锂二次电池聚合物电解质的制备、表征及其相关界面性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物锂二次电池由于具有高能量密度、可加工成任意形状以及较为安全可靠等优点而可望成为最有希望的新一代电源之一。PEO基聚合物电解质因其可能替代传统锂离子电池中的液体电解质,成为全固态聚合物锂二次电池中的电解质材料而长期受到广泛关注。但是,在其实现商品化生产之前,尚有许多实际问题需要解决。首先,PEO基聚合物电解质的室温电导率较低,不能满足实际需要,因此提高其室温电导率是当前应该解决的首要问题;其次,金属锂作为负极材料,它与聚合物电解质的界面相容性严重影响着电池的循环性能和安全性。
     为此,本文主要针对上述问题进行了研究,并取得以下成果:
     1.通过FTIR光谱技术研究了P(EO)_n-LiX(X=SCN~-,N(SO_2CF_3)_2~-,ClO_4~-,n=4~60)聚合物电解质中离子-离子、离子-聚合物基体之间的相互作用。结果表明,当锂盐加入到低介电常数的PEO中,锂盐自身存在着缔合作用,阴离子不同,缔合程度也有所不同。LiSCN较其他两种锂盐具有更严重的缔合行为,当LiSCN的加入量较大时,聚合物电解质中不仅存在大量的离子对,而且还会形成二聚体与三离子簇。此外,锂盐阴离子还会对PEO具有增塑作用,可以改变聚合物的晶相组成,增加无定形相含量。其中LiN(SO_2CF_3)_2中阴离子体积较大,增塑效果最好。
     从离子传导的角度来看,缔合和增塑两种作用造成的效果是相反的。离子缔合必然减少体系的有效载流子数目,不利于离子传导;而增塑作用可以改变聚合物的晶相组成,增加无定形相含量,有利于离子传导。因此,在电导率.锂盐浓度曲线上电导率会有先增大后减小的变化趋势。对于LiN(SO_2CF_3)_2、LiSCN和LiClO_4三种聚合物电解质体系,在锂盐浓度相同时,LiN(SO_2CF_3)_2以其较低的缔合行为和良好的增塑效果,从而具有最高的电导率性能;而对于增塑效果相似的LiSCN和LiClO_4,前者因其较为严重的缔合行为使电导率略低于后者。
     2.合成了BMPyTFSI和BMImTFSI两种离子液体,并将其引入PEO基聚合物电解质中制得新型离子液体复合聚合物电解质,通过交流阻抗、直流电位阶跃、线性电位扫描等电化学技术研究了添加离子液体前后对聚合物电解质的离子电导率、锂离子迁移数、电化学稳定窗口以及界面稳定性等性能的影响。结果发现,引入BMPyTFSI或BMImTFSI离子液体后,聚合物电解质的离子电导率明显增加,增加幅度主要出现在低温区域,其中咪唑体系的电导率稍微大于吡啶体系的电导率。当BMImTFSI的掺杂量为x=1.0时,其电导率在40℃下可以达到10~(-4)S/cm以上,比未添加离子液体的聚合物电解质的电导率增加两个数量级。尽管离子液体的引入导致锂离子迁移数降低,但是其锂离子电导率还是呈上升趋势。此外,离子液体的加入,大大降低了锂电极/聚合物电解质的界面电阻,改善了界面稳定性,同时拓宽了聚合物电解质的电化学稳定窗口。在两种离子液体掺入量均为x=1时,稳定窗口达到5.2V(vs.Li~+/Li),这一结果为5V高压电池的发展提供一种可能的应用体系。
     DSC和FTIR研究结果表明,随着离子液体(BMImTFSI或BMPyTFSI)的加入量的提高,聚合物的玻璃态转变温度与结晶度均逐渐降低。当BMImTFSI的掺杂量为x=1.0时,聚合物的玻璃态转变温度与结晶度分别下降到-52.6℃和17.46%。因此,加入离子液体对聚合物电解质电导率的改善主要有两个影响因素:一方面较高的介电常数促进锂盐的离解,增加有效载流子数目;另一方面起到增塑作用,改变聚合物的晶相组成,增加无定形相含量,从而提高了聚合物电解质的离子电导率。
     3.通过XPS、FTIR技术并结合Ar~+离子束溅射技术对含有PC或BMPyTFSI的聚合物电解质中形成在镍基体表面上的锂钝化膜的组成与结构进行了研究。结果表明,在PEO基聚合物电解质体系中,PEO相对而言比较稳定,基本没有参与钝化反应,钝化膜主要由聚合物电解质中的有机添加剂、锂盐阴离子以及少量杂质(O_2和H_2O)的还原产物组成。不同的有机添加剂对钝化膜的组成有很大的影响。若添加PC,则钝化膜主要含有ROCO_2Li和Li2CO_3等物种;若添加BMPyTFSI离子液体,则与锂金属比较稳定,钝化膜主要以LiF物种为主。其次,锂盐不同,形成的钝化膜组成也有所区别。对于LiN(SO_2CF_3)_2,LiF是钝化膜中的主要成分;而LiSCN及LiBr对钝化膜成分基本没有影响。研究还发现,在锂离子的沉积溶出过程中,钝化膜的组成没有发生太大的变化,这对于获得良好的电池充放电性能是非常重要的。
     4.设计并优化了一种电化学现场光谱电解池,利用显微红外光谱技术对Li/聚合物电解质固/固界面性质进行了研究。结果表明,在0-3V的首次循环伏安扫描中,由于发生了O_2和H_2O的还原反应以及锂离子欠电位沉积-溶出过程,红外光谱中各个吸收峰表现出强度先减弱后增强的趋势,并且锂盐的变化幅度较聚合物基体更加明显。这主要由两种效应造成的,一方面O_2和H_2O还原形成的钝化膜降低了红外反射率,另一方面还原反应损耗了接近工作电极表面的锂离子,导致阴离子向基体电解质移动。从同步获得的显微图象中也可以清楚观察到由于O_2和H_2O的还原过程以及锂离子欠电位沉积-溶出过程所引起的界面形貌变化。
     对于含有PC的聚合物电解质体系,现场红外光谱表明,经过锂离子的沉积-溶出过程,电极表面化学物种主要是PC的还原产物ROCO_2Li以及Li_2CO_3等。此外,不同选择区域的红外光谱表明,钝化膜主要形成在电极与电解质紧密接触的CE附近。
The rechargeable lithium polymer batteries are considered as one of the best candidates for next generation power sources due to their high energy density, good cyclability, reliability and safety. PEO-based polymer electrolytes have received extensive attentions for their potential capability to be used as alternative candidate materials for the traditional liquid electrolytes in all solid-state rechargeable lithium polymer batteries. However, there are many problems that must be solved before these systems reach wide commercial utilization. Firstly, the battery performance is largely limited by the low ionic conductivity of PEO-based polymer electrolytes at room temperature. Therefore, it is important for PEO-based polymer electrolytes to enhance the ionic conductivity at room temperature. On the other hand, since lithium metal is used to be the anode material, the interface compatibility of polymer electrolyte with lithium metal severely affects the safety and cycle life of battery.
     In this dissertation, many efforts have been invested in the study of the problems above, and the results as follows:
     1. FTIR spectra of PEO-LiX (X=SCN, N(SO_2CF_3)_2, ClO_4) polymer electrolytes have been obtained for EO/Li ratios from 60:1 to 4:1 in order to investigate the interactions of ion-ion and ion-polymer. When a lithium salt is dissolved in the PEO with low dielectric constant, the ion association is commonly present and the degree of ion association varies with the type of anion from lithium salt. The results show that the ion association in the PEO-LiSCN system is more serious and at high concentration of LiSCN contact ion pairs, triple ions and dimers are main ion species. Furthermore, the crystalline phase of PEO was progressively transformed into amorphous phase since the large-size anions from lithium salt can play a role of plasticizer. LiN(SO_2CF_3)_2 with the largest size anion in this work possess the best plasticizing effect.
     From the ion transport of view, the results induced by the ion association and plasticizing role are opposites. The ion association necessarily diminishes the number of effective charge carrier and then leads to low ionic conductivity, whereas plasticizing role can change the phase composition of PEO and increase the content of the amorphous phase in which the highest ionic conductivity occurs. As a result, a maximum of conductivity is observed when the salt concentration is higher than a certain value. Based on the FTIR analysis, we commendably interpret the fact that ionic conductivities of PEO-LiX (X=SCN, N(SO_2CF_3)_2, ClO_4) polymer electrolytes follow the order LiN(SO_2CF_3)_2 > LiClO_4 > LiSCN at the same salt concentration.
     2. BMPyTFSI and BMImTFSI ionic liquids were synthesized by anion exchange reaction, then new gel polymer electrolytes containing ionic liquid were prepared by solution casting method. The electrochemical properties such as ionic conductivity, lithium transference number, electrochemical stability windows, and the compatibility with Li electrode were investigated with ac impedance, dc polarization, and linear sweep voltammetry techniques. The results show that the incorporation of BMPyTFSI or BMImTFSI to the P(EO)_(20)LiTFSI electrolyte improves the ionic conductivity over the entire temperature range investigated, but the greatest enhancement is at lower temperatures. The ionic conductivity of the P(EO)_(20)-LiTFSI electrolyte at 40℃with a BMIm~+/Li~+ mole fraction of 1.0 showed an increase of about two orders of magnitude reaching 4×10~(-4) S/cm. In despite of decreasing for the lithium ion transference number with the increase of the amount of BMPyTFSI or BMImTFSI, the lithium ionic conductivity increased. The electrochemical stability and interfacial stability for these gel polymer electrolytes were significantly improved due to the incorporation of BMPyTFSI or BMImTFSI. At high concentration of ionic liquid, the electrochemical stability window reaches 5.2 V. The results suggest that the polymer electrolyte containing ionic liquid can be applied safely in 5 V lithium secondary batteries.
     The DSC and FTIR results show that the glass transition temperature (T_g) and the crystallinity obviously decrease with increase of the content of ionic liquid. These revealed ionic liquid can weaken the interaction among the polymer chains and accelerate the segmental motion of the PEO-based polymer electrolyte, thus the ionic conductivity of the gel polymer electrolytes increases.
     3. The passive layers formed on lithium at a nickel substrate in polymer electrolytes containing PC and BMPyTFSI were characterized by using XPS, FTIR as well as Ar ion sputtering technique. PEO seems to be rather inert to lithium and has no effect on the composition of the passive layer. The passive layers are mainly composed of the reduction products of organic plasticizer, anion from lithium salt, and impurities existing in electrolyte such as traces of O_2 and H_2O. The results show that PC was reduced on Li to ROCO_2Li and Li_2CO_3 species and the main reduction product of LiN(SO_2CF_3)_2 was LiF. Polymer electrolytes containing BMPyTFSI ionic liquid seemed to be stable with lithium and only formed a fewer passive layers mainly including LiF. LiSCN and LiBr salts have no effect on the composition of the passive layer. During the lithium deposition-dissolution process, there is no change for the composition and structure of the passive layer. It is very important to obtain good performance of battery.
     4. A spectroelectrochemical cell was designed and optimized, then the solid-solid interface between lithium electrode and polymer electrolytes was explored to characterize by using in situ micro-FTIR spectroscopy. The cyclic voltammetric results indicated that the reducing reactions of oxygen and water as well as the under-potential deposition (UPD) of lithium occur in the electrode/electrolyte interface in the different potential region. The infrared spectral changes observed during the CV process revealed that there is a direct correlation between the CV peaks and the magnitude of the infrared peaks. This change is most likely due to an increase or decrease in the infrared reflectivity induced by the formation of a thin layer at the Au/polymer electrolyte interface. It is shown that the infrared reflectivity from the solid-solid interface is very sensitive to the formation of the passive layer on the lithium electrodes. On the other hand, in situ FTIR results show that there is a sharply decrease in the amount of Li salt probed by the beam during the reducing process of water. The reason is that the reducing process leads to the loss of lithium ion from the surface of the working electrode and accompanies by the migration of anion into the bulk electrolyte. Optical micrographs obtained simultaneously also displayed directly the formation of the passive layer along with lithium deposition and dissolution process. It is correlated well with in-situ FTIR and electrochemical experiments.
     In situ FTIR results obtained from the polymer electrolyte containing PC after lithium deposition-dissolution process show that the surface chemistry of Li is dominated, as expected, by PC reduction to ROCO_2Li and Li_2CO_3 species. These are in agreement with the results obtained from ex situ experiments.
引文
[1] S. Megahed, B. Scrosati. Rechargeable non-aqueous batteries[C]. The Electrochemical Society Interface[C].Winter, 1995: 34-37
    
    [2] K. M. Abraham. Directions in secondary lithium battery research and development[J]. Electrochimica Acta,1993,38(9): 1233-1248
    
    [3] K. Brandt Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994,69(3-4): 173-183
    
    [4] B. Scrosati. Recent advances in lithium ion battery materials[J]. Electrochimica Acta, 2000, 45(15-16):2461-2466
    
    [5] B. B. Owens, W. H. Smyrl, J. J. Xu. R & D on lithium batteries in the USA: high-energy electrode materials[J].J. Power Sources, 1999, 81-82: 150-155
    
    [6]陈猛,史鹏飞,程新群.塑料锂离子电池研究概况[J].电池,2000,30(3):129-133
    
    [7] A. G Ritchie. Recent developments and future prospects for lithium rechargeable batteries[J]. J. Power Sources, 2001,96(1): 1-4
    
    [8]胡传跃,李新海,孙铭良,王志兴,邓凌峰.聚合物锂离子电池的研究进展[J].电池工业,2001,6(2):77-81
    
    [9]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002
    
    [10] T. Nagaura. Progress batteries col. Cells[C]. 4th International Rechargeable Battery Seminar[C]. Florida: 1990.20
    
    [11] K. Zaghib, M. Armand, M. Gauthier. Electrochemistry of anodes in solid-state Li-ion polymer batteries[J]. J.Electrochem. Soc., 1998,145(9): 3135-3140
    
    [12] A. Du Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G Amatucci, J. M. Tarascon. Differential scanningcalorimetry study of the readivity of carbon anodes in plastic Li-ion batteries[J]. J. Electrochem. Soc., 1998,145(2): 472-477
    
    [13]丁黎民,董绍俊,汪尔康.高分子固体电解质研究进展[J].电化学,1997,4:349-361
    
    [14] A. S. Gozdz, C. N. Scumutz, J. M. Tarascon. Rechargeable lithium intercalation battery with hybrid polymericelectrolyte[P]. US Pat.: 5 296 318, 1993-03-05
    
    [15] D. E. Fenton, J. M. Parker, P. V. Wright Complexes of alkaline metal ions with poly(ethylene oxide)[J].Polymer, 1973,14: 589-592
    
    [16] M. B. Armand, J. M. Chabagno, M. J. Duclot. Fast ion transport in solids (eds P. Vashista, J. N. Mundy, G K.Shenoy)[M]. Elsevier, Amsterdam, 1979,131-136
    
    [17] U. Lauter, W. H. Meyer, G Wegner. Molecular composites from rigid-rod poly(p-phenylene)s witholigo(oxyethylene) side chains as novel polymer electrolytes[J]. Macromolecules, 1997,30(7): 2092-2101
    
    [18] W. Wieczorek, K. Such, S. H. Chung, J. R. Stevens. Comparison of properties of composite polymericelectrolytes based on the oxymethylene-linked poly(ethylene oxide) NaClO_4 electrolyte with polyacrylamideor .alpha.-Al_2O_3 additives[J]. J. Phys. Chem., 1994,98(36): 9047-9055
    
    [19] S. Gopal, R. Ramchandran, R. S. A. Agnihotry. Polyvinyl butyral based solid polymeric electrolytes:Preliminary studies[J]. Solar Energy Materials and Solar Cells, 1997,45:17-25
    
    [20] C. P. Fonseca, S. Neves. Characterization of polymer electrolytes based on poly(dimethylsiloxane-co-ethylene oxide)[J]. J. Power Sources, 2002,104:85-89
    
    [21] T. H. Epps, T. S. Bailey, R. Waletzko.F. S. Bates. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide)triblock copolymers[J]. Macromoleculars, 2003,36(8): 2873-2881
    
    [22] R. A. Silva, G G Silva, R. L. Moreira, M. A. Pimenta. The effects of salt concentration on cation complexation in triblock-polyether electrolyte[J]. Phys. Chem. Chem. Phys., 2003,5(11): 2424-2428
    
    [23] M. C. Borghini, M. Mastragostino, A. Zanelli. Reliability of lithium batteries with crosslinked polymer electrolytes[J]. Electrochimica Ada, 1996, 41(15):2369-2373
    
    [24] S. I. Moon, C. R. Lee, B. S. Jin, K. E. Min, W. S. Kim. Ionic conductivities of cross-linked polymer electrolytes prepared from oligo(ethylene glycol) dimethacrylates[J]. J. Power Sources, 2000,87(1-2): 223-225
    
    [25] E. Morales, J. L. Acosta, Conductivity and electrochemical stability of composite polymer electrolytes[J]. Solid State Ionics, 1998, 111(1-2): 109-115
    
    [26] N. K. Chung, Y. D. Kwon, D. Kim. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexaf1uoropropylene /polyethylene glycol) hybrid-type polymer electrolytes[J]. J. Power Sources, 2003,124(1): 148-154
    
    [27] T. Itoh, Y. Ichikawa, T. Uno, M. Kubo, O. Yamamoto. Composite polymer electrolytes based on poly(ethyleneoxide), hyperbranched polymer, BaTiO_3 and LiN(CF_3SO_2)_2[J]. Solid State Ionics, 2003,156(3-4):393-399
    
    [28] C. Chuy, J. F. Ding, E. Swanson, S. Holdcroft, J. Horsfall, K. V. Lovell. Condudivity and electrochemical ORR mass transport properties of solid polymer electrolytes containing poly(styrene sulfonic acid) graft chains[J]. J. Electrochem. Soc, 2003,150(5): E271-E279
    
    [29] D. Fauteux, A. Massucco, M. McLin, M. Van Buren, J. Shi. Lithium polymer electrolyte rechargeablebattery[J]. Electrocheimica Acta, 1995,40(13-14): 2185-2190
    
    [30] A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe. High ionic conductivity of polyether-basednetwork polymer electrolytes with hyperbranched side chains[J]. Macromolecules, 1999,32(5): 1541-1548
    
    [31] B. Kumar, S. J. Rodrigues. Poly(ethylene oxide)-based composite electrolytes crystalline reversible arrowamorphous transition[1]. J. Electrochem. Soc., 2001,148(12): A1336-A1340
    
    [32]李奇,周娇红,夏笑虹,蒋永华.金属锂盐对聚合物电导率作用的研究[J].湖南冶金,2005,33(2):7-11
    
    [33] Y. G Andreev, P. G Bruce. Polymer electrolyte structure and its implications[J]. Electrochimica Acta, 2000, 45(8-9): 1417-1423
    
    [34] C. A. Angell, C. Liu, E. Sanchez. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993,362:137-139
    
    [35]欧阳光,陈志良,等.中国化工产品大全[M].北京:化学工业出版社,1994.107
    
    [36] S. Rajendran, M. Sivakumar, R. Subadevi. Effect of plasticizers in poly(vinyl alcohol)-based hybrid solidpolymer electrolytes[J]. Journal of Applied Polymer Science, 2003,90(10): 2794-2800
    
    [37] S. S. Sekhon, Deepa, S. A. Agnihotry. Solvent effect on gel electrolytes containing lithium salts[J]. Solid StateIonics, 2000,136:1189-1192
    
    [38] Y. Saito, A. M. Stephan, H. Kataoka. Ionic conduction mechanisms of lithium gel polymer electrolytesinvestigated by the conductivity and diffusion coefficient[J]. Solid State Ionics, 2003,160(1-2): 149-153
    
    [39] W. Xu, K. S. Siow, Z. Q. Gao, S. Y. Lee. Electrochemical characterization of plasticized polyelectrolyte basedon lithium-N(4-sulfophenyl) maleimide[J]. Electrochimica Acta. 1999,44(13): 2287-2296
    
    [40] J. M. G Cowie, G H. Spence. Novel single ion, comb-branched polymer electrolytes[J]. Solid State Ionics,1999,123(1-4): 233-242
    
    [41] D. Benrabah, S. Sylla, F. Allon, J. -Y. Sanchez, M. Armand. Perfluorosulfonate-polyether based single ionconductors[J]. Electrochimica Acta, 1995,40(13-14): 2259-2264
    
    [42] M. C. Borghini, M. Mastraqostino, S. Passerini, B. Scrosati. Electrochemical properities of polyethyleneoxide-Li[(CF_3SO_2)_2N]-Gamma-LiAlO_2 composite polymer electrolytes[J]. J. Electrochem. Soc., 1995, 142:2118-2121
    
    [43] W. Krawiec, L. G Scanlon, Jr., J. P. Fellner, R. A. Vaia, S. Vasudevan, E. P. Giannelis. Polymernanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries[J]. J. PowerSources. 1995, 54(2): 310-315
    
    [44] F. Croce, G B. Appetecchi, L. Persi, B. Scrosati. Nanocomposite polymer electrolytes for lithium batteries[J].Nature, 1998, 394: 456-458
    
    [45] H. J. Walls, J. Zhou, J. A. Yerian, P. S. Fedkiw, S. A. Khan, M. K. Stowe, G L. Baker. Fumed silica-basedcomposite polymer electrolytes: synthesis, rheology, and electrochemistry[J]. J. Power Sources, 2000, 89(2):156-162
    
    [46]杜洪彦.二次锂电池纳米复合聚合物电解质的制备、表征及其离子导电机理研究[D].厦门大学博士学位论文,厦门,2004
    
    [47]杜洪彦,程琥,李涛,杨勇.纳米SiO_2表面基团对复合聚合物电解质性质的影响[J].电源技术,2005,29(3):307-311
    
    [48] T. Ichino, M. Matsumoto, Y. Takeshita, J. S. Rutt, S. Nishi. New concept for polymer electrolyte: Dual-phasepolymer electrolyte[J]. Electrochimica Acta, 1995,40(13-14): 2265-2268
    
    [49] T. Ichino, M. Matsumoto. New solid polymer electrolytes prepared from styrene-butadiene copolymerlattices[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(2): 589-591
    
    [50] J. S. Rutt, M. Matsumoto, T. Ichino, S. Nishi. Ion-free latex films composed of fused polybutadiene and poly(vinyl pyrrolidone) particles as polymer electrolyte materials[J]. Journal of Polymer Science Part A: PolymerChemistry, 1993, 32(4): 779-787
    
    [51]剧金兰,顾庆超.高分子固体电解质设计的新概念[J],高分子通报,2002,2:1-8
    
    [52] J. L. Ju, Q. C. Gu, H. S. Xu, C. Z. Yang. Ionic conductivity of new dual-phase polymer electrolyte composed of poly(epichlorohydrin-co-oxirane) and NBR[J]. Journal of Applied Polymer Science, 1998,70(2): 353-357
    
    [53]剧金兰,娄永兵,顾庆超,杨昌正.高分子电解质中锂盐与高分子的相互作用[J].高分子材料科学与工程,2001,17(2):88-90
    
    [54] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud. Microscopic investigation ofionic conductivity in alkali metal saltes-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983,11:91-95
    
    [55] W. Gorecki, J. P. Donoso, C. Berthier, M. Mali, J. Roos, D. Brinkmann, M. B. Armand. NMR, DSC andconductivity study in the polymer solid electrolytes P(EO)(LiC_(p+1)F_(2p+3)SO_3)_x[J]. Solid State Ionics, 1988,28-30:1018-1022
    
    [56] M. C. Wintersgill, J. J. Fontanella, Y. S. Pak, S. G Greenbaum, A. Al-mudaris, A. V. Chadwick. Electricalconductivity, DSC, and NMR studies of amorphous poly(ethylene oxide) complexed with sodium salts[J]. Polymer,1989,30:1123-1131
    
    [57] Z. Stoeva, I. Martin-Litas, E. Staunton, Y. G Andreev, P. G Bruce. Ionic conductivity in the crystallinepolymer electrolytes PEO_6:LiXF_6, x= P, As, Sb[J]. J. Am. Chem. Soc., 2003,125:4619-4626
    
    [58] M. Duclot, F. Alloin, O. Brylev, J. Y. Sanchez, J. L. Souquet. New alkali ionomers: transport mechanism fromtemperature and pressure conductivity measurements[J]. Solid State Ionics, 2000,136-137:1153-1160
    
    [59] J. T. Bendler, J. J. Fontanella, M. F. Shlesinger, M. C. Wintersgill. The need to reconsider trational freevolume theory for polymer electrolytes[J]. Electrochimica Acta, 2003,48(14-16): 2267-2272.
    
    [60]W. Wieczorek, K. Such, Z. Florjanczyk, J. R. Stevens. Polyether, polyacrylamide, LiClO_4 compositeelectrolytes with enhanced conductivity [J]. J. Phys. Chem., 1994,98(27): 6840-6850
    
    [61] W. Wieczorek, K. Such, S. H. Chung, J. R. Stevens. Comparison of properties of composite polymericelectrolytes based on the oxymethylene-linked poly(ethylene oxide) NaC1O_4 electrolyte with polyacrylamide or.alpha.-Al2O_3 additives[J]. J. Phys. Chem., 1994,98(36): 9047-9055
    
    [62] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fioy, E. Plichta, M. A. Hendrickson. Role of the ceramic fillers inenhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001,46(16):2457-2461
    
    [63] M. Nookala, B. Kumar,S. Rodrigues. Ionic conductivity and ambient temperature Li electrode reaction incomposite polymer electrolytes containing nanosize alumina[J]. J. Power Sources, 2002,111(1): 165-172
    
    [64] M. A. Ratner, D. F. Shriver. Ion transport in solvent-free polymers[J]. Chem. Rev., 1988, 88(1): 109-124
    
    [65] J. Kincs, S. W. Martin. Non-Arrhenius conductivity in glass: mobility and conductivity saturation effects[J].Phys. Rev. Lett., 1996, 76: 70-73
    
    [66] H. Vogel. The law of relation between the viscosity of liquids and the temperature[J]. Phys. Z., 1921,22:645-646
    
    [67] G. Thamann W. Hesse. The dependence of viscosity upon the temperature of supercooled liquids[J]. Z. Anorg.Allg. Chem. 1926,156: 645-657
    
    [68] G S. Fulcher. Analysis of recent measurements of the viscosity of glasses[J]. J. Am. Ceram. Soc. 1925,8:339-355
    
    [69] M. L. Williams, R. F. Landel,J. D. Ferry. The temperature dependence of relaxation mechanisms inamorphous polymers and other glass-forcing liquids[J]. J. Am. Chem. Soc. 1955,77:3701-3705
    
    [70] E. Peled. The electrochemical behavior of alkali and alkaline earth metals in non-aqueous battery systems-thesolid electrolyte interphase[J]. J. Electrochem. Soc., 1979,126:2047-2051
    
    [71] N. Munichandraiah, L. G. Scanlon, R. A. Marsh. Surface films of lithium: an overview of electrochemicalstudies[J]. J Power Sources, 1998, 72(2): 203-210
    
    [72] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller. A short review of failure mechanisms of lithium metal andlithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416
    
    [73] E. Peled, D. Golodnitsky, G Ardel, V. Eshkenazy. The SEI model-application to lithium-polymer electrolytebatteries[J]. Electrochimica Acta, 1995,40(13-14): 2197-2204
    
    [74]程琥,李涛,杨勇.锂/聚合物电解质电化学固/固界面的研究[J].化学进展,2006,18(5):542-549
    
    [75] F. B. Dias, L. Plomp, J. B. J. Veldhuis. Trends in polymer electrolytes for secondary lithium batteries[J]. J.Power Sources, 2000,88(2): 169-191
    
    [76] N. Langenhuizen, The effect of mass transport on Li deposition and dissolution[J]. J. Electrochem. Soc., 1998,145(9): 3094-3099
    
    [77] C. A. C. Sequeirs, A. Hooper. The study of lithium electrode reversibility against (PEO)_xLiF_3CSO_3 polymericelectrolytes[J]. Solid State Ionics, 1983,9-10(2): 1131-1138
    
    [78] N. Munichandraiah, L. G Scanlon, R. A. Marsh, B. Kumar, A. K. Sircar. Determination of the exchangecurrent density of the Li~++ e~-(?) Li reaction in polymer electrolytes by galvanostatic linear polarization ofsymmetrical cells[J]. J. Electroanal. Chem., 1994,379(1-2): 495-499
    
    [79] J. Xu, G C. Farrington, Microelectrode studies of the Li/Li~+ couple in low molecular weight liquid polyetherelectrolytes[J]. Solid State Ionics, 1994, 74(3-4): 125-132
    
    [80] A. M. Christie, C. A. Vincent, The Li/Li~+ couple in propylene carbonate electrolytes and poly(methylmetnacrylate) gcls[J]. J. Appl. Electrochem., 1996, 26:255-267
    
    [81] D. Fauteux. Lithium electrode in polymer electrolytes[J]. Electrochimica Acta, 1993,38(9): 1199-1210
    
    [82] W. Xu, K. S. Siow, Z. Q. Gao, S. Y. Lee. A.C. impedance study on the interface of lithium and polymerelectrolyte based on lithium-N(4-sulfophenyl) maleimide[J]. 1998,112(1-2): 1-8
    
    [83] S. E. Sloop, M. M. Lerner. Study of the poly[oxymethylene oligo-(oxyethylene)] /lithium metal interface[J]. J.Electrochem. Soc., 1996, 143(4): 1292-1297
    
    [84] F. Croce, B. Scrosati. Interfacial phenomena in polymer-electrolyte cells: lithium passivation andcycleability[J]. J. Power Sources, 1993,43(1-3): 9-19
    
    [85] D. Aurbach, A. Zaban, A. Schechter, Y. Ein-Eli, E. Ziniqrad, B. Markovsky. The study of electrolyte solutionsbased on ethylene and diethyl carbonates for rechargeable Li batteries[J]. J. Electrochem. Soc., 1995, 142:2873-2882
    
    [86] D. Aurbach, Y. Ein-Eli, A. Zaban. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J].J. Electrochem. Soc., 1994,141: L1-L3
    
    [87] D. Aurbach, I. Weissman, A. Zaban, O. Chusid. Correlation between surface chemistry, morphology, cyclingefficiency and interfacial properties of Li electrodes in solutions containing different Li salts[J]. ElectrochimicaActa, 1994, 39(1): 51-71
    
    [88] G R. Zhuang, K. L. Wang, G Chottiner, R. Barbour, Y. Y. Luo, I. T. Bae, D. Tryk, D. A. Scherson. Novel insitu and ex situ techniques for the study of lithium/electrolyte interfaces[J]. J. Power Sources, 1995, 54(1): 20-27
    
    [89] T. Ichino, B. D. Cahan, D. A. Scherson. In situ attenuated total reflection fourier transform infraredspectroscopy studies of the polyethylene oxide/LiClO_4-metallic lithium interface[J]. J. Electrochem. Soc., 1991,138:L59-L61
    
    [90] O. Chusid, Y. Gofer, D. Aurbach, M. Watanabe, T. Momma, T. Osaka. Studies of the interface between lithiumelectrodes and polymeric electrolyte systems using in situ FTIR spectroscopy[J]. J. Power Sources, 2001, 97-98:632-636
    
    [91] Z. Takehara, Z. Ogumi, Y. Uchimoto, K. Yasuda, H. Yoshida. Modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene[J]. J. Power Sources, 1993,44(1-3): 377-383
    
    [92] Y. Cheng, M. M. Yan, Z. Y. Jiang. Spectroscopy and Spectral Analysis, 2004,24:87-88
    
    [93]程琥.锂二次电池聚合物电解质的电化学性能及现场红外光谱研究[D].厦门大学理学硕士学位论文,厦门2003
    
    [94] I. Ismail, A. Noda, A. Nishimoto, M. Watanabe. XPS study of lithium surface after contact with lithium-saltdoped polymer electrolytes[J]. Electrochimica Acta, 2001,46( 10-11): 1595-1603
    
    [95] T. Sotomura, K. Adachi, M. Taguchi, M. Iwaku, T. Tatsuma, N. Oyama. Developing stable, low impedanceinterface between metallic lithium anode and polyacrylonitrile-based polymer gel electrolyte by preliminaryvoltage cycling[J]. J. Power Sources, 1999,81-82:192-199
    
    [96] F. Kong, F. J. McLarnon. Spectroscopic ellipsometry of lithium/polymer electrolyte interfaces[J]. J. PowerSources, 2000,89(2): 180-189
    
    [97] F. Orsini, A. D. Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. D. Beer, P. Notten. Insitu scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries[J]. J. PowerSources, 2000,76(1): 19-29
    
    [98] F. Orsini, A. D. Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. D. Beer, P. Notten. Insitu SEM study of the interfaces in plastic lithium cells[J]. J. Power Sources, 1999,81-82:918-921
    
    [99] M. L. Granvalet-Mancini, T. Hanrath, D. Teeters. Characterization of the passivation layer at the polymerelectrolyte/lithium electrode interface{J]. Solid State Ionics, 2000,135(1-4): 283-290
    
    [100] M. L. Granvalet-Mancini, T. Hanrath, D. Teeters. Characterization of self-assembled molecular layers at thepolymer electrolyte/lithium electrode interface[J]]. Electrochimica Acta, 2000,45:1491-1500
    
    [101] T. Osaka, T. Momma, T. Tajima, Y. Matsumoto. Enhancement of lithium anode cyclability in Propylenecarbonate electrolyte by CO_2 addition and its protective effect against H_2O impurity [J]. J. Electrochem. Soc., 1995,142(4): 1057-1060
    
    [102] S. Shiraishi, K. Kanamura, Z. I. Takehara, Influence of initial surface condition of lithium metal anodes onsurface modification with HF[J]. J. Appl. Elactrochem., 1999,29(7): 867-879
    
    [103] M. Ishikawa, S. Machino, M. Morita. Electrochemical of Lithium anode cycleability in lithium imideelectrolytes by an additive controlling an anode interface[J]. Electrochemistry, 1999,67(12): 1200-1202
    
    [104] N. S. Choi, Y. M. Lee, J. H. Park, J. K. Park. Interfacial enhancement between lithium electrode and polymerelectrolytes[J]. J. Power Sources, 2003,119-121:610-616
    
    [105] R. N. Mason, M. Smith, T. Andrews, D. Teeter. Using self-assembled monolayers to inhibit passivation at thelithium electrode/polymer electrolyte interface[J]. Solid State Ionics, 1999,118(1-2): 129-133
    
    [106] M. L. Granvalet-Mancini, T. Hanrath, D. Teeters. Characterization of the passivation layer at the polymerelectrolyte/lithium electrode interface[J]. Solid State Ionics, 2000,135(1-4): 283-290
    
    [107] Y. G Lee, J. K. Park, S. I. Moon. Interfacial characteristics between lithium electrode and plasticizedpolymer electrolytes based on poly(acrylonitrile-co-methyl methacrylate)[J]. Electrochimica Acta, 2000, 46(4):533-539
    
    [108] Q. Li, H. Y. Sun, Y. Takeda, N. Imanishi, J. Yang, O. Yamamoto. Interface properties between a lithium metalelectrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. J. Power Sources, 2001, 94(2):201-205
    
    [1] C. Capiglia, P. Mustarelli, E. Quartarone, C. Tomasi, A. Magistris. Effects of nanoscale SiO_2 on the thermal andtransport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes[J]. Solid State Ionics,1999,118(1-2): 73-79
    
    [2] F. Lemaitre-Auger, J. Prud'homme. Ion-ion, short-range interactions in PEO-LiX rubbery electrolytescontaining LiSCN, LiN(SO_2CF_3)_2 or Li[CF_3 SO_2N(CH_2)_3OCH_3] as deduced from studies performed onPEO-LiX-KX ternary systems[J]. Electrochimica Acta 2001, 46: 1359-1367
    
    [3] I. Rey, J. C. Lassegues, J. Grondin, L. Servant. Infrared and Raman study of the PEO-LiTFSI polymerelectrolyte[J]. Electrochimica Acta 1998,43(10-11): 1505-1510
    
    [4]储伟.锰结核与LiMn_2O_4等锂离子电池阴极材料的结构、性能及表征[D].厦门大学博士学位论文,厦门,1999
    
    [5] W. L. F. Armarego, D. D. Perrin, Purification of laboratory chemicals, 4th edition,世界图书出版社
    
    [6] J. H. Shin, W. A. Henderson, and S. Passerini. Ionic liquids to the rescue? Overcoming the ionic conductivitylimitations of polymer electrolytes[J]. Electrochemistry Communications, 2003,5(12):1016-1020.
    
    [7] A. Lewandowski and A. Swiderska. New composite solid electrolytes based on a polymer and ionic liquids[J].Solid State Ionics, 2004, (l-4):21-24.
    
    [8] J. H. Shin, W. A. Henderson, and S. Passerini. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries[J]. Journal of the Electrochemical Society, 2005, 152??(5):A978-A983.
    
    [9]杜洪彦.二次锂电池纳米复合聚合物电解质的制备、表征及其离子导电机理研究[D].厦门大学博士学位论文,厦门,2004
    
    [10]常铁军,祁欣.材料近代分析测试方法.哈尔滨工业大学出版社,哈尔滨,1999
    
    [11]赵胜亮.聚合物锂离子电池中电解质隔膜的研究[D].厦门大学理学硕士学位论文,厦门,2002
    
    [12] M. A. B. H. Susan, T. Kaneko, A. Noda, M. Watanabe. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes[J]. J. Am. Chem. Soc., 200S, 127: 4976-4983
    
    [13]许小红,武海顺.压电薄膜的制备、结构与应用,科学出版社,北京,2002
    
    [14]王玉玲,韩阶平.微细加工技术概述,北京创微纳科技有限公司印刷,北京,2001
    
    [1] J. W. Kim, K. S. Ji, J. P. Lee, J. W. Park. Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO_2[J]. J. Power Sources, 2003,119-121: 415-421
    
    [2] R. Dupon, B. L. Papke, M. A. Ratner, D. H. Whitmore, D. F. Shriver. Influence of ion pairing on cationtransport in the polymer electrolytes formed by poly(ethylene oxide) with sodium tetrafluoroborate and sodiumtetrahydroborate[J]. J. Am. Chem. Soc., 1982,104:6247-6255
    
    [3] J. R. MacCallum, A. S. Tomlin, C. A. Vincent An investigation of the conducting species in polymerelectrolytes[J]. Eur. Poly. J., 1986,22: 787-795
    
    [4] F. Lemaitre-Auger, J. Prud'homme. Ion-ion, short-range interactions in PEO-LiX rubbery electrolytescontaining LiSCN, LiN(SO_2CF_3)_2 or Li[CF_3 SO_2N(CH_2)_3OCH_3] as deduced from studies performed onPEO-LiX-KX ternary systems[J]. Electrochimica Acta 2001,46:1359-1367
    
    [5] S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud'homme, M. Armand. Phase diagramsand conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes[J].Macromoiecules, 1994,27:7469-7477
    
    [6] B. L. Papke, M. A. Ratner, D. F. Shriver. Infrard spectrum of CTF3 and implication toward tritium isotopeseparation by infrard by infrard laser multiple-photon dissociation of halogenated methanes[J]. J. Phys. Chem.Solids, 1981,42:493-499
    
    [7] B. L. Papke, M. A. Ratner, D. F. Shriver. Conformation and ion-transport models for the stucture and ionicconductivity in complexes of polyethers with akali metals salts[J]. J. Electrochem. Soc., 1982,129:1434-1441
    
    [8] S. D. Teeter, R. Frech. Cation and anion diffusion in the amorphous phase of the polymer electrolyte(PEO)_8LiCH_3SO_3, Solid State Ionics[J]. Solid State Ionics, 1986,18/19:271-280
    
    [9] H. C. Zhang, X. P. Xuan, J. J. Wang, H. Q. Wang. FT-IR investigations of ion association inPEO-MSCN(M=Na,K) polymer electrolytes[J]. Solid State Ionics, 2003,164:73-79
    
    [10] L. M. Torell, P. Jacobssen, S. G Peter. Dissociated ions and ion-ion interactions in poly(ethylene oxide) basedNaCF_3SO_3 complexes,solid state ionics[J]. Polym. Adv. Technol., 1993,4(2-3): 152-163
    
    [11] T. Yoshihara, H. Tadokoro, S. MuraHashi. Normal vibrations of the polymer molecules of helical conformation. Ⅳ. polyethylene oxide and polyethylene-d_4 oxide[J]. J. Chem. Phys., 1964,41(9): 2902-2911
    
    [12] Z. Q. Shen, G P. Simon, Y. B. Cheng. Comparison of solution intercalation and melt intercalation ofpolymer-clay nanocomposites[J]. Polymer, 2002,43(15): 4251-4260
    
    [13] I. Rey, J. C. Lassegues, J. Frondin, L. Servant Infrared and Raman study of the PEO-LiTFSI polymerelectrolyte[J]. Electrochimica Acta, 1998,43(10-11): 1505-1510
    
    [14] P. C. Howlett, N. Brack, A. F. Hollenkamp, M. Forsyth, D. R. MacFarlane. Characteriation of the lithiumsurface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquidelectrolytes[J]. J. Electrochem. Soc., 2006,153(3): A595-A606
    
    [15] W. Wieczorek, D. Raducha, A. Zalewska, J. R. Stevens, Effect of salt concentration on the conductivity ofPEO-based composite polymer electrolytes[J]. J. Phys. Chem. B, 1998,102: 8725-8731
    
    [16] M. Xu, E. M. Eyring, S. Petrucci. Molecular dynamics and infrared spectra of NaSCN dissolvedin the solvent macrocycle 15-crown-5 and polyethylene oxide dimethyl ether-250[J]. J. Phys.Chem., 1995,99(40): 14589-14596
    
    [17] D. E. Irish, S. Y. Tang, H. Talts, S. Petrucci. Raman, infrared, and ultrasonic relaxation studies of somesodium and lithium salts in dimethylacetamide[J]. J. Phys. Chem., 1979,83(25): 3268-3276
    
    [18] D. Saar, P. Petrucci, Infrared and ultrasonic spectra of sodium thiocyanate and lithium thiocyanate intetrahydrofuran[J]. J. Phys. Chem., 1986,90(15): 3326-3330
    
    [19] M. Marcincek, M. Ciosek, G Zukowska, W. Wieczorek, K. R. Jeffrey, J. R. Stevens, Ionic association inliquid (polyether-Al_2O_3-LiClO_4) composite electrolytes, Solid State Ionics, 2005,176: 367-376
    
    [1]李汝雄,王建基.绿色溶剂-离子液体的制备与应用[J].化工进展,2002,21(1):43-48
    
    [2]石家华,孙逊,杨春和,高青雨,李永肪.离子液体研究进展[J].化学通报,2002,4:243-250
    
    [3]李汝雄,王建基.离子液体的合成与应用[J].化学试剂,2001,23(4):211-215
    
    [4] T. Welton. Room-temperature ionic liquids solvent for synthesis and catalysis[J]. Chem. Rev., 1999, 99:2071-2074
    
    [5] J. L. Anthony, E. J. Maginn, J. F. Brennecke. Solution thermodynamics of imidazolium-based ionic liquids andwater[J]. J. Phys. Chem. B, 2001,105(44): 10942-10949
    
    [6] B. Ellis, W. Keim, P. Wassercheid. Linear dimerization of but-1-enc in biphasic mode using bufferedchioroaluminate ionic liquid solvents[J]. Chem. Commun., 1999, 377-384
    
    [7] A. Noda, M. A. B. H. Susan, K. Kudu, S. Mitsushima, K. Hayamizu, M. Watanabe. BrΦnsted acid-base ionicliquids as proton-conducting nonaqueous electrolytes[J]. J. Phy. Chem. B, 2003, 107(17): 4024-4033
    
    [8]杨家振,金一,曹英华,孙立贤,谭志诚.室温离子液体电化学稳定性的研究[J].高等学校化学学报,2004,25(9):1733-1735
    
    [9] A. Chagnes, M. Diaw, B. Carr? P. Willmann, D. Lemordant. Imidazolium-organic solvent mixtures aselectrolytes for lithium batteries[J]. J. Power Sources, 2005,145(1): 82-88
    
    [10] M. Forsyth, J. Sun, F. Zhou, D. R. MacFarlane. Enhancement of ion dissociation in polyelectrolyte gels[J].Electrochimica Acta, 2003,48(14-16): 2129-2136
    
    [11] H. Michiko, I. Kaori, O. Hiroyuki. Preparation and polymerization of new organic molten salts:N-alkylimadazolium salt derivatives[J]. Electrochimica Acta, 2000,45(8-9): 1291-1294
    
    [12] H. Ohno, Molten salt type polymer electrolytes[J]. Electrochimica Acta, 2001,46(10-11): 1407-1411
    
    [13] H. Nakagawa, S. Izuchi, K. Kuvana, et al. Liquid and polymer gel electrolytes for lithium batteries composedof room-temperature molten salt doped by lithium salts[J]. J. Electrochem. Soc., 2003,150(6): A695-A700
    
    [14] J. H. Shin, W. A. Henderson, S. Scaccia, et al. Solid-state Li/LiFePO_4 polymer electrolyte batteriesincorporating an ionic liquid cycled at 40 ℃[J], J. Power Sources, 2005,152: in press
    
    [15]许金强,杨军,努丽燕娜,张万斌.二次锂电池用离子液体电解质研究[J].化学学报,20056,63(18):1733-1738.
    
    [16]古宁宇,钱新明,程志亮,蒋俊光,杨秀荣,董绍俊.Al_O_3掺杂的复合聚合物电解质室温电导研究[J].高等学校化学学报,2001,22(8):1403-1405
    
    [17] Y. Zhao, R. Tao, T. Fujinami. Enhancement of ionic conductivity of PEO-LiTFSI electrolyte uponincorporation of plasticizing lithium borate[J]. Electrochimica Acta. 2006. 51(28): 6451-6455
    
    [18] J. H. Shin, W. A. Henderson, S. Passerini. PEO-based polymer electrolytes with ionic liquids and their use inlithium metal-polymer electrolyte batteries[J]. J. Electrochem. Soc., 2005,152(5): A978-A983
    
    [19] G. Mao, M. L. Saboungi, D. L. Price, M. B. Armand, W. S. Howells. Structure of liquid PEO-LiTFSIelectrolyte[J]. Phys. Rev. Lett., 2000,84:5536-5539
    
    [20] I. Rey, J. C. Lassegues, J. Grondin, L. Servant Infrared and Raman study of the PEO-LiTFSI polymerelectrolyte[J]. Electrochimica Acta, 1998,43(10-11): 1505-1510
    
    [21] L. Edman, Ion association and ion solvation effects at the crystalline-amorphous phasetransition In PEO-LiTFSI [J]. J. Phys. Chem. B, 2000,104(31): 7254-7258
    
    [22] G. Oradd, L. Edman, A. Ferry. Diffusion: a comparison between liquid and solid polymer LiTFSIelectrolytes[J]. Solid State Ionics, 2002,152-153:131-136
    
    [23]杜洪彦.二次锂电池纳米复合聚合物电解质的制备、表征及其离子导电机理研究[D].厦门大学博士学位论文,厦门,2004
    
    [24] A. S. Manual, Y. Saito, N. Muniyandi, Preparation and characterization of PVC/PMMA blend polymer electrolytes complexed with LiN(SO_2CF_3)_2[J]. Solid State Ionics, 2002, 148:467-473
    
    [25] W. Krawiec, L. G Scanlon, Jr., J. P. Fellner, R. A. Vaia, S. Vasudevan, E. P. Giannelis. Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries[J]. J. Power Sources. 1995, 54(2): 310-315
    
    [1] M. Kazuo, I. Shuichi, Y. Youetsu. An overview of the research and development of solid polymer electrolytebatteries[J]. Electrocheimica Acta, 2000,45:1501-1508
    
    [2] J. L. Souquet, M. Duclot. Thin film lithium batteries[J]. Solid State ionics, 2002,148(3-4): 375-379
    
    [3] G B. Appetecchi, F. Alessandrini, M. Carewska, T. Caruso, P. P. Prosini, S. Scaccia, S. Passerini. Investigationon lithium-polymer electrolyte batteries[J]. J. Power Sources, 2001,97-98:790-794
    
    [4] E. Peled, D. Golodnitsky, G Ardel, V. Eshkenazy. The SEI model-application to lithium-polymer electrolytebatteries[J]. Electrochimica Acta, 1995,40(13-14): 2197-2204
    
    [5] F. Croce, B. Scrosati. Interfacial phenomena in polymer-electrolyte cells: lithium passivation andcycleability[J]. J. Power Sources, 1993,43(1-3): 9-19
    
    [6] D. Fauteux. Lithium electrode in polymer electrolytes[J]. Electrochimica Acta, 1993,38(9): 1199-1210
    
    [7] W. Xu, K. S. Siow, Z. Q. Gao, S. Y. Lee. A.C. impedance study on the interface of lithium and polymerelectrolyte based on lithium-N(4-sulfophenyl) maleimide[J]. Solid State Ionics, 1998,112(1-2): 1-8
    
    [8] S. E. Sloop, M. M. Lerner. Study of the poly[oxymethylene oligo-(oxyethylene)] /lithium metal interface[J]. J.Electrochem. Soc, 1996,143(4): 1292-1297
    
    [9] G R. Zhuang, K. L. Wang, G Chottiner, R. Barbour, Y. Y. Luo, I. T. Bae, D. Tryk, D. A. Scherson. Novel in situand ex situ techniques for the study of lithium/electrolyte interfaces[J]. J. Power Sources, 1995,54(1): 20-27
    
    [10] T. Ichino, B. D. Cahan, D. A. Scherson. In situ attenuated total reflection fourier transform infraredspectroscopy studies of the polyethylene oxide/LiClO_4-metallic lithium interface[J]. J. Electrochem. Soc., 1991,??138: L59-L61
    
    [11] O. Chusid, Y. Gofer, D. Aurbach, M. Watanabe, T. Momma, T. Osaka. Studies of the interface between lithiumelectrodes and polymeric electrolyte systems using in situ FTIR spectroscopy[J]. J. Power Sources, 2001, 97-98:632-636
    
    [12] R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J. M. Tarascon, D. Gonbeau. XPS identification of theorganic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode[J]. J.Electrochem. Soc, 2005,152(4): A689-A696
    
    [13] D. Aurbach, M. L. Daroux, P. W. Faguy, E. Yeager, Identification of surface films formed on lithium inpropylene carbonate solutions[J]. J. Electrochem. Soc., 1987,134(7): 1611-1620
    
    [14] D. Aurbach, M. Moshkovich, Y. Cohen, A. Schechter. The study of surface film formation on noble-metalelectrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS[J].Langmuir, 1999,15:2947-2960
    
    [15] K, Morigaki, A. Ohta, Analysis of the surface of lithium in organic electrolyte by atomic force microscopy,Fourier transform infrared spectroscopy and scanning auger electron microscopy[J]. J. Power Sources, 1998, 76(2):159-166
    
    [16] J. Li. H, Li, Z. X. Wang, L. Q. Chen, X. J. Huang. The study of surface films formed on SnO anode in lithiumrechargeable batteries by FTIR spectroscopy [J]. J. Power Sources, 2002,107(1): 1-4
    
    [17] P. C. howlett, N. Brack, A. F. Hollenkamp, M.Forsyth, D. R. MacFarlane, Characterization of the lithiumsurface in N-methyl-N-alkylpyrrolidinium bis(trif1uoromethanesulfonyl)amide room-temperature ionic liquidelectrolytes[J]. J. Electrochem. Soc, 2006,153(3): A595-A606
    
    [18] M. L. Granvalet-Mancini, T. Hanrath, D. Teeters, Characterization of the passivation layer at the polymerelectrolyte/lithium electrode interface[J]. Solid State Ionics, 2000,135:283-290
    
    [1] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861): 359-367
    
    [2] M. L. Granvalet-Mancini, T. Hanrath, D. Teeters. Characterization of the passivation layer at the polymerelectrolyte/lithium electrode interface[J]. Solid State Ionics, 2000,135(1-4): 283-290
    
    [3] O. Chusid, Y. Gofer, D. Aurbach, M. Watanabe, T. Momma, T. Osaka. Studies of the interface between lithiumelectrodes and polymeric electrolyte systems using in situ FUR spectroscopy[J]. J. Power Sources, 2001, 97-98:632-636
    
    [4]储伟.锰结核与LiMn2_O_4等锂离子电池阴极材料的结构、性能及表征[D].厦门大学博士学位论文,厦门,1999
    
    [5] P. W. Atkins. Physical chemistry[M]. Oxford, Oxford university press, 1998
    
    [6] D. Aurbach, M. Daroux, P. Faguy, E. Yeager. The electrochemistry of noble metal electrodes in aprotic organicsolvents containing lithium salts[J]. J. Electroanal. Chem., 1991, 297: 225-244
    
    [7] D. M. Kolb, M. Przasnyski, H. Gerischer. Underpotential deposition of metals and work function differences[J].J. Electroanal. Chem, 1974,54:25-38
    
    [8] J. Tuoriniemi, K. Juntunen, J. Uusvuori. Thermal contact to lithium metal [J]. Physica B, 2003, 329-333:??1294-1295
    
    [9] L. F. Li, D. Totir, Y. Gofer, G. S. Chottiner, D. A. Scherson, The electrochemistry of nickel in a lithium-basedsolid polymer electrolyte in ultrahigh vacuum environments[J]. Electrochim. Acta 44 (1998) 949-955

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700