多糖修饰的PLGA纳米粒作为抗肿瘤药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米控释系统作为新型的药物载体,具有缓释、靶向、提高生物利用度,减少副作用等特点。将载体材料制成不同粒径的纳米粒子与连接适当配体作为抗肿瘤药物载体的研究成为近年来国内外一个极为重要的研究热点。本研究制备了载表阿霉素(EPI)的纳米粒,并合成了生物素化的壳聚糖(Bio—CS),以此来修饰纳米粒,增强与肿瘤细胞的相互作用,达到靶向抗肿瘤作用,增强药物抗肿瘤效果。
     本研究选用W_1/O/W_2复乳法制备了载EPI的PLGA纳米粒,采用两种方法用GS修饰PLGA纳米粒表面:吸附的方法和共价交联的方法。粒径分析未修饰的PLGA纳米粒平均粒径为(248.4±21.0)nm,Zeta电势为-(21.21±2.13)mV,扫描电镜(SEM)及透射电镜(TEM)下观察其形态圆整,测定药物包封率为(84.1±3.4)%。通过X射线光电子能谱(XPS)检测到CS修饰后的纳米粒表面含有氮元素信号;红外光谱(FT-IR)证实了具有氨基特征峰,证明修饰后的纳米粒表面为CS。两种方式修饰后纳米粒表面电势为正电荷,且粒径、包封率及释药性质发生了不同程度的改变,修饰后的纳米粒药物包封率下降,但药物的释放更加平缓且突释降低,特别是共价交联方法修饰的纳米粒具有释药平缓的特点。
     其次本研究通过不同的投料比合成了三种不同取代度的Bio—CS,通过~1HNMR以及光电子能谱(ICP)确定了Bio—CS取代度,以此通过共价交联的方式修饰PLGA纳米粒表面,考察了纳米粒的表面电势、粒径、载药量、包封率以及体外释药性质等通过XPS以及生物素试剂盒确定修饰后的纳米粒表面生物素的量。选择最优取代度的Bio—CS来进行下阶段研究。体外抑瘤效应选用Hela细胞,研究了空白纳米粒载体的细胞毒效应,载药纳米粒在4、24、48、72h时的抑瘤效应,并考察了Hela细胞在不同时间点对各种纳米粒的吞噬能力。研究结果表明纳米粒的载体材料在24h、48h的细胞活力均在90%以上,材料无明显的细胞毒效应;载药纳米粒特别是修饰后的纳米粒在48h时表现出强的杀瘤效应,连接了靶向配体生物素的纳米粒杀瘤效应更强。荧光显微镜观察细胞吞噬纳米粒的能力,并且通过流式细胞术定量检测细胞的荧光强度,实验结果表明,随着时间的延长,细胞吞噬纳米粒的量增加,24h时未修饰的纳米粒荧光强度最强,48h时Bio—CS修饰的纳米粒组细胞内荧光强度最强,通过加入过量的生物素封闭细胞表面的生物素受体,可以观察到Bio-CS修饰的纳米粒进入细胞的能力减弱。
     本研究通过小鼠体内急性及亚急性毒性实验初步评价了纳米粒的安全性,通过静脉注射给药,观察记录14d内小鼠的状态,实验组与对照组均未出现死亡,亦未出现明显的中毒体征;食量如常,体重增加亦没有明显差异,体内药动学实验选用6—8周龄180—200g雄性Wistar大鼠,静脉给药后测定不同时间点的血药浓度,药动学实验结果证实纳米粒改变了EPI在体内的药动学行为,具有良好的缓释性。
     以上结果表明,Bio-CS修饰的纳米粒制剂在体内外可以达到平稳缓释EPI的效果,并具有一定的肿瘤靶向性,应用前景广阔,有望开发成一种新型抗肿瘤载体,提高生物利用度,改善疗效。
Nanospheres of biodegradable polymers can provide a way of sustained, controlled and targeted drug delivery to improve the therapeutic effects and reduce the side effects of the formulated drugs.Targeted drug delivery to cancer cells or tumor vasculature is an attractive approach to fight against cancer.In this study,biotin was introduced into a CS and the nanospheres were modified with bio-CS in an attempt to improve the design of nanospheres for an enhanced cancer targeting activity and intemalization into cancer cells.
     Epirubicin(EPI) loaded PLGA nanospheres were prepared by a solvent evaporation technique(W_1/O/W_2).The PLGA nanospheres surface was modified with CS by two strategies(adsorption and covalent binding).PLGA nanospheres of (248.4±21.0) nm in diameter characterized by the laser light scattering technique, scanning electron microscopy(SEM) are spherical and its drug encapsulation efficiency is(84.1±3.4)%.Zeta potential of unmodified nanospheres was measured to be negative -(21.21±2.13)mV.The positive zeta potential of modified nanospheres reveals the presence of CS on the surface of the modified nanospheres.Modified nanospheres were characterized for surface chemistry by X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FT-IR).FT-IR spectra exhibited peaks at 3420 cm~(-1) and 1570 cm~(-1),XPS spectra shows the N 1s(atomic orbital 1s of nitrogen) region of the surface of the nanospheres,corresponding to the primary amide of CS.In vitro drug release demonstrated that CS modified nanopheres have many advantages such as prolonged drug release property and decreased the burst release over the unmodified nanospheres, and the modified nanospheres by covalent binding method could achieve the release kinetics of a relatively constant release.
     Bio-CS were synthesized and characterized.The degree of substitution(DS),as defined as the number of biotin per 100 anhydroglucose units of CS,was determined by ~1H-NMR and ICP.Nanospheres were successfully prepared and modified with Bio-CS. The resulting formulations were characterized in terms of size,charge,morphology,drug encapsulation and drug release.Number of biotin molecules on nanoparticle surface was determined using a commercially available Quant~*Tag Biotin Kit.Hela cells were used for in vitro cytotoxicity evaluation of the PLGA nanospheres versus that Bio-CS modified nanospheres with the EPI concentration 150μg/mL for 4,24,48 and 72 h incubation.Bio-CS midofied nanospheres increased markedly anti-tumoral activity of EPI at concentrations of 50 mg/ml when compared to the non-targeted nanospheres.Flow cytometry and fluorescence microscope revealed that bio-CS modified nanospheres exhibited greater extent of cellular uptake than unmodified nanospheres and free EPI at 48h.
     To determine toxicity in vivo,mice were treated with nanospheres.No significant differences in clinical signs between the experimental group and the control group were found and no mortality occurred throughout the entire course of the study.Additionally, no significant differences in body weight between the two studied groups were observed. The aforementioned results indicated that no apparent toxicity to the studied animals was found after intravenous administration of the nanospheres prepared in the study.The in vivo pharmacokinetics was measured with male Wistar rats of 180-200g and 6-8 week old.The EPI loaded nanospheres can result much higher AUC and thus therapeutic effects of the drug than free EPI.
     Bio-CS modified nanospheres shows excellent sustained release properties both in vitro and in vivo.Bio-CS modified nanospheres were helpful for EPI to reach a long circulation time and were hopeful to be its novel drug carrier.Due to the advantage of surface modified nanospheres with Bio-CS,it may be useful in the delivery of anticancer drugs.
引文
[1]Rajesh S.,Lillard J.W.,Nanoparticle-based targeted drug delivery,Experimental and Molecular Pathology,In Press,Corrected Proof,Available online 7 January 2009
    [2]Kreuter,J.,Nanoparticles.Encyclopaedia of Pharmaceutical Technology.Marcel Dekker Inc,New York,USA,1994a.:165-190
    [3]王晓波主编,药物运释系统,中国医药科技出版社,P570
    [4]Yang W.,Jay I.P.,Robert O.Williams,Inhaled nanoparticles--A current review.,International Journal of Pharmaceutics,2008,356:239-247
    [5]Barratt G.M.,Therapeutic applications of colloidal drug carriers.Pharmaceut.Sci.Tech.Today 2000,3:163-171
    [6]Sahoo S.K.,Labhasetwar V.,Enhanced antiproliferative activity of transferrinconjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention.Mol Pharm 2005,2:373-383
    [7]Song K.C.,Lee H.S.,Choung I.Y.,et al.,The effect type of organic phase solvents on the particle size of poly(D,L-lactide-coglycolide) nanoparticles.Colloids Surf A Physicochem Eng Asp 2006,276:162-167
    [8]Herrero-Vanrell R.,Rinc(?)n,A.C.,Alonso,M.,et al.,Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release.J.Controlled Release,2005,102:113-122
    [9]Ge,H.,Hu,Y.,Jiang,X.,et al.,Preparation,characterization,and drug release behaviors of drug nimodipine-loaded poly(epsilon-caprolactone)- poly(ethylene oxide)-poly(epsilon-caprolactone) amphiphilic triblock copolymer micelles.J.Pharm.Sci.,2002,91:1463-1473
    [10]Won H.S.,Kenneth S.Suslick,Galen D.S.,Nanotechnology,nanotoxicology,and neuroscience,Progress in Neurobiology 2009,87:133-170
    [11]Moghimi S.M.,Hunter,A.C.,Murray,J.C.,Long-circulating and target-specific nanoparticles:theory to practice.Pharmacol.Rev.2001,53:283-318.
    [12]Saito K,Fujieda T,Y oshioka H.,Feasibility of sire ple chitosan sheet as drug delivery carrier.EurP harm B iopharm 2006,64(2):161-166
    [13]Liu Z.H.,Jiao Y.P.,Wang Y.F.,et al.,Polysaccharides-based nanoparticles as drug delivery systems,Advanced Drug Delivery Reviews,2008,60:1650-1662
    [14]Cartiera M.S.,Johnson K.M.,Rajendran V.,et al.,The uptake and intracellular fate of PLGA nanoparticles in epithelial cells,Biomaterials,2009,30(14):2790-2798
    [15]Mattheolabakis G,Taoufik E.,Haralambous S.,et al.,In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles,European Journal of Pharmaceutics and Biopharmaceutics,2009,71(2):190-195
    [16]Farokhzad O.C.,Cheng J.,Teply B.A.,et al.,Targeted nanoparticleaptamer bioconjugates for cancer chemotherapy in vivo.Proc Natl Acad Sci USA,2006,103(16):6315-6320
    [17]Vasir J.K.,Reddy M.K.,Labhasetwar V.D.,Nanosystems in drugtargeting:opportunities and challenges.Curr Nanosci,2005,1(1):47-64
    [18]Birnbaum D.,Kosmala J.,Controlled release of Bestradiol from PLGA microparticles:the effect of organic phase solvent on encapsulation and realease.Journal of Contro lled Release,2000,65:375
    [19]Sahoo S.K.,Sawa T.,Fang,J.,et al.,Pegylated zinc protoporphyrin:a water-soluble heme oxygenase inhibitor with tumor-targeting capacity,Bioconjugate Chem.,2002,13:1031-1038
    [20]Maeda H.,The enhanced permeability and retention(EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting.Adv.Enzyme Regul.2001.41:189-207
    [21]Lamprecht A.,Ubrich,N.,Yamamoto,H.,et al.,Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease.J.Pharmacol.Exp.Ther.2001.299:775-781
    [22]Kou G.,Gao J.,Wang H.,et al.,Preparation and characterization of paclitaxel-loaded PLGA nanoparticles coated with cationic SM5-1 single-chain antibody.J Biochem Mol Biol,2007,40(5):731-739
    [23]Kirpotin D.B.,Drummond D.C.,Shao Y.,et al.,Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models,Cancer Res.2006,66(13):6732-6740
    [24]Hatakeyama H.,Akita H.,Ishida E.,et al.,Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes,Int.J.Pharm.,2007,342(1-2):194-200
    [25]Adler R.,Hurwitz E.,Wands J.R.,et al.,Specific targeting of adriamycin conjugates with monoclonal antibodies to hepatoma associated antigens to intrahepatic tumor in athymic mice.Hepatology,1995,22(5):1482-1487
    [26]Nobs L.,Buchegger F.,Gurny R.,et al.,Biodegradable nanoparticles for direct or two-step tumor immunotargeting,Bioconjug.Chem.2006,17:139-145
    [27]Weiner L.M.,An overview of monoclonal antibody therapy of cancer[J].Semin Oncol,1999,26(4 Suppl 12):41250
    [28]James D.Byrne,Betancourt T.,Brannon-Peppas L.,Active targeting schemes for nanoparticle systems in cancer therapeutics,Advanced Drug Delivery Reviews,2008,60:1615-1626
    [29]Sudimack J.,Lee R.J.,Targeted drug delivery via the folate receptor,Adv.Drug Deliv.Rev.2000,41(2):147-162
    [30]Zhao X.B.,Lee R.J.,Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor,Adv.Drug Deliv.Rev.2004,56(8):1193-1204
    [31]Elnakat H.,Ratnam M.,Distribution,functionality and gene regulation of folate receptor isoforms:implications in targeted,therapy,Adv.Drug Deliv.Rev.2004,56(8):1067-1084
    [32]Shmeeda H.,Mak L.,Tzemach D.,et al.,Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors,Mol.Cancer Ther.2006,5(4):818-824
    [33]Viv(?)s E.,Schmidt J.,P(?)legrin A.,Cell-penetrating and cell-targeting peptides in drug delivery,Biochimica et Biophysica Acta,2008,1786:126-138
    [34]Zhang Z.P.,Lee S.H.,Feng S.S.,Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery,Biomaterials,2007,28:1889-1899
    [35]Saul J.M.,Annapragada A.,Natarajan J.V.,et al.,Controlled targeting of liposomal doxorubicin via the folate receptor in vitro.J Control Release 2003,92:49-67
    [36]Yoo H.S.,Park T.G.,Folate receptor targeted biodegradable polymeric doxorubicin micelles.J Control Release 2004,96:273-83
    [37]Park E.K.,Kim S.Y.,Lee S.B.,et al.,Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery.J Control Release 2005,109:158-68
    [38]Lee Y.K.,Preparation and characterization of folic acid linked poly(Lglutamate)nanoparticles for cancer targeting.Macromol Res 2006,14:387-93
    [39]Wu J.,Liu Q.,Lee R.J.,A folate receptor-targeted liposomal formulation for paclitaxel.Int J Pharm 2006,316:148-53
    [40]Shmeeda H.,Mak L.,Tzemach D.,et al.,Intracellular uptake and intracavitary targeting of folate conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors.Mol Cancer Therap 2006,5:818-24
    [41]Tran T.,Shatnawi A.,Zheng X.,et al.,Enhancement of Folate Receptor A Expression in Tumor Cells Through the Glucocorticoid Receptor:A Promising Means to Improved Tumor Detection and Targeting,Cancer Res,2005,65(10):4431-4441
    [42]Drummond D.C.,Hong K.,Park J.W.,et al.,Liposome targeting to tumors using vitamin and growth factor receptors,Vitam.Horm.2000,60:285-332
    [43]Yang W.J.,Cheng Y.Y.,Xu T.W.,et al.,Targeting cancer cells with biotin-dendrimer conjugates,European Journal of Medicinal Chemistry,2009,44(2),862-868
    [44]Russell-Jones G..,McTavish K.,McEwan J.,Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors,J.Inorg.Biochem.2004,98:1625-1633
    [45]Marek M.,Kaiser K.,Gruber H.J.,Biotinepyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin,Bioconjug.Chem.1997,8:560-566
    [46]Cannizzaro S.M.,A novel biotinylated degradable polymer for cell interactive applications,Biotechnol.Bioeng.1998,58:529-535
    [47]Na K.,Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system,Eur.J.Pharm.Sci.2003,18:165-173
    [48]Mishra PR.,Jain N.K.,Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake.'A study on the rat',Int.J.Pharm.2002,231:145-153
    [49]Pulkkinen M.,Pikkarainen J.,Wirth T.,et al.,Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology:Formulation development and in vitro anticancer activity,European Journal of Pharmaceutics and Biopharmaceutics,2008,70(1):66-74
    [50]Cristina L.Zavaleta,William T.Phillips,Anuradha Soundararajan,et al.,Use of avidin/biotin-liposome system for enhanced peritoneal drug delivery in an ovarian cancer model,International Journal of Pharmaceutics 2007,337:316-328
    [51]Iinuma H.,Maruyama K.,Okinag K.,et al.,Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer,Int.J.Cancer.2002,99(1):130—137
    [52]Kobayashi T.,Ishida T.,Okada Y,et al.,Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells,Int. J.Pharm.2007,329(1-2):94-102
    [53]Rodr(?) guez J.A.,Helguera G.,Daniels T.R.,et al.,Binding specificity and internalization properties of an antibody-avidin fusion protein targeting the human transferrin receptor,J.Control.Release,2007,124:35--42
    [54]秦历杰,刘占举,转铁蛋白阿霉素脂质体的制备及其对人肝癌细胞系的杀伤活性,世界华人消化杂志2007,15(12):1441-1445
    [55]Zhao H.Z.,Yue L.,Yung L.,Selectivity of folate conjugated polymer micelles against different tumor cells,International Journal of Pharmaceutics 2008,349:256-268
    [56]Yukiko N.,Hiroyuki Y.,Lymphatic targeting with nanoparticulate system.A dvanced Drug Delivery Review s,2001,47(1):55
    [57]Alexiou C.,Schmid R.J.,Jurgons R.,et al.,Targeting cancer cells:magnetic nanoparticles as drug carriers.Eur Biophys J,2006,35(5):446-450
    [58]Zhang Y.,Kohler N.,Zhang M.,Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials,2002,23(7):1553-1561
    [59]Voltaires P.A.,Fotiadis D.,Michalis L.K.,Hydrodynamics of magnetic drug targetin Biomech 2002,35(6):813--821
    [60]Shi G.,Guo W.,Stephenson S.M.,et al.,Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations.J Control Release,2002,80(1/3):309-319
    [61]Lee E.S.,Na K.,Bae Y.H.,Polymeric micelle for tumor pH and folate-mediated targeting.J Control Release,2003,91(1/2):103-113
    [62]Liu S.Q.,Tong Y.W.,Yang Y.Y.,Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.Biomaterials,2005,26(24):5064-5074
    [63]Kukowska-Latallo J.F.,Candido K.A,Cao Z.,et al.Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer.Cancer Res,2005,65(12):5317-5324
    [64]Liu T.Y.,Hu S.H.,Liu D.M.,et al.,Biomedical nanoparticle carriers with combined thermal and magnetic responses,Nanotoday,2009,4(1):52-65
    [65]Muller R.H.,Maassen S.,Weyhers H.,et al.;Phagocytic uptake and cytotoxicity of solid lipid nanoparticles(SLN) sterically stabilized with poloxamine 908 and poloxamer 407.J.Drug Target.1996.4:161-170
    [66]Lemarchand C,Gref R.,Couvreur P.,Polysaccharide-decorated nanoparticles,European Journal of Pharmaceutics and Biopharmaceutics 2004,58:327-341
    [67]Jain R.A.,The manufacturing techniques of various drug loaded biodegradable poly(D,L-lactide-co-glycolide acid) (PLGA) devices.Biomaterials 2000,21:2475-90
    [68]Cristina F.,Sergio S.,Rogerio G.,Paclitxel-loaded PLGA nanoparticles:preparation,physicochemical characterization and in vivo anti-tumoral activity.J Control Release 2002;83:273-86
    [69]Vishal S.,Mostafa S.,Jun S.,Indocyanine green-loaded biodegradable nanoparticles:preparation,physicochemical characterization and in vitro release.Int J Pharm 2004,278:293-301
    [70]Okada H.,Doken Y.,et al,Preparation of three-month depot injectable microspheres of leuprolin acetate using biodegradable polymer[J].Pharm.Res,1994,11:1143-1149
    [71]Davda,J.,Labhasetwar,V.,Characterization of nanoparticle uptake by endothelial cells.Int.J.Pharm.2002,233:51-59
    [72]Panyam,J.,Labhasetwar,V.,Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Adv.Drug Del.Rev.2003,55:329-347
    [73]Wang J.,Wang B.M.,Schwendeman S.P.,Characterizat ion of the init ial burst release of a model peptide from poly(d,l-lact ide-co-glycolide) microspheres[J].J Control R elease,2002,82(223):289-307
    [74]Takenaga M.,Yamaguchi Y,Kitagaw A.,et al.,A novel sustained-release formulation of insulin with dramat icreduct ion in init ial rap id release[J].J Control Release,2002,79(123):81-91
    [75]Grabovac V.,Bermkop-Schnurch A.,Development and in vitro evaluation of surface modified poly(lactide-co-glycolide) nanoparticles with chitosan-4-thiobutylamidine,Drug Development and Industrial Pharmacy,2007,33:767-774
    [76]Muller M.,Vo(?) ro(?) s J.,Csu'cs G..,et al.,Surface modification of PLGA microspheres,Journal of Biomedical Materials Research Part A,2003,66(1):55-61
    [77]Jaganathan K.S.,Vyas S.P.,Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally,Vaccine.2006,24(19):4201-4211
    [78]Yamamoto H.,Kuno Y,Sugimoto S.,et al.,Surface-modified PLGA nanosphere with chitosan improved pulmonary,delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions,J Control Release.2005,102(2):373-381
    [79]Ravi KumarM.N.V.,Bakowsky U.,Lehr C.M.,Preparation and characterization of cationic PLGA nanospheres as DNA carriers Biomaterials[J],2004,25(10):1771-1777
    [80]Hass J.,Ravi KumarM.N.V.,Borchardt G.et al..AAPS Pharm.Sci.Tech.[J],2005,6:E22-E30
    [81]Munier S.,Messai I.,Delair T.,et al.,Cationic PLA nanoparticles for DNA delivery:Comparison of three surface polycations for DNA binding,protection and transfection properties,Colloids and SurfacesB:Biointerfaces[J],2005,43:163-173
    [82]官习鹏,全大萍,廖凯荣等,壳聚糖修饰PLGA阳离子型纳米微球的制备与表征,高等学校化学学报,2006,27(10):1965-1968.
    [83]Fischer S.,Uetz-von Allmen E.,Waeckerle-Men Y,et al.,The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte coated PLGA microparticles,Biomaterials.2007,28(6):994-1004
    [84]Jaganathan K.S.,Suresh P.Vyas,Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant Hepatitis B antigen,Vaccine,2006,24(19):4201-4211
    [85]Santander-Ortega M.J.,J(?)dar-Reyes A.B.,Csaba N.,et al.,Colloidal stability of Pluronic F68-coated PLGA nanoparticles:A variety of stabilisation mechanisms,Journal of Colloid and Interface Science 2006,302:522-529
    [86]Labhasetwar V.,Song C.,Humphrey W.,et al.,Arterial uptake of biodegradable nanoparticles:effect of surface modifications,J Pharm Sci.1998,87(10):1229-1234
    [87]Weissenboeck A.,Bogner E.,Wirth M.,et al.,Binding and uptake of wheat germ agglutinin -grafted PLGA-nanospheres by caco-2 monolayers,Pharm Res.,2004,21(10):1917-1923
    [88]Tsung M.J.,Burgess D.J.,Preparation and characterization of gelatin surface modified PLGA microspheres,AAPS PharmSci.2001,3(2):E11
    [89]Kocbek P.,Obermajer N.,Cegnar M.,et al.,Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,Journal of Controlled Release,2007,120:18-26
    [90]Hong Y.,Gao C.Y.,Xie Y.,et al.,Collagen-coated polylactide microspheres as chondrocyte microcarriers,Biomaterials,2005,26(32):6305-6313
    [91]Coombes A.G,Tasker S.,Lindblad M.,et al.,Biodegradable polymeric microparticles for drug delivery and vaccine formulation:the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments,Biomaterials.1997,18(17):1153-1161
    [92]Chan J.M.,Zhang L.F.,Yue K.P.,et al.,PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery,Biomaterials,2009,30(8):1627-1634
    [93]Couvreur P.,Barratt,G,Fattal,E.,et al.,Nanocapsule technology:a review.Crit.Rev.Ther.Drug Carrier Syst.2002,19:99-134
    [94]Adams D.J.,The impact of tumor physiology on camptothecin-based drug development.Curr.Med.Chem.Anticancer Agents,2005,5:1-13
    [95]Khunawattanakul W.,Puttipipatkhachorn,S.,Rades,T.,Pongjanyakul,T.,Chitosan-magnesium aluminum silicate composite dispersions:characterization of rheology,flocculate size and zeta potential.Int.J.Pharm.2008,351:227-235
    [96]Lee,E.S.,Na,K.,Bae,Y.H.,Polymeric micelle for tumor pH and folate-mediated targeting.J.Control Release.2003,91:103-113
    [97]Garcia-Martin,M.L.,Martinez,GV.,et al.,High resolution pH imaging of rat glioma using pH-dependent relaxivity.Magn.Reson.Med.2006,55:309-315
    [98]Yang R.,Shim W.S.,Cui F.D.,et al.,Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor,International Journal of Pharmaceutics,2009,371(1-2):142-147
    [99]Jaspreet K.Vasir,Vinod Labhasetwar,Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles,Biomaterials,2008,29(31):4244-4252
    [100]Nafee N.,Taetz S.,Schneider M.,et al.,Chitosan-coated PLGA nanoparticles for DNA/RNA delivery:effect of the formulation parameters on complexation and transfection of antisense oligonucleotides.Nanomedicine 2007,3:173-183
    [101]Augustin H.G,Braun K.,Telemenakis,I.,et al.,Ovarian angiogenesis phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression.Am.J.Pathol.1995,147:339-351
    [102]Augustin H.G,Kozian,D.H.,Johnson,R.C.,Differentiation of endothelial cells:analysis of the constitutive and activated endothelial cell phenotypes.Bioassays 1994,16:901-906
    [103]Kirkpatrick A.P.,Kaiser,T.A.,Shepherd,R.D.,et al.,.Biochemical mediated glycocalyx modulation in human umbilical vein endothelial cells(HUVEC). Summer Bioeng.Conf.,2003:25-29
    [104]Ran S.,Downes A.,Thorpe P.E.,Increased exposure of anionic phospholipids on the surface of tumor blood vessels.Cancer Res.2002.62:6132-6140
    [105]Ran S.,Thorpe,P.E.,Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy.Int.J.Radiat.Oncol.Biol.Phys.2002.54:1479-1484
    [106]Hawley A.E.,Ilium L.,Davis S.S.,Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers,FEBS Lett.1997,400(3):319-323
    [107]Mo Y.,Lim L.Y,Paclitaxel-loaded PLGA nanoparticles: Potentiation of anticancer activity by surface conjugation with wheat germ agglutinin,Journal of Controlled Release,2005 108:244-262
    [108]Santander-Ortega M.J.,Csaba N.,Alonso M.J.,et al.,Stability and physicochemical characteristics of PLGA,PLGA:poloxamer and PLGA:poloxamine blend nanoparticles A comparative study,Colloids and Surfaces A:Physicochem.Eng.Aspects 2007,296:132-140
    [109]Stefan Fischer,Christina Foerg,Sabine EUenberger,One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands,Journal of Controlled Release 2006,111:135-144
    [110]Chung Y.I.,Tae GY,Yuk S.H.,A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors,Biomaterials,2006,27:2621-2626
    [111]Santander-Ortega M.J.,Csaba N.,Alonso M.J.,et al.,Stability and physicochemical characteristics of PLGA,PLGA:poloxamer and PLGA:poloxamine blend nanoparticles A comparative study,Colloids and Surfaces A:Physicochem.Eng.Aspects 2007,296:132-140
    [112]Mallarde D.,Boutignon F.,Moinea F.,et al.,PLGA/PEG microspheres of teverelix:influence of polymer type on microsphere characteristics and on teverelix in vitro release,International Journal of Pharmaceutics 2003,261:69-80
    [113]Huang Y.Y,Chung T.W.,Microencapsulation of gentamicin in biodegradable PLA and/or PLA/PEG copolymer,J.microencapsulation,2001,18(4):457-465
    [114]Zhu K.J.,Xiang Z.L.,Shi L.Y,Preparation,characterization,and properties of polylactide(PLA)-poly(ethylene lycol)(PEG) copolymers:a potential drug carrier.J.Appl.Polym.Sci.1990,39:1-9
    [115]Evangelos C.Gryparis,Maria H.,Evangelia,et al.Papadimitriou Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells,European Journal of Pharmaceutics and Biopharmaceutics 2007,67(1):1-8
    [116]Cheng J.J.,Benjamin A.Teplya,Sherifi I.,et al.,Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery,Biomaterials,2007,28:869-876
    [117]Yogesh B.Patil,Udaya S.Toti,Ayman K.,et al.,Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery,Biomaterials,2009,30:859-866
    [118]Shi M.,Yang Y.Y.,Chaw C.S.et al.,Double walled POE/PLGA microspheres:encapsulation of water-soluble and water-insoluble proteins and their release properties,Journal of Controlled Release 2003,89:167-177
    [119]Lee T.H.,Wang J.J.,Wang C.H.,Double-walled microspheres for the sustained release of a highly water soluble drug:characterization and irradiation studies,Journal of Controlled Release2002,83:437-452
    [120]Leach K.J.,Mathiowitz E.,Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA) 20:80.I.In vitro degradation,Biomaterials 1998,19:1973-1980
    [121]Pekarek K.J.,Dyrud M.J.,Ferrer K.,et al.,In vitro and in vivo degradation of double-walled polymer microspheres,J.Control.Rel.1996,40:169-178
    [122]Zheng C.H.,Gao J.Q.,Zhang Y.P.et al.,A protein delivery system:biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres,Biochemical and Biophysical Research Communications 2004,323:1321-1327
    [123]Mi F.L.,Shyu S.S.,Lin Y.M.et al.,Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein,Biomaterials 2003,24:5023-5036
    [124]Emily J.Pollaufa,Daniel W.Pack,Use of thermodynamic parameters for design of double-walled microsphere fabrication methods,Biomaterials 2006,27:2898-2906
    [125]Shiladitya S.,David E.,Ishan C.,et al.,Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system,Nature,2005,436:568-572
    [126]Dong-Hwan K.,David C.Martin,Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery,Biomaterials 2006,27:3031-3037
    [127]Park Y.J.,Nah S.H.,Lee J.Y.,et al.,Surface-modified poly(lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope,J Biomed Mater Res A.2003,67(3):751-760
    [1]Kim B.K.,Hwang S.J.,et al.,Preparation and characterization of drug-loaded poly-methacrylate microspheres by an emulsion solvent evaporation method.[J]J Microencapsul,2002,19(6):811-822
    [2]Viswanathan N.B.,Thomas P.A.,Pandit J.K.et al.,Preparation of non-porous microspheres with high entrapment efficiency of proteins by a(water-in-oil)-in-oil emulsion technique,Journal of Controlled Release,1999,58:9-20
    [3]Tomoda K.,Ohkoshia T.,Nakajima T.et al.,Preparation and properties of inhalable nanocomposite particles:Effects of the size,weight ratio of the primary nanoparticles in nanocomposite particles and temperature at a spray-dryer inlet upon properties of nanocomposite particles,Colloids and Surfaces B:Biointerfaces,2008,64(1):70-76
    [4]Gref R.,L(u|¨)ck M.,Quellecc P.,et al.,'Stealth' corona-core nanoparticles surface modified by polyethylene glycol(PEG):influences of the corona(PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption,Colloids and Surfaces B:Biointerfaces,2000,18(3-4):301-313
    [5]Fischer S.,Allmen E.U.,Waeckerle-Men Y.,et al.,The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles,Biomaterials,2007,28(6):994-1004
    [6]Kumar A.,MPharma Y.,Mishra P.,Mishra A.K,et al.,Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin,Nanomedicine:Nanotechnology,Biology and Medicine,2007,3(4):246-257
    [7]Zhang Z.P.,Lee S.H.,Feng S.S.,Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery,Biomaterials,2007, 28(10):1889-1899
    [8]Jaganathan K.S.,Suresh P.Vyas,Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant Hepatitis B antigen administered intranasally,Vaccine,2006,24(19):4201-4211
    [9]Kocbek P.,Obermajer N.,Cegnar M.,et al.,Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,Journal of Controlled Release,2007,120(1-2):18-26
    [10]Raghavendra C,Mundargia,V,Ramesh B.,et al.,Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives,Journal of Controlled Release,2008,125(3):193-209
    [11]Mo Y.,Lim L.Y.,Paclitaxel-loaded PLGA nanoparticles: Potentiation of anticancer activity by surface conjugation with wheat germ agglutinin,Journal of Controlled Release,2005,108(2-3):244-262
    [12]Wang X.H.,Li D.P.,Wang W.J.,et al.,Covalent immobilization of chitosan and heparin on PLGA surface,International Journal of Biological Macromolecules,2003,33(1-3):95-100
    [13]Fischer S.,Foerg C,EUenberger S.,et al.,One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands,Journal of Controlled Release,2006,111(1-2):135-144
    [14]Ta H.T.,Dass C.R.,Dunstan D.E.,Injectable chitosan hydrogels for localised cancer therapy,Journal of Controlled Release,2008,126(3):205-216
    [15]Han H.D.,Song C.K.,Park Y.S.,et al.,A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine,International Journal of Pharmaceutics,2008,350(1-2):27-34
    [16]Qi L.F.,Xu Z.R.,In vivo antitumor activity of chitosan nanoparticles,Bioorganic & Medicinal Chemistry Letters,2006,16(16):4243-4245
    [17]Wang Y.S.,Liu L.R.,Jiang Q.,et al.,Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicinEur.Polym.J.2007,43:43-51
    [18]Wang Y.S.,Jiang Q.,Liu L.R.et al.,Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel,Nanotechnology,2008,19:145101(8pp)
    [19]Perugini P.,Gent,Conti B.,et al.,Periodontal delivery of ipriflavone:new chitosan/PLGA film delivery system for a lipophilic drug,International Journal of Pharmaceutics,2003,252,(1-2):1-9
    [20]Mancaa M.L.,Mourtas S.,Dracopoulos V.,et al.,PLGA,chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization,Colloids and Surfaces B:Biointerfaces,2008,62,(2):220-231
    [21]Ye P.,Jiang J.,Xu Z.K.,Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface,Colloids and Surfaces B:Biointerfaces,2007,60(1):62-67
    [22]Gan Q.,Wang T.,Cochrane C,et al.,Modulation of surface charge,particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery,Colloids and Surfaces B:Biointerfaces,2005,44(2-3):65-73
    [23]Murder S.,Messai I.,Delair T.et al.,Cationic PLA nanoparticles for DNA delivery:Comparison of three surface polycations for DNA binding,protection and transfection properties,Colloids and Surfaces B:Biointerfaces,2005,43(3-4):163-173
    [24]Jaganathan K.S.,Rao Y.U.B.,Singh P.,et al.,Development of a single dose tetanus toxoid formulation based on polymeric microspheres:a comparative study of poly(d,l-lactic-co-glycolic acid) versus chitosan microspheres,International Journal of Pharmaceutics,2005,294(1-2):23-32
    [25]Tahara K.,Sakai T.,Yamamoto H.,Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery,International Journal of Pharmaceutics,2008,354(1-2):210-216
    [26]Chung T.W.,Wang S.S.,Tsai W.J.,Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide)(PLGA) nanoparticles,Biomaterials,2008,29(2):228-237
    [27]Nafee N.,Taetz S.,Schneider M.,et al.,Chitosan-coated PLGA nanoparticles for DNA/RNA delivery:effect of the formulation parameters on complexation and transfection of antisense oligonucleotides,Nanomedicine:Nanotechnology,Biology and Medicine,2007,3(3):173-183
    [28]Yamamoto H.,Kuno Y,Sugimoto S.,et al.,Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions,Journal of Controlled Release,2005,102(2):373-381
    [29]Zheng C.H.,Gao J.Q.,Zhang Y.P.,et al.,A protein delivery system:biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres,Biochemical and Biophysical Research Communications,2004,323(4):1321-1327
    [30]Ravi Kumar M.N.V.,Bakowsky U.,Lehr C.M.,Preparation and characterization of cationic PLGA nanospheres as DNA carriers,Preparation and characterization of cationic PLGA nanospheres as DNA carriers,Biomaterials,2004,25(10):1771-1777
    [31]Bhattarai N.,Ramay H.R,Chou S.H.,et al.,Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery,International Journal of Nanomedicine 2006,1(2):181-187
    [32]Lee A.L.Z.,Wang Y.,Cheng H.Y.,et al.,The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles,Biomaterials,2009,30:919-927
    [33]Chan P.,Kurisawa M.,Chung J.E.,et al.,Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery,Biomaterials,2007,28(3):540-549
    [34]Chatterjeea D.K.,Zhang Y.,Multi-functional nanoparticles for cancer therapy,Science and Technology of Advanced Materials,2007,8(1-2):131 - 133
    [35]Biguccia F.,Luppia B.,Cerchiarac T.,et al.,Chitosan/pectin polyelectrolyte complexes:Selection of suitable preparative conditions for colon-specific delivery of vancomycin,European journal of pharmaceutical sciences,2008,35:435-441
    [36]Kian A.G.,Navaee,Oskoui M.,et al.,Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit _ RS intended for sigrnoidal drug delivery,European,Journal of Pharmaceutics and Biopharmaceutics,2007,67:175-186
    [37]Arcamone F.,et al.,U.S.patent 4,058,519(1975).
    [38]European Pharmacopoeia,supplement 5.6,p.4574.
    [39]Kumar D.,Tomar R.S.,Deolia S.K.,et al.,Isolation and characterization of degradation impurities in epirubicin hydrochloride injection,Journal of Chromatography B,2008,869:45-53
    [40]Lawrie G.,Keen I.,Drew B.,et al.,Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS,Biomacromolecules 2007,8:2533-2541
    [41]陈煜,多英全,谭惠民,N,O-2羧甲基壳聚糖的制备及表征,化工科技,2007,15(5):45-47
    [42]刘振海主编,分析化学手册第八分册,热分析(第二版),化学工业出版社,157
    [43]Osman Z.;Arof,A.K.,FTIR studies of chitosan acetate based polymer electrolytes,Electrochem.Acta 2003,48(8):993-999
    [44]Smitha B.,Sridhar,S.,Khan,A.A.,Chitosan-sodium alginate polyion complexes as fuel cell membranes,Eur.Polym.J.2005,41:1859-1866
    [45]Qu X.,Wirs(?) n A.,Albertsson A.-C,Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives,Polymer,2000,41:4841-4847
    [1]Allen T.M.,Ligand-targeted therapeutics in anticancer therapy.Nat Rev Cancer 2002,2:750- 63
    [2]Allen T.M.,Cullis P.R.,Drug delivery systems:entering the mainstream.Science 2004,303:1818- 1822
    [3]Langer R.,Drug delivery and targeting,Nature,1998,392:5-10
    [4]Gref R.,Couvreur R,Barratt G.,et al.,Surface-engineered nanoparticles for multiple ligand coupling.Biomaterials 2003,24:4529-37.
    [5]Popielarski S.R.,Pun S.H.,Davis M.E.,A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver.Synthesis and characterization.Bioconjug Chem 2005,16:1063-70.
    [6]Sahoo S.K.,Ma W.,Labhasetwar V.,Efficacy of transferrin-conjugated paclitaxelloaded nanoparticles in a murine model of prostate cancer.Int J Cancer 2004,112:335-40
    [7]Wassim K.,Ralph H.,Gina M.N.,et al.,Vitamins C and K3 sensitize human urothe]hl tumors to gemcitabine[J].Urol,2006,176(4):1642-1647
    [8]Laitinen O.H.,Nordlund H.R.,Hytonen V.P.,et al.,Rational design of an active avidin monomer.J Biol Chem 2003,278:4010-4.
    [9]Sakahara H.,Saga T.,Avidin-biotin system for delivery odiagnostic agents[J].Adv D.Del Rev,1999,37(1-3):89-101
    [10]Kun N.,Lee T.B.,Park K.H.,et al.,Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system[J].Eur J Pharm Sci,2003,18(2):165-173
    [11]Cheng C.,Wei H.,Bao X.,et al.,Biotinylated thermoresponsive micelle selfassembled from double-hydrophilic block eopdymer for drug delivery and tumor target[J].Biomaterials,2008,29(4):497-505
    [12]Cristina L.Z.,William T.P.,Anumdha S.,Use of addin / biotin·liposome system for enhanced peritoneal drug delivery in all ovarian cancer model[J].J Pharm,2007,337(1/2):316-328
    [13]Gram C.,Mirco B.,Daria H.,et al.,Radioimmunotherapy in advanced ovarian cancer:is there a role for pre-targeting with ~(90)Y-biotin?[J].Gynecol Oncol,2004,93(3):691-698.
    [14]Gregory R.J.,Kirsten M.T.,J0lm M E,et al.,Vitamin-mediated targeting as a potential mechanism to increase drug uptake by turnouts[J],J Inorg Biochem,2004,98(10):1625-1633.
    [15]Bartolazzi A.,Gasbarri A.,Papotti M.,et al.,Application of an immunodiagnostic method for improving preope rative diagnosis of nodular thyroid lesions[J].Lancet,2001,357(9269):1644-1650
    [16]方华丰,周宜开,任恕,生物素化壳聚糖微球用于体外肿瘤靶向治疗,同济医科大学学报,2000,29(4):301-304
    [17]方华丰,周宜开,任恕,生物素化壳聚糖微球的体外抗癌活性,药学学报,2000,35(5):385-388
    [18]姚倩,侯世祥,张宣等,生物素化壳聚糖纳米粒的制备及其相关性质,药学学报,2007,42(5):557-561
    [19]Chan P.,Kurisawa M.,et al.,Synthesis and characterization of chitosan- g-poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery,Biomaterials,2007,28:540-549
    [20]Mansouri S.,Cuie Y.,Winnik F.,et al.,Characterization of folate- chitosan-DNA nanoparticles for gene therapy,Biomaterials,2006,27:2060-2065
    [21]Pan J.,Feng S.S.,Targeted delivery of paclitaxel using folate-decorated poly(lactide)evitamin E TPGS nanoparticles,Biomaterials,2008,29:2663-2672
    [22]Jones G.R,Tavish K.M.,John M.E.,et al.,Vitamin- mediated targeting as a potential mechanism to increase drug uptake by turnouts,Journal of Inorganic Biochemistry,2004,98(10):1625-1633
    [23]Jacob B.G.,Zempleni J.,Biotin deficiency stimulates survival pathways in human lymphoma cells exposed to antineoplastic drugs,The Journal of Nutritional Biochemistry,2005,16(2):96-103
    [24]Thomas J.D.,Thomas Hofer,Christoph Rader,et al.,Application of a trifunctional reactive linker for the construction of antibody-drug hybrid conjugates,Bioorganic & Medicinal Chemistry Letters,2008,18(21):5785-5788
    [25]Yang W.J.,Cheng Y.Y.,Xu T.W.,et al.,Targeting cancer cells with biotindendrimer conjugates,European Journal of Medicinal Chemistry,2009,44(2):862-868
    [26]Marek M,Kaiser K.,Gruber H.J.,Biotin-pyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin,Bioconjug.Chem.1997,8:560-566
    [27]Cannizzaro S.M.,A novel biotinylated degradable polymer for cell interactive applications,Biotechnol.Bioeng.1998,58:529-535
    [28]Mishra P.R.,Jain N.K.,Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake.'A study on the rat',Int.J.Pharm.2002,231:145-153
    [29]Janos Z.,Donald M.M.,Chemical synthesis of biotinylated histones and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/ strep tavidin-peroxidase[J].Arch Biochem Biophys,1999,371:83-88
    [30]Drummond D.C.,Hong K.,Park J.W.,et al.,Liposome targeting to tumors using vitamin and growth factor receptors,Vitam.Horm.,2000,60:285-332
    [31]Russell-Jones G.,McTavish K.,McEwan J.,Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors,J.Inorg.Biochem.2004,98:1625-1633
    [32]Marek M.,Kaiser K.,Gruber H.J.,Biotinepyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin,Bioconjug.Chem.,1997,8:560-566
    [33]Cannizzaro S.M.,A novel biotinylated degradable polymer for cellinteractive applications,Biotechnol.Bioeng.,1998,58:529-535
    [34]Mishra P.R.,Jain N.K.,Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake.'A study on the rat',Int.J.Pharm.,2002,231:145-153
    [35]Pulkkinen M.,Pikkarainen J.,Wirth T,et al.,Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology:Formulation development and in vitro anticancer activity,2008,7(1):66-74
    [36]Yogesh B.P.,Udaya S.T.,Ayman K.,et al.,Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery,Biomaterials,2009,30:859-866
    [37]Salem A.K.,Cannizzaro S.M.,Davies M.C.,et al.,Synthesis and characterisation of a degradable poly(lactic acid)-poly-(ethylene glycol) copolymer with biotinylated end groups.Biomacromolecules 2001,2:575-580
    [38]Ylikotila J.,V(?)limaa L.,Takalo H.,et al.,Improved surface stability and biotin binding properties of streptavidin coating on polystyrene,Colloids and Surfaces B: Biointerfaces,2009,70(2):271-277
    [39]Weber W.,Lienhart C.,Daoud M.B.,et al.,A biotin-triggered genetic switch in mammalian cells and mice,Metabolic Engineering,2009,11(2):117-124
    [40]Mock D.M.,Lankford G.L.,Mock N.I.,Biotin accounts for only half of the total avidin-binding substances in human serum.J Nutr 1995,125:941-946
    [41]M.Lavertu,Z.Xia,A.N.Serreqi,et al.,A validated 1H NMR method for the determination of the degree of deacetylation of chitosan,Journal of Pharmaceutical and Biomedical Analysis,2003,32:1149-1158
    [42]徐常龙,严平,王琳等,N-羟基琥珀酰亚胺生物素酯的合成与应用,化工中间体,2007,1:15-17
    [43]代昭,张纪梅,黄文强等,烷基化壳聚糖纳米微球的制备及其XPS光谱分析,离子交换与吸附,2008,24(1):40-46
    [44]Saul J.M.,Annapragada A.V.,Bellamkonda R.V.,A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers.J Controlled Release 2006,114:277- 287
    [45]Sawant R.M.,Hurley J.P.,Salmaso S.,et al.,"SMART" drug delivery systems:double-targeted pH-responsive pharmaceutical nanocarriers.Bioconjug Chem 2006,17:943-949
    [46]Chen F.E.,Jia H.Q.,Chen X.X.,et al.,Synthetic Studies on d-Biotin,Part 9.1 an Improved asymmetric synthetic route to d-biotin via Hoffmann-Roche lactonethiolactone.Chem Pharm Bull,2005,53(7):743-746
    [1]Wassim K.,Ralph H.,Gina M.N.,et al.,Vitamins C and K3 sensitize human urothe]hl tumors to gemcitabine[J].Urol,2006,176(4):1642-1647
    [2]胡宗涛,孟刚,乳腺癌组织中维生素D受体表达的研究,中国肿瘤临床与康复,2008,15(5):414-416
    [3]Drummond D.C.,Hong K.,Park J.W.,et al.,Liposome targeting to tumors using vitamin and growth factor receptors,Vitam.Horm.,2000,60:285-332
    [4]Jones G.R,Tavish K.M.,John M.E.et al.,Vitamin- mediated targeting as a potential mechanism to increase drug uptake by tumours,Journal of Inorganic Biochemistry,2004,98(10):1625-1633
    [5]Kun N.,Lee T.B.,Park K.H.,et al.,Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anticancer drug delivery system[J].Eur J Pharm Sci,2003,18(2):165-173
    [6]Cheng C.,Wei H.,Bao X.,et al.,Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block eopdymer for drug delivery and tumor target[J].Biomaterials,2008,29(4):497-505
    [7]Sakahara H.,Saga T.,Avidin-biotin system for delivery of diagnostic agents[J].Adv Drug Deliv Rev,1999,37:89 - 101
    [8]方华丰,周宜开,任恕,生物素化壳聚糖微球用于体外肿瘤靶向治疗,同济医科大学学报,2000,29(4):301-304
    [9]方华丰,周宜开,任恕,生物素化壳聚糖微球的体外抗癌活性,药学学报2000,35(53):85-388
    [10]姚倩,侯世祥,张宣等,生物素化壳聚糖纳米粒的制备及其相关性质,药学学报,2007,42(5):557-561
    [11]Yang W.J.,Cheng Y.Y.,Xu T.W.,et al.,Targeting cancer cells with biotindendrimer conjugates,European Journal of Medicinal Chemistry,2009,44(2):862-868
    [12]Russell-Jones G.,McTavish K.,McEwan J.,Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors,J.Inorg.Biochem.2004,98:1625-1633
    [13]Salem A.K.,Cannizzaro S.M.,Davies M.C.,et al.,Synthesis and characterisation of a degradable poly(lactic acid)-poly-(ethylene glycol) copolymer with biotinylated end groups.Biomacromolecules 2001,2:575-580
    [14]Luis C.,Consuelo A.,Uptake of ~(153)Sm-DTPA-bis-Biotin and ~(99)Tc-DTPA-bis- Biotin in rat AS-30D-hepatoma cells[J].NuclMed Bio,2003,30:135 - 140
    [15]Mock D.M.,Lankford G.L.,Mock N.I.,Biotin accounts for only half of the total avidin-binding substances in human serum.J.Nutr.1995,125:941-6
    [16]Marek M.,Kaiser K.,Gruber H.J.,Biotin-pyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin,Bioconjug.Chem.1997,8:560-566
    [17]Cannizzaro S.M.,A novel biotinylated degradable polymer for cell interactive applications,Biotechnol.Bioeng.1998,58:529-535
    [18]Mishra P.R.,Jain N.K.,Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake.'A study on the rat',Int.J.Pharm.2002,231:145-153
    [19]司徒镇强,吴军正主编,细胞培养(第2版),世界图书出版社,2007,P36
    [20]R.弗雷纳,R.I.弗雷谢尼主编,章静波等译,人肿瘤细胞培养,化学工业出版社:139-156
    [21]郑云,劳向明,张海燕等,碳包铁纳米晶结合表阿霉素对HepG-2细胞的作用及对小鼠急性毒性实验研究,南方医科大学学报,2008,28(2):176
    [22]贺师鹏,胡雅儿,夏总勤主编,受体研究技术,北京大学医学出版社,1-13
    [23]隋森芳编著,膜分子生物学,高等教育出版社:237-248
    [1]Alexandra K.,Mike H.P.,Daniela H.,et al.,Current in vitro methods in nanoparticle risk assessment:Limitations and challenges,European Journal of Pharmaceutics and Biopharmaceutics,Available online 19 August 2008
    [2]David B.W.,Christie M.S.,Kenneth L.R.,et al.,Health effects related to nanoparticle exposures:Environmental,health and safety considerations for assessing hazards and risks,Pharmacology & Therapeutics,2008,120:35-42
    [3]ASTM Subcommittee E56.03(2007).Standard Guide for Handling Unbound Engineered Nanoscale Particles in Occupational Settings.ASTM,E2535-07,ICS Number Code 71.100.01.
    [4]Borm P.J.A.,Robbins,D.,Haubold,S.,et al.,The potential risks of nanomaterials:a review carried out for ECETOC.Part Fibre Toxicol,2006 3:11
    [5]British Standards Institute.,Nanotechnologies(2007).Part 2:Guide to safe handling and disposal of manufactured nanomaterials.PD 6699 -2 ICSNumber Code 13.100;71.100.99.
    [6]Colvin,V.L.,The potential environmental impact of engineered nanomaterials.Nat Biotechnol,2003,21:1166-1170
    [7]Sayes C.M.,Reed,K.L.,Warheit,D.B.,Assessing toxicity of fine and nanoparticles:comparing in vitro measurements to in vivo pulmonary toxicity profiles.Toxicol Sci,2007,97:163-180
    [8]郑云,劳向明,张海燕等,碳包铁纳米晶结合表阿霉素对HepG-2细胞的作用及对小鼠急性毒性实验研究,南方医科大学学报,2008,28(2):176-179
    [9]熊玲,奚廷斐,蒋学华等,纳米特性引发的生物效应及其纳米生物材料安全性评价,中国临床康复,2006:10(45):132-135
    [10]Donaldson K.,Stone V.,Tran C.L.,et al.Nanotoxicology[J].Occup Environ Med,2004,61(9):727-728
    [11]吴燕,吴诚,康艳敏等,表阿霉素脂质体的制备与质量评价,军事医学科学院院刊 2008,32(2):165-167
    [12]Barker I.K.,Crawford S.M.,Fell A.F.,Determination of plasma concentrations of epirubicin and its metabolites by high-performance liquid chromatography during a 96-h infusion in cancer chemotherapy,Journal of Chromatography B,1996,68:1323-329
    [13]Badea I.,La(?) ar L.,Mojaa D.,et al.,A HPLC method for the simultaneous determination of seven anthracyclines,Journal of Pharmaceutical and Biomedical Analysis,2005,39:305-309
    [14]Yamazoe K.,Horiuchi T.,Sugiyama T.,et al.,Simultaneous high-performance liquid chromatographic determination of carboplatin,epirubicin hydrochloride and mitomycin C in a Lipiodol emulsion,Journal of Chromatography A,1996,726:241-245
    [15]Kumar D.,Tomar R.S.,Deolia S.K.,et al.,Isolation and characterization of degradation impurities in epirubicin hydrochloride injection,Journal of Chromatography B,2008,869:45-53
    [16]仇凯,张立红,金晶等,RP-HPLC制备葡萄糖醛酸苷酶前体药葡萄糖醛酸化表阿霉素及其代谢物,第四军医大学学报2000,21(1):113-115
    [17]王汝龙,原正平,药物(第三版).北京:化学工业出版社,1999:266
    [18]杨凯,郑刚,孙德平,口腔癌靶向隐形顺铂聚乳酸纳米粒的急性毒性研究,临床口腔医学杂志,2006,22(9):522-524
    [19]何品刚,刘祥萍,余慧等,电致化学发光法测定药剂中盐酸表阿霉素的含量,分析化学,2000,28(9):1062-1065
    [20]杨志洁,刘盛辉,叶建农等,浸蜡石墨电极伏安法测定抗癌药物盐酸阿霉素,分析化学,1996,24(4):471-474
    [21]魏树礼主编,生物药剂学与药物动力学,北京医科大学出版社:p105
    [22]ASTM标准年鉴医用装置标准[M]成都大学出版社。1999:307-311
    [23]孙敬方主编,动物实验方法学,人民卫生出版社,152
    [24]张阳德,李玉坤,李浩等,荧光分光光度法检测纳米粒运载的阿霉素在大鼠体内的分布,中华实验外科杂字,2004,21(10):1183-1185
    [25]赵玉沛,胡亚,陶蔚,不同给药途径下表阿霉素在大鼠胰腺及血浆中分布的差异,中华实验外科杂志,2001 18(1):54-55
    [26]徐萌,张积仁,许少珍等,阿霉素心脏毒性的发生机制及其防治,第一军医大学学报,2001,21(7):532-534.
    [27]赵玉兰,李楠,高效液相色谱法测定血浆中表阿霉素浓度[J],色谱,1995,13(1):49-50.
    [28]Jakobsen P.,Steiness E.,Bastholt,et al.,Multiple - dose pharmacokinetics of epirubicin at four different dose levels:studies in patients with metastatic breast cancer[J]Cancer Chemother Pharmacol,1991,28:63-68.
    [29]王颖,盛龙生,张正行等,表阿霉素中有关物质的LC /ESI/MS分析[J],药物分析杂志,2001,21(6):392-395.
    [30]王汝龙,原正平,药物(第三版),北京:化学工业出版社,1999:266
    [31]Rowland M.,Tozer T.N.原著,彭彬主译,临床药动学,湖南科学技术出版社:14-22
    [32]Beer E.L.,Bottone A.E.,Voest E.E.,Doxoruhicin and mechanical performance of cardiac trabeculae after acute and chronic treatment[J].Eur J Pharmacokinet,2002,425(1):13- 18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700