肌酸激酶结构域相互作用与活性中心极性微环境的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
很多包含有多个结构域的蛋白,其每一个结构域都被认为是结构、折叠、进化和功能的基本单元。多结构域蛋白的折叠一般认为是有序的,每个结构域具有不同的稳定性,它们独立自主地进行折叠。然而,多结构域蛋白要比单结构域蛋白的折叠机制复杂得多,因为它既包含了单个结构域的折叠,同时还有结构域之间的相互作用。当结构域之间存在相互作用时,结构域的折叠和组装对结构域或蛋白总体的稳定性具有重要的意义,甚至对它们在体内的功能产生影响。除此之外,结构域之间的连接序列对蛋白结构的稳定、折叠途径和功能也有重要的影响。然而,人们对此却知之甚少。
     人们发现肌酸激酶热聚沉发生温度(约47℃)远低于其结构去折叠时的融化温度(约56℃),然而,这种热诱导的蛋白快速失稳和聚沉机制人们并不清楚。本文用定量二阶远红外分析和二维远红外光谱分析方法,结合圆二色和内源荧光光谱研究了肌酸激酶热失活和聚沉过程中的顺序事件,并研究了C末端结构域对肌酸激酶结构稳定性的影响和在肌酸激酶折叠过程中的作用,提出C末端结构域的构象变化启动了蛋白的热聚沉。肌酸激酶结构域之间的连接片段没有形成任何常规的二级结构,其结构具有较大的柔性,而且它主要由带电荷的残基组成,其中仅有四个疏水性的保守残基。本文通过突变和光谱学分析,发现连接片段和C末端结构域之间的疏水相互作用对肌酸激酶活性、稳定性和折叠具有重要意义。连接片段的定位可以帮助肌酸激酶两个结构域正确组装成为具有活性的天然结构。
     蛋白的极性对其结构、催化和功能都有重要的意义。在本文中,我们选取5,5 ?-dithiobis (2-nitrobenzoic acid)、6,6 ?-dithiodinicotinic acid和2,2 ?-dithiodipyridine研究了肌酸激酶活性中心附近的Cys283周围的极性微观环境。我们研究了三个修饰试剂对肌酸激酶在底物存在下的完整的失活动力学,并获得了游离酶和酶-底物复合物相对应的微观速率常数。结果表明肌酸激酶活性位点附近的Cys283周围主要是一种亲负电性的极性微环境,并且这种微环境很可能就是造成其pKa值较低的原因。
Many large proteins are composed of domains that can be regarded as structure, function, evolution and folding units. For these multidomain proteins, folding is generally thought to be hierarchical and the individual domains with different stabilities fold autonomously and independently. However, the folding mechanism of multidomain proteins may be much more complicated than single-domain proteins because it involves both the folding of the individual domains and the docking of these domains. Domain folding and assembly play a role in the stability of the domains or the whole protein, even for their functions in vivo, when domain-domain interactions is present. The domains are connected sequentially by the linker in the primary structure. However, little is known about the role of the linker in protein folding, stability and function.
     The aggregation occurred at a temperature (about 47℃) far below the Tm (about 56℃) of creatine kinase. However, the mechanism of the fast destabilization and aggregation of creatine kinase induced by heat is not clear yet. In this research, the sequential events of creatine kinase thermal inactivation and aggregation were studied by quantitative second derivative infrared analysis and two-dimensional infrared correlation spectroscopy, combined with circular dichroism spectroscopy and tryptophan fluorescense spectroscopy. The results indicated that C-terminal domain played an important role in the structural stability and folding of creatine kinase. We presented a possible mechanism of creatine kinase thermal inactivation and aggregation and suggested that the conformational change in the C-terminal domain was responsible for the initiation of creatine kinase thermal aggregation.
     The domains are connected sequentially by the linker in the primary structure. The linker does not form any regular secondary structures and seems to be flexible. Moreover, the linker is mainly composed of charged residues and only contains four hydrophobic conserved residues. In this research, the results suggested that the hydrophobic interactions between the linker and the C-terminal domain played a key role on the activity, structural stability and folding of creatine kinase by mutation and spectral analysis. The location of the linker sequence may be helpful to the natvie, active conformation formation assemble by the two domains of creatine kinase correctly.
     The polarities of protein have an important role in the structures, catalysis and functions. In this research, 5,5 -?dithiobis(2-nitrobenzoic acid), 6,6 -?dithio- dinicotinic acid and 2,2 -?dithiodipyridine were used as specific sulphydryl reagents to explore the polar microenvironment around Cys283, a conserved amino acid nearby the active site of creatine kinase. Complete kinetics of inactivation was recorded, and the relevant microscopic rate constants of the reagents with various enzyme-substrate complexes were also determined. The results indicated that there may exist a polar microenvironment which is predominant by the electropositive residues and this may be the reason for the unusually low pKa value of Cys283.
引文
吴海斌, 金文武, 骆训容, 等. 大熊猫肌酸激酶热变性时活性和构象的比较. 清华大学学报, 1990, 30(3):75-80.
    Allen M J, Jemmerson R.Nall B T. Rapid refolding of native epitopes on the surface of cytochrome c. Biochemistry, 1994, 33(13):3967-3973.
    Anfinsen C B. Principles that govern the folding of protein chains. Science, 1973, 181(96):223-230.
    Anfinsen C B, Haber E. Studies on the reduction and re-formation of protein disulfide bonds. The Journal of biological chemistry, 1961, 236:1361-1363.
    Anson M L. Fast- and slow-refolding forms of unfolded ribonuclease A differ in tyrosine fluorescence. Adv. Protein Chem., 1945, 2: 361-384.
    Anson M L, Mirsky A E. The Refolding of Denatured Rabbit Muscle Creatine Kinase: Search for Intermediates in the Refolding Process and Effect of Modification at the Reactive Thiol Group on Refolding. J. Gen. Physiol., 1925, 9: 169-179.
    Anson M L, Mirsky A E. Swine Pepsinogen Folding Intermediates are Highly Structured, Motile Molecules. J. Phys. Chem., 1939, 35: 185-199.
    Babbitt P C, West B L, Buechter D D, et al. Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase in Escherichia coli leads to improved recovery of active enzyme. Biotechnology (N Y), 1990, 8(10):945-949.
    Bai C, Biwersi J, Verkman a S, et al. A mouse model to test the in vivo efficacy of chemical chaperones. J Pharmacol Toxicol Methods, 1998, 40(1):39-45.
    Baker D., Sali A. Protein structure prediction and structural genomics. Science, 2001, 294(5540):93-96.
    Baum J, Dobson C M, Evans P A, et al. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry, 1989, 28(1):7-13.
    Benz F W., Roberts G C. Nuclear magnetic resonance studies of the unfolding of pancreatic ribonuclease. II. Unfolding by urea and guanidine hydrochloride. J Mol Biol, 1975, 91(3):367-387.
    Bergman L W., Kuehl W M. Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. The Journal of biological chemistry, 1979, 254(18):8869-8876.
    Bickerstaff G F., Price N C. Properties of matrix-bound dimer and monomer derivatives of immobilized creatine kinase from rabbit skeletal muscle. The Biochemical journal, 1978, 173(1):85-93.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
    Burstein E A, Abornev S M, Reshetnyak Y K. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. Biophys J, 2001, 81(3):1699-1709.
    Carrell R W, Lomas D A. Conformational disease. Lancet, 1997, 350(9071):134-138.
    Chang B S, Beauvais R M, Arakawa T, et al. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution. Biophys J, 1996, 71(6):3399-3406.
    Cheetham J C, Raleigh D P, Griest R E, et al. Antigen mobility in the combining site of an anti-peptide antibody. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(18):7968-7972.
    Chen L H, Babbitt P C, Vasquez J R, et al. Cloning and expression of functional rabbit muscle creatine kinase in Escherichia coli. Addressing the problem of microheterogeneity. The Journal of biological chemistry, 1991, 266(18):12053-12057.
    Clottes E, Leydier C, Couthon F, et al. Denaturation by guanidinium chloride of dimeric MM-creatine kinase and its proteinase K-nicked form: evidence for a multiple-step process. Biochim Biophys Acta, 1997, 1338(1):37-46.
    Couthon F, Clottes E, Vial C. Refolding of SDS- and thermally denatured MM-creatine kinase using cyclodextrins. Biochemical and biophysical research communications, 1996, 227(3):854-860.
    Creighton T E. Protein folding. The Biochemical journal, 1990, 270(1):1-16.
    Creighton T E, Pain R H. Unfolding and refolding of Staphylococcus aureus penicillinase by urea-gradient electrophoresis. J Mol Biol, 1980, 137(4):431-436.
    Czarnecki A, Maciejczyk A. Changes in monitoring of adverse drug reactions in Poland. Acta poloniae pharmaceutica, 1998, 55(4):319-321.
    Czarnecki K, Cua A, Kirmaier C, et al. Relationship between altered structure and photochemistry in mutant reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. Biospectroscopy, 1999, 5(6):346-357.
    Czarnecki M A. Two-dimensional correlation spectroscopy: effect of reference spectrum on noise-free and noisy spectra. Appl Spectrosc, 2003, 57(8):991-995.
    Dawson D M, Eppenberger H M, Kaplan N O. The comparative enzymology of creatine kinases. II. Physical and chemical properties. The Journal of biological chemistry, 1967, 242(2):210-217.
    Dill K A. Dominant forces in protein folding. Biochemistry, 1990, 29(31):7133-7155.
    Dobson C M. Protein folding and its links with human disease. Biochem Soc Symp, 2001, 68:1-26.
    Dobson C M. Protein folding and misfolding. Nature, 2003, 426(6968):884-890.
    Dobson C M, Karplus M. The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol, 1999, 9(1):92-101.
    Dolgikh D A, Abaturov L V, Bolotina I A, et al. Compact state of a protein molecule with pronounced small-scale mobility: bovine alpha-lactalbumin. Eur Biophys J, 1985, 13(2):109-121.
    Dolinski K, Muir S, Cardenas M, et al. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(24):13093-13098.
    Ellis R J, Hemmingsen S M. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci, 1989, 14(8):339-342.
    Englander S W, Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct, 1992, 21:243-265.
    Epstein C J, Anfinsen C B. The Use of Gel Filtration in the Isolation and Purification of Beef Insulin. Biochemistry, 1963, 2:461-464.
    Fedosov S N, Belousova L V. Effect of oligomerization on the properties of essential SH-groups of mitochondrial creatine kinase. Biokhimiia, 1988, 53(4):550-564.
    Fersht a R, Matouschek A, Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol, 1992, 224(3):771-782.
    Fink a L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct, 1995, 24:495-522.
    Finkelstein a V, Ptitsyn O B. Why do globular proteins fit the limited set of folding patterns? Prog Biophys Mol Biol, 1987, 50(3):171-190.
    Flynn G C, Pohl J, Flocco M T, et al. Peptide-binding specificity of the molecular chaperone BiP. Nature, 1991, 353(6346):726-730.
    Foster J F. in Plasma Proteins, Vol. 1, 1960, Academic Press. New York pp:179-239.
    Fritz-Wolf K, Schnyder T, Wallimann T, et al. Structure of mitochondrial creatine kinase. Nature, 1996, 381(6580):341-345.
    Fry D C, Kuby S A, Mildvan a S. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme. Biochemistry, 1985, 24(17):4680-4694.
    Furter R, Furter-Graves E M, Wallimann T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry, 1993, 32(27):7022-7029.
    Furter R, Kaldis P, Furter-Graves E M, et al. Expression of active octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli. The Biochemical journal, 1992, 288 (3):771-775.
    George R A, Heringa J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng, 2002, 15(11):871-879.
    Georgiou G, Valax P, Ostermeier M, et al. Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Sci, 1994, 3(11):1953-1960.
    Gething M J, Sambrook J. Protein folding in the cell. Nature, 1992, 355(6355):33-45.
    Gokhale R S, Khosla C. Role of linkers in communication between protein modules. Curr Opin Chem Biol, 2000, 4(1):22-27.
    Goto Y, Hamaguchi K. Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol, 1982, 156(4):911-926.
    Granjon T, Vacheron M J, Vial C, et al. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR. Biochemistry, 2001b, 40(20):6016-6026.
    Gregor M, Kubala M, Amler E, et al. Frequency-domain lifetime fluorometry of double-labeled creatine kinase. Physiol Res, 2003, 52(5):579-585.
    Grossman S H. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association. Biochim Biophys Acta, 1994, 1209(1):19-23.
    Guo Z, Wang Z, Wang X C. Subunit interaction slows the unfolding of the N-terminal domain of creatine kinase in urea. Biochemistry (Mosc), 2002, 67(12):1388-1394.
    Haase-Pettingell C A, King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. The Journal of biological chemistry, 1988, 263(10):4977-4983.
    Hartl F U. Molecular chaperones in cellular protein folding. Nature, 1996, 381(6583):571-579.
    Hawkins a R, Lamb H K. The molecular biology of multidomain proteins. Selected examples. European journal of biochemistry / FEBS, 1995, 232(1):7-18.
    Hemmer W, Furter-Graves E M, Frank G, et al. Autophosphorylation of creatine kinase: characterization and identification of a specifically phosphorylated peptide. Biochim Biophys Acta, 1995, 1251(2):81-90.
    Hollecker M, Creighton T E. Effect on protein stability of reversing the charge on amino groups. Biochim Biophys Acta, 1982, 701(3):395-404.
    Hornemann T, Kempa S, Himmel M, et al. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein. J Mol Biol, 2003, 332(4):877-887.
    Hornemann T, Rutishauser D, Wallimann T. Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits. Biochim Biophys Acta, 2000, 1480(1-2):365-373.
    Hornemann T, Stolz M, Wallimann T. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps. The Journal of cell biology, 2000, 149(6):1225-1234.
    Hruby V J, Pept. Anal. Synth. Biol., 1985, 7: 1-14.
    Huang G C, Zhou J M. The two slow refolding processes of creatine kinase are catalyzed by cyclophilin. Journal of protein chemistry, 2000, 19(4):285-289.
    Jackson S E, Fersht a R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry, 1991, 30(43):10428-10435.
    Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry, 1991, 30(13):3147-3161.
    Jaenicke R. Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond B Biol Sci, 1995, 348(1323):97-105.
    Jaenicke R. Stability and folding of domain proteins. Prog Biophys Mol Biol, 1999, 71(2):155-241.
    Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. Adv Protein Chem, 2000, 53:329-401.
    Karplus M, Weaver D L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci, 1994, 3(4):650-668.
    Kataoka M, Hagihara Y, Mihara K, et al. Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol, 1993, 229(3):591-596.
    Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem, 1959, 14:1-63.
    Kepes A, Beguin S. Peptide chain initiation and growth in the induced synthesis of beta-galactosidase. Biochim Biophys Acta, 1966, 123(3):546-560.
    Kiefhaber T, Quaas R, Hahn U, et al. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry, 1990, 29(12):3053-3061.
    Kuby S A, Noda L, Lardy H A. Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. The Journal of biological chemistry, 1954, 209(1):191-201.
    Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins, 1989, 6(2):87-103.
    Kuznetsova I M, Stepanenko O V, Turoverov K K, et al. Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochim Biophys Acta, 2002, 1596(1):138-155.
    Laskey R A, Honda B M, Mills a D, et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 1978, 275(5679):416-420.
    Levinthal C. Renaturation and activation of calf prochymosin produced in an insoluble form in
    Escherichia coli. in: Debrunner P, Tsibris J C M and Munck E, eds. Mossbauer Spectroscopy in Biological Systems. Urbana: University of Illinois Press, 1969. 22-24.
    Li S, Bai J H, Park Y D, et al. Aggregation of creatine kinase during refolding and chaperonin-mediated folding of creatine kinase. The international journal of biochemistry & cell biology, 2001, 33(3):279-286.
    Linderstrom-lang K. in Symposium on protein structure. 1958, ed. Neuberger, A. (Methuen, London).
    Lin L, Perryman M B, Friedman D, et al. Determination of the catalytic site of creatine kinase by site-directed mutagenesis. Biochim Biophys Acta, 1994, 1206(1):97-104.
    Lindley H. A study of the kinetics of the reaction between thiol compounds and choloracetamide. The Biochemical journal, 1960, 74:577-584.
    Liu Z J, Zhou J M. Spin-labeling probe on conformational change at the active sites of creatine kinase during denaturation by guanidine hydrochloride. Biochim Biophys Acta, 1995, 1253(1):63-68.
    Lumry R, Eyring H. Unfolding and Refolding of the Reduced Constant Fragment of the Immunoglobulin Light Chain. Kinetic Role of the Intrachain Disulfide Bond. J. Phys. Chem., 1954, 58: 110-120.
    Lyubarev a E, Kurganov B I, Orlov V N, et al. Two-state irreversible thermal denaturation of muscle creatine kinase. Biophys Chem, 1999, 79(3):199-204.
    Macarthur M W, Thornton J M. Influence of proline residues on protein conformation. J Mol Biol, 1991, 218(2):397-412.
    Mahowald T A, Noltmann E A, Kuby S A. Studies on adenosine triphosphate transphosphorylases. III. Inhibition reactions. The Journal of biological chemistry, 1962, 237:1535-1548.
    Martin A, Schmid F X. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins. J Mol Biol, 2003a, 328(4):863-875.
    Martin A, Schmid F X. The folding mechanism of a two-domain protein: folding kinetics and domain docking of the gene-3 protein of phage fd. J Mol Biol, 2003b, 329(3):599-610.
    Mathews C K, Van Hold K E. Biochemistry, Redwood City CA, Benjiamin/Cummings Martin, 1991.
    Mcpherson a Jr. A preliminary crystallographic investigation of rabbit muscle creatine kinase. J Mol Biol, 1973, 81(1):83-86.
    Meng F G, Hong Y K, He H W, et al. Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase. Biophysical journal, 2004, 87 (4): 2247-2254.
    Mitchinson C, Baldwin R L. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability. Proteins, 1986, 1(1):23-33.
    Morris G E. Monoclonal antibody studies of creatine kinase. The ART epitope: evidence for an intermediate in protein folding. The Biochemical journal, 1989, 257(2):461-469.
    Morris G E, Frost L C, Newport P A, et al. Monoclonal antibody studies of creatine kinase. Antibody-binding sites in the N-terminal region of creatine kinase and effects of antibody on enzyme refolding. The Biochemical journal, 1987, 248(1):53-59.
    Naor M M, Jensen J H. Determinants of cysteine pKa values in creatine kinase and alpha1-antitrypsin. Proteins, 2004, 57(4):799-803.
    Neira J L, Davis B, Ladurner a G, et al. Towards the complete structural characterization of a protein folding pathway: the structures of the denatured, transition and native states for the association/folding of two complementary fragments of cleaved chymotrypsin inhibitor 2. Direct evidence for a nucleation-condensation mechanism. Fold Des, 1996, 1(3):189-208.
    Oas T G, Kim P S. A peptide model of a protein folding intermediate. Nature, 1988, 336(6194):42-48.
    Osterhout J J, Jr Nall B T. Slow refolding kinetics in yeast iso-2 cytochrome c. Biochemistry, 1985, 24(27):7999-8005.
    Palleros D R, Shi L, Reid K L, et al. Three-state denaturation of DnaK induced by guanidine hydrochloride. Evidence for an expandable intermediate. Biochemistry, 1993, 32(16):4314-4321.
    Pauling L, Corey R B. The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 1951, 37(5):251-256.
    Pauling L, Corey R B, Branson H R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 1951, 37(4):205-211.
    Peng Z Y, Kim P S. A protein dissection study of a molten globule. Biochemistry, 1994, 33(8):2136-2141.
     Peng Z Y, Wu L C. Autonomous protein folding units. Adv Protein Chem, 2000, 53:1-47.
    Perutz M F. New x-ray evidence on the configuration of polypeptide chains. Nature, 1951, 167(4261):1053-1054.
    Ponnuswamy P K. Hydrophobic characteristics of folded proteins. Prog Biophys Mol Biol, 1993, 59(1):57-103.
    Price N C, Hunter M G. Non-identical behaviour of the subunits of rabbit muscule creatine kinase. Biochim Biophys Acta, 1976, 445(2):364-376.
    Privalov P L. In Protein Folding. (ed. Creighton, T E ), Freeman W H. New York, 1992, pp: 243-300.
    Prusiner S B. Prion diseases and the BSE crisis. Science, 1997, 278(5336):245-251.
    Ptitsyn O B, Pain R H, Semisotnov G V, et al. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett, 1990, 262(1):20-24.
    Ptitsyn O B, Rashin a A. A model of myoglobin self-organization. Biophys Chem, 1975, 3(1):1-20.
    Radford S E. Protein folding: progress made and promises ahead. Trends Biochem Sci, 2000, 25(12):611-618.
    Raimbault C, Couthon F, Vial C, et al. Effects of pH and KCl on the conformations of creatine kinase from rabbit muscle. Infrared, circular dichroic and fluorescence studies. European journal of biochemistry / FEBS, 1995, 234(2):570-578.
    Rao J K, Bujacz G, Wlodawer A. Crystal structure of rabbit muscle creatine kinase. FEBS Lett, 1998, 439(1-2):133-137.
    Raschke T M, Marqusee S. Hydrogen exchange studies of protein structure. Curr Opin Biotechnology, 1998, 9(1):80-86.
    Redfield C, Smith R A, Dobson C M. Structural characterization of a highly-ordered molten globule at low pH. Nat Struct Biol, 1994, 1(1):23-29.
    Reshetnyak Y K, Koshevnik Y, Burstein E A. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J, 2001, 81(3):1735-1758.
    Richards F M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol, 1974, 82(1):1-14.
    Rico M, Santoro J, Bermejo F J, et al. Thermodynamic parameters for the helix-coil thermal transition of ribonuclease-S-peptide and derivatives from 1H-NMR data. Biopolymers, 1986, 25(6):1031-1053.
    Roder H, Elove G A, Englander S W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature, 1988, 335(6192):700-704.
    Roder H, Elove G A. Influence of glutathione on the reactivation of enzymes containing cysteine or cystine. In: Pain R H, eds. Mechanism of Protein Folding. New York: IRL Press, 1994. 26-54.
    Rose G D. Hierarchic organization of domains in globular proteins. J Mol Biol, 1979, 134(3):447-470.
    Rothman J E. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell, 1989, 59(4):591-601.
    Ruddon R W, Bedows E. Assisted protein folding. The Journal of biological chemistry, 1997, 272(6):3125-3128.
    Rumbley J, Hoang L, Mayne L, et al. An amino acid code for protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(1):105-112.
    Sanderova H, Hulkova M, Malon P, et al. Thermostability of multidomain proteins: elongation factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and their chimeric forms. Protein Sci, 2004, 13(1):89-99.
    Scott K A, Steward A, Fowler S B, et al. Titin; a multidomain protein that behaves as the sum of its parts. J Mol Biol, 2002, 315(4):819-829.
    Segel D J, Bachmann A, Hofrichter J, et al. Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J Mol Biol, 1999, 288(3):489-499.
    Semisotnov G V, Rodionova N A, Kutyshenko V P, et al. Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett, 1987, 224(1):9-13.
    Shen Y Q, Tang L, Zhou H M, et al. Structure of human muscle creatine kinase. Acta crystallographica, 2001, 57(8):1196-1200.
    Shoemaker K R, Kim P S, York E J, et al. Tests of the helix dipole model for stabilization of alpha-helices. Nature, 1987, 326(6113):563-567.
    Shultz G E, Schirmer R H. In Principle of Protein Structure, 1979, New York, Springer-Verlag. pp:166-205.
    Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci, 2001, 26(10):612-618.
    Simons K T, Strauss C, Baker D. Prospects for ab initio protein structural genomics. J Mol Biol, 2001, 306(5):1191-1199.
    Skarzynski T, Moody P C, Wonacott a J. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 ? resolution. J Mol Biol, 1987, 193(1):171-187.
    Sobel B E. Applications and limitations of estimation of infarct size from serial changes in plasma creatine phosphokinase activity. Acta Med Scand Suppl, 1976, 587:151-167.
    Stelea S D, Keiderling T A. Pretransitional structural changes in the thermal denaturation of ribonuclease S and S protein. Biophys J, 2002, 83(4):2259-2269.
    Stelea S D, Pancoska P, Benight a S, et al. Thermal unfolding of ribonuclease A in phosphate at neutral pH: deviations from the two-state model. Protein Sci, 2001, 10(5):970-978.
    Suzuki T, Furukohri T. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J Mol Biol, 1994, 237(3):353-357.
    Tandler B, Nagato T, Phillips C J. Ultrastructure of major intraglandular ducts in the parotid gland of the African mole-rat. European journal of morphology, 1998, 36 Suppl:27-30.
    Tanford C, Kawahara K, Lapanje S, et al. Proteins as random coils. 3. Optical rotatory dispersion in 6 M guanidine hydrochloride. J Am Chem Soc, 1967, 89(19):5023-5029.
    Tian W X, Tsou C L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry, 1982, 21(5):1028-1032.
    Tsou C L. Folding of the nascent peptide chain into a biologically active protein. Biochemistry, 1988, 27(6):1809-1812.
    Tsou C L. Conformational flexibility of enzyme active sites. Science, 1993, 262(5132):380-381.
    Tsou C L. Inactivation precedes overall molecular conformation changes during enzyme denaturation. Biochim Biophys Acta, 1995, 1253(2):151-162.
    Turner D C, Brand L. Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalenesulfonates. Biochemistry, 1968, 7(10):3381-3390.
    Turoverov K K, Haitlina S Y, Pinaev G P. Ultra-violet fluorescence of actin. Determination of native actin content in actin preparations. FEBS Lett, 1976, 62(1):4-6.
    Tycko R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol, 2004, 14(1):96-103.
    Uversky V N, Ptitsyn O B. "Partly folded" state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry, 1994, 33(10):2782-2791.
    Uversky V N, Ptitsyn O B. Further evidence on the equilibrium "pre-molten globule state": four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol, 1996, 255(1):215-228.
    Ventura-Clapier R, Veksler V, Hoerter J A. Myofibrillar creatine kinase and cardiac contraction. Molecular and cellular biochemistry, 1994, 133-134:125-144.
    Vogan K J, Underhill D A, Gros P. An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity. Mol Cell Biol, 1996, 16(12):6677-6686.
    Vogel C, Bashton M, Kerrison N D, et al. Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol, 2004, 14(2):208-216.
    Wallimann T, Doetschman T C, Eppenberger H M. Novel staining pattern of skeletal muscle M-lines upon incubation with antibodies against MM-creatine kinase. The Journal of cell biology, 1983, 96(6):1772-1779.
    Wallimann T, Moser H, Eppenberger H M. Isoenzyme-specific localization of M-line bound creatine kinase in myogenic cells. Journal of muscle research and cell motility, 1983, 4(4):429-441.
    Wallimann T, Schlosser T, Eppenberger H M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. The Journal of biological chemistry, 1984, 259(8):5238-5246.
    Wang A, Bolen D W. Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm. Biophys J, 1996, 71(4):2117-2122.
    Wang A, Robertson a D, Bolen D W. Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry, 1995, 34(46):15096-15104.
    Wang C C, Tsou C L. Interaction and reconstitution of carboxyl-terminal-shortened B chains with the intact A chain of insulin. Biochemistry, 1986, 25(18):5336-5340.
    Wang H R, Bai J H, Zheng S Y, et al. Ascertaining the number of essential thiol groups for the folding of creatine kinase. Biochemical and biophysical research communications, 1996, 221(1):174-180.
    Wang H R, Zhang T, Zhou H M. Comparison of inactivation and conformational changes of aminoacylase during guanidinium chloride denaturation. Biochim Biophys Acta, 1995, 1248(2):97-106.
    Wang X C, Yang J, Zhou H M. Dissociation, unfolding and inactivation of creatine kinase in urea solutions. International journal of peptide and protein research, 1996, 48(2):156-159.
    Wang X C, Zhou H M, Wang Z X, et al. Is the subunit the minimal function unit of creatine kinase? Biochim Biophys Acta, 1990, 1039(3):313-317.
    Wang Z F, Huang M Q, Zou X M, et al. Unfolding, conformational change of active sites and inactivation of creatine kinase in SDS solutions. Biochim Biophys Acta, 1995, 1251(2):109-114.
    Wang Z F, Xu Y K, Zhou H M. Kinetics of irreversible inhibition of creatine kinase during modification by o-phthaldehyde. Enzyme Protein, 1994, 48(1):1-9.
    Wang Z F, Yang Y, Zhou H M. Conformational changes of active sites during refolding of urea-denatured creatine kinase. Biochimie, 1995, 77(12):953-956.
    Wang Z X, Preiss B, Tsou C L. Kinetics of inactivation of creatine kinase during modification of its thiol groups. Biochemistry, 1988, 27(14):5095-5100.
    Wang Z X, Tsou C L. Kinetics of substrate reaction during irreversible modification of enzyme activity for enzymes involving two substrates. J Theor Biol, 1987, 127(3):253-270.
    Weaver L H, Matthews B W. Structure of bacteriophage T4 lysozyme refined at 1.7 ? resolution. J Mol Biol, 1987, 193(1):189-199.
    Webb T, Jackson P J, Morris G E. Protease digestion studies of an equilibrium intermediate in the unfolding of creatine kinase. The Biochemical journal, 1997, 321 ( Pt 1):83-88.
    Webb T I, Morris G E. Structure of an intermediate in the unfolding of creatine kinase. Proteins, 2001, 42(2):269-278.
    Wyss M, Smeitink J, Wevers R A, et al. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta, 1992, 1102(2):119-166.
    Wyss M, Wallimann T, Kohrle J. Selective labelling and inactivation of creatine kinase isoenzymes by the thyroid hormone derivative N-bromoacetyl-3,3',5-tri-iodo-L-thyronine. The Biochemical journal, 1993, 291 ( Pt 2):463-472.
    Yang H J, Tsou C L. Inactivation during denaturation of ribonuclease A by guanidinium chloride is accompanied by unfolding at the active site. The Biochemical journal, 1995, 305 ( Pt 2):379-384.
    Yang H P, Zhong H N, Li S, et al. Salt-induced folding of alkaline denatured creatine kinase under high pH conditions. Biochemistry and molecular biology international, 1997, 41(2):257-267.
    Yang H P, Zhong H N, Zhou H M. Catalysis of the refolding of urea denatured creatine kinase by peptidyl-prolyl cis-trans isomerase. Biochim Biophys Acta, 1997, 1338(2):147-150.
    Yang Y, Park Y D, Yu T W, et al. Reactivation and refolding of a partially folded creatine kinase modified by 5,5'-dithio-bis(2-nitrobenzoic acid). Biochemical and biophysical research communications, 1999, 259(2):450-454.
    Yang Y, Zhou H M. Reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified creatine kinase reactivated by dithiothreitol. Biochim Biophys Acta, 1998, 1388(1):190-198.
    Yao Q Z, Hou L X, Zhou H M, et al. Conformational changes of creatine kinase during guanidine denaturation. Sci Sin [B], 1982, 25(11):1186-1193.
    Yao Q Z, Tian M, Tsou C L. Comparison of the rates of inactivation and conformational changes of creatine kinase during urea denaturation. Biochemistry, 1984, 23(12):2740-2744.
    Yao Q Z, Zhou H M, Hou L X, et al. A comparison of denaturation and inactivation rates of creatine kinase in guanidine solutions. Sci Sin [B], 1982, 25(12):1296-1802.
    Yon J M. Protein folding: a perspective for biology, medicine and biotechnology. Braz J Med Biol Res, 2001, 34(4):419-435.
     Young L, Jernigan R L, Covell D G. A role for surface hydrophobicity in protein-protein recognition. Protein Sci, 1994, 3(5):717-729.
    Zhang J, Yan Y B. Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem, 2005, 340(1):89-98.
    Zhang T, Zhou H M. Comparison of inactivation and unfolding of yeast alcohol dehydrogenase during denaturation in urea solutions. Int J Biol Macromol, 1996, 19(2):113-119.
    Zhao T J, Feng S, Wang Y L, et al. Impact of intra-subunit domain-domain interactions on creatine kinase activity and stability. FEBS Lett, 2006, 580(16):3835-3840.
    Zhou H M, Tsou C L. Comparison of activity and conformation changes during refolding of urea-denatured creatine kinase. Biochim Biophys Acta, 1986, 869(1):69-74.
    Zhou H M, Zhang X H, Yin Y, et al. Conformational changes at the active site of creatine kinase at low concentrations of guanidinium chloride. The Biochemical journal, 1993, 291 (1):103-107.
    Zhou J M, Zhu L, Balny C. Inactivation of creatine kinase by high pressure may precede dimer dissociation. European journal of biochemistry / FEBS, 2000, 267(4):1247-1253.
    Zhu L, Fan Y X, Perrett S, et al. Relationship between kinetic and equilibrium folding intermediates of creatine kinase. Biochemical and biophysical research communications, 2001, 285(4):857-862.
    Zhu L, Fan Y X, Zhou J M. Identification of equilibrium and kinetic intermediates involved in folding of urea-denatured creatine kinase. Biochim Biophys Acta, 2001, 1544(1-2):320-332.
    Zwanzig R, Szabo A, Bagchi B. Levinthal's paradox. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(1):20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700