λ-[Ru (phen)_2hpip]~(2+) Chinese J. Chem. 2006, 24(6): 739-744.
    [31] Xiong, Z. H.; Yang, P. Molecular modeling on recognition of sheared and normal DNA by novel metal complex Λ- and Δ-[Co(phen)_2hpip]~(3+) J. Mol. Struc. (Theochem) 2003, 620: 129-138.
    [32] Sigman, D. S. Nuclease activity of 1, 10-phenanthroline-copper ion Acc. Chem. Res. 1986, 19(6): 180-186.
    [33] Sitlani, A.; Long, E. C.; Pyle, A. M.; Barton, J. K. DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(Ⅲ): shape-selective recognition and reaction J. Am. Chem. Soc. 1992, 114(7): 2303-2312.
    [1] Atencio, R.; Chacon, M., et al. Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)_2(OH_2)_2]~(2+) (M=Co~(2+) Ni~(2+)) complexes and carboxylate modules Dalton Trans. 2004, 4: 505-513.
    [2] Tadokoro, M.; Kanno, H., et al. Self-organizing super-structures formed from hydrogen-bonded biimidazolate metal complexes PNAS, 2002, 99: 4950-4955.
    [3] Akutagawa, T.; Saito, G., et al. Multiplex Proton-Transfer and Electron-Transfer Natures Based on the 2, 2'-Bi-1H-imidazole System. Ⅱ. Crystal Structures and Charge-Transfer Complex Formations Bull. Chem. Soc. Jpn. 1996, 69: 2487-2511.
    [4] Belanger, S.; Beaucharnp, A. L. 2, 2'-Bi(1H-imidazolium) Dichloride Acta Cryst. 1996, C52: 2588-2590.
    [5] Ramirez, K.; Julian A. R.; Briceno, A.; Atencio, R. Supramolecular building blocks from modular self-assembly of biimidazole species. Crystal structure of 2-(2-1H-imidazolyl)-1H-imidazolium chloride monohydrate. CrystEngComm. 2002, 4(38): 208-212.
    [6] Cromer, D. T.; Ryan, R. R.; Storm, C. B. Structure of 2, 2'-biimidazole Acta Cryst. 1987, C43: 1435-1437.
    [7] Etter, M. C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds Acc. Chem. Res. 1990, 23: 120-126.
    [8] Smith, G.; Wermuth, U. D.; Healy, P. C. Bis(guanidinium) 5-sulfosalicylate monohydrate Acta Cryst. 2004, E60: 687-689.
    [9] Smith, G.; Wermuth, U. D.; White, J. M. Hydrogen bonding in 1:1 proton-transfer compounds of 5-sulfosalicylic acid with 4-X-substituted anilines (X=F, Cl or Br) Acta Cryst. 2005, C61: 105-109.
    [10] Smith, G.; Wermuth, U. D.; White, J. M. The 1:1 proton-transfer compound of 5-sulfo-salicylic acid with 4-aminobenzoic acid Acta Cryst. 2005, E61: 313-316.
    [11] Smith, G.; Wermuth, U. D.; Healy, P. C. Layered structures in proton-transfer compounds of 5-sulfosalicylic acid with the aromatic polyamines 2, 6-diaminopyridine and 1, 4-phenylenediamine Acta Cryst. 2005, C61: 555-558.
    [1] Desiraju, G. R. The Weak Hydrogen Bond. London: Oxford. 1999
    [2] Jefrey, G. A. An Introduction to Hydrogen Bonding. New York: Oxford University Press, 1997
    [3] Kepert, C. J.; Hesek, D.; Beer, P. D.; Rosseinsky, M. J. Desolvation of a Novel Microporous Hydrogen-Bonded Framework: Characterization by In Situ Single-Crystal and Powder X-ray Diffraction Angew. Chem. Int. Ed. 1998, 37: 3158-3160.
    [4] Brunet, P.; Simard, M.; Wuest, J. D. Molecular Tectonics. Porous Hydrogen-Bonded Networks with Unprecedented Structural Integrity J. Am. Chem. Soc. 1997, 119(11): 2737-2738.
    [5] Te, R. L.; Griesser, U. J.; Morris, K. R.; Byrn, S. R.; Stowell, J. G. X-ray Diffraction and Solid-State NMR Investigation of the Single-Crystal to Single-Crystal Dehydration of Thiamine Hydrochloride Monohydrate Cryst. Growth Des. 2003, 3(6): 997-1004.
    [6] Leiserowitz, L. Molecular packing modes. Carboxylic acids Acta Cryst. 1976, B32: 775-802.
    [7] Aakeroy, C. B.; Beatty, A. M.; Leinen, D. S. Syntheses and Crystal Structures of New "Extended" Building Blocks for Crystal Engineering: (Pyridylmethylene) aminoacetophenone Oxime Ligands Cryst. Growth Des. 2001, 1(1): 47-52.
    [8] McBride, M. T.; Luo, T. J. M.; Palmore, G. T. R. Hydrogen-Bonding Interactions in Crystalline Solids of Cyclic Thioureas Cryst. Growth Des. 2001, 1(1): 39-46.
    [9] Holman, K. T.; Pivovar, A. M.; Swift, J. A.; Ward, M. D. Metric Engineering of Soft Molecular Host Frameworks Acc. Chem. Res. 2001, 34(2): 107-118.
    [10] Tadokoro, M.; Nakasuji, K., Hydrogen bonded 2, 2'-biimidazolate transition metal complexes as a tool of crystal enginerring Coord. Chem. Rev. 2000, 198: 205-218.
    [11] Tadokoro, M.; Kanno, H.; Kitajima, T.; Shimada-Umemoto, H.; Nakanishi, N.; Isobe, K.; Nakasuji, K., Self-organizing super-structures formed from hydrogen-bonded biimidazolate metal complexes PNAS, 2002, 99: 4950-4955.
    [12] Ding, B.B.; Weng, Y. Q.; Mao, Z. W.; Lam, C. K.; Chen, X. M.; Ye, B. H. Pillared-Layer Microporous Metal-Organic Frameworks Constructed by Robust Hydrogen Bonds. Synthesis, Characterization, and Magnetic and Adsorption Properties of 2,2'-Biimidazole and Carboxylate Complexes Inorg. Chem. 2005, 44: 8836-8845.
    [13] Ghosh, A. K.; Jana, A. D.; Ghoshal, D.; Mostafa, G.; Ray Chaudhuri, N. Toward the Recognition of Enolates/Dicarboxylates: Syntheses and X-ray Crystal Structures of Supramolecular Architectures of Zn(II)/Cd(II) Using 2,2'-Biimidazole Cryst. Growth Des. 2006, 6(3): 701-707.
    [14] Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising Acta Cryst. 2002, B58: 380-388.
    [15] Liu, B. X.; Xu, D. J. catena-Poly[[[(4-aminobenzoato-KN)aqua(2,2'-diamino-4,4'-bithiazole-K~2N,N')nickel(II)]-u-4-aminobenzoato-K~2N:O] monohydrate] Acta Cryst. 2006, E62: 2670-2672.
    [16] Etter, M. C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds Acc. Chem. Res. 1990,23: 120-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700