Bergman环化反应在碳纳米管制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过有机合成方法制备设计结构的烯二炔化合物,以无机介孔硅材料SBA-15作为模板,通过烯二炔结构化合物的自组装在SBA-15纳米孔道内形成单分子层,并经过热引发使其发生Bergman环化反应,从而在介孔材料孔道内形成聚芳烃交联网状结构,再经过高温热解使聚芳烃交联网状结构脱除杂原子,使所得碳材料进一步完善,最后刻蚀除去无机模板得到预定尺寸的结构均一的单壁碳纳米管有序序列。TEM测试结果表明,通过该制备方法得到了尺寸均一的单壁碳纳米管有序序列,所得碳纳米管由于无机模板中存在微孔桥结构使各个孔道相连而呈簇状排列。Raman测试结果表明,通过该制备方法得到的碳纳米管有序序列具有一定的石墨化程度。BET测试结果表明,通过该制备方法得到的碳纳米管有序序列具有优异的吸附能力。
     本文所报道的利用无机介孔材料作为模板,通过烯二炔结构化合物的自组装形成单分子层,并经过高温处理制备碳纳米管的方法,是在碳纳米材料制备中首次应用分子组装技术,将功能化的分子在分子尺度范围内通过化学方法聚集成有序体系。这种自下而上(Bottom-up)的合成方法在碳纳米材料制备领域内是一种崭新的合成思路,该法所得碳纳米材料具有结构可设计、可调控的优点,并且为构造各种新型的纳米结构、制备各种纳米尺度的碳材料,如碳纳米管及其序列、碳纳米球、碳纳米胶囊、石墨烯等开拓了新的发展空间。
In this work, a bottom-up synthesis of carbon nanotube arrays was developed through Bergman cyclization of enediyne containing compounds immobilized inside of SBA-15 nano-channels and followed by pyrolysis. Raman spectroscopy confirmed the occurrence of thermal Bergman cyclization inside the channels. Further heating under elevated temperature produced nanotube arrays in good yield. TEM images revealed the formation of nanotube arrays due to the micro-tunnels of template. Raman spectra showed moderate degree of graphitization. Formation of enediyne self-assembled monolayers (SAMs) on a template followed by the processing sequence developed in this work is promising to construct carbon materials with various nanoscopic morphology, such as carbon nanotube, graphene and buckyball.
引文
[1]Kroto H W, Smalley R E, et al. C60:Buckminsterfullerene. Nature.1985,318 (6042): 162-163
    [2]Iijima S. Helical microtubules of graphitic carbon. Nature.1991,354 (6348):56-58
    [3]Novoselov K S, Geim A K, et al. Electric Field Effect in Atomically Thin Carbon Films. Science.2004,306 (5696):666-669
    [4]Ebbesen T W, Ajayan P M, et al. Large-scale synthesis of carbon nanotubes. Nature. 1992,358 (6383):220-222
    [5]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter. Nature.1993,363 (6430):603-605
    [6]Journet C, Maser W K, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature.1997,388 (6644):756-758
    [7]Guo T, Nikolaev P, et al. Self-Assembly of Tubular Fullerenes. The Journal of Physical Chemistry.1995,99 (27):10694-10697
    [8]Guo T, Smalley R E, et al. Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters.1995,243 (1-2):49-54
    [9]Yudasaka M, Iijima S, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chemical Physics Letters.1997,278 (1-3): 102-106
    [10]Jose-Yacaman M, Miki-Yoshida M, et al. Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters 1993,62 (6):657
    [11]Dai H, Smalley R E, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters.1996,260 (3-4): 471-475
    [12]Nikolaev P, Smalley R E, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters.1999,313 (1-2):91-97
    [13]Fan S, Chapline M G, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science.1999,283 (5401):512-514
    [14]Pan Z W, Xie S S, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Applied Physics Letters.1999,74 (21):3152
    [15]Futaba D N, Iijima S, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nauret Materials. 2006,5 (12):987-994
    [16]Cho W S, Hamada E, et al. Synthesis of carbon nanotubes from bulk polymer. Applied
    Physics Letters.1996,69 (2):278
    [17]Li Y L, Yu Y D, et al. A novel method for synthesis of carbon nanotubes:Low temperature solid pyrolysis. Journal of Materials Research.1997,12 (7):1678-1680
    [18]Yamamoto K, Koga Y, et al. New method of carbon nanotube growth by ion beam irradiation. Applied Physics Letters.1996,69 (27):4174-4175
    [19]Hatta N, Murata K. Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene. Chemical Physics Letters.1994,217 (4):393-402
    [20]Jiang Y, Wu Y, et al. A Catalytic-Assembly Solvothermal Route to Multiwall Carbon Nanotubes at a Moderate Temperature. Journal of the American Chemical Society.2000, 122 (49):12383-12384
    [21]Motiei M, Rosenfeld Hacohen Y, et al. Preparing Carbon Nanotubes and Nested Fullerenes from Supercritical CO2 by a Chemical Reaction. Journal of the American Chemical Society.2001,123 (35):8624-8625
    [22]Treacy M M J, Ebbesen T W, et al. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature.1996,381 (6584):678-680
    [23]王淼,李振华,等.纳米材料应用技术的新进展.材料科学与工程.2008,18(1):103-105
    [24]Wong E W, Sheehan P E, et al. Nanobeam Mechanics:Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science.1997,277 (5334):1971-1975
    [25]Dresselhaus M S. Nanotechnology:New tricks with nanotubes. Nature.1998,391 (6662): 19-20
    [26]王文英.碳纳米管的制造技术及最新研究动态.化工新型材料.2000,28(1)12-15
    [27]Collins P G, Smalley R E, et al. Nanotube Nanodevice. Science.1997,278 (5335): 100-102
    [28]Bonard J M, Salvetat J P, et al. Field emission from carbon nanotubes:perspectives for applications and clues to the emission mechanism. Applied Physics A:Materials Science & Processing.1999,69 (3):245-254
    [29]deHeer W A, Bacsa W S, et al. Aligned Carbon Nanotube Films:Production and Optical and Electronic Properties. Science.1995,268 (5212):845-847
    [30]顾冲,毛宗强,等.单壁碳纳米管吸附氢气的计算机模拟.高等学校化学学报.2001,22(6):958-961
    [31]成会明,刘畅,等.具有优异储氢性能的高质量单壁纳米碳管的合成.物理.2000,29(8): 449-450
    [32]朱宏伟,徐才录,等.碳纳米管表面处理对储氢性能的影响.炭素技术.2000,109(4) 12-16
    [33]Luo J Z, Gao L Z, et al. The decomposition of NO on CNTs and 1 wt%Rh/CNTs. Catalysis Letters.2000,66 (1):91-97
    [34]杨全红,刘敏,等.纳米碳管的纳米孔结构、相关物性及应用.材料研究学报.2001,15(4):375-386
    [35]张宇,吴汜昕,等.碳纳米管负载铑催化剂上丙烯氢甲酰化.物理化学学报.1997,13(12):1057-1060
    [36]Long R Q, Yang R T. Carbon Nanotubes as Superior Sorbent for Dioxin Removal. Journal of the American Chemical Society.2001,123 (9):2058-2059
    [37]Li Y H, Wang S, et al. Lead adsorption on carbon nanotubes. Chemical Physics Letters. 2002,357 (3-4):263-266
    [38]曹茂盛,高正娟,等.CNTs/Polyester复合材料的微波吸收特性研究.材料工程.2003,2:34-36
    [39]刘云芳,沈增民,等.活化碳纳米管的孔结构及微波吸收性能的研究.炭素.2005,1:3-6
    [40]Sondheimer F, Wolovsky R, et al. Unsaturated Macrocyclic Compounds. XXIII. The Synthesis of the Fully Conjugated Macrocyclic Polyenes Cyclooctadecanonarne, Cyclotetracosadodecaene, and Cyclotriacontapentadecaene. Journal of the American Chemical Society.1962,84 (2):274-284
    [41]Jones R R, Bergman R G. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. Journal of the American Chemical Society.1972,94 (2):660-661
    [42]Lockhart T P, Bergman R G, et al. Kinetic evidence for the formation of discrete 1,4-dehydrobenzene intermediates. Trapping by inter-and intramolecular hydrogen atom transfer and observation of high-temperature CIDNP. Journal of the American Chemical Society.1981,103 (14):4082-4090
    [43]Bergman R G. Reactive 1,4-dehydroaromatics. Accounts of Chemical Research.1973,6 (1):25-31
    [44]Biggins J B, Onwueme K C, et al. Resistance to Enediyne Antitumor Antibiotics by CalC Self-Sacrifice. Science 2003,301 (5639):1537-1541
    [45]Pandithavidana D R, Poloukhtine A, et al. Photochemical Generation and Reversible Cycloaromatization of a Nine-Membered Ring Cyclic Enediyne. Journal of the American Chemical Society.2008,131 (1):351-356
    [46]Van Lanen S G, Wendt-Pienkowski E, et al. Characterization of the Maduropeptin Biosynthetic Gene Cluster from Actinomadura madurae ATCC 39144 Supporting a Unifying Paradigm for Enediyne Biosynthesis. Journal of the American Chemical Society. 2007,129(43):13082-13094
    [47]Nicolaou K C, Jason S C, et al. Asymmetric Synthesis and Biological Properties of Uncialamycin and 26-epi-Uncialamycin. Angewandte Chemie International Edition.2008, 47(1):185-189
    [48]Rettenbacher A S, Perpall M W, et al. Radical Addition of a Conjugated Polymer to Multilayer Fullerenes (Carbon Nano-onions). Chemistry of Materials.2007,19 (6): 1411-1417
    [49]Rule J D, Moore J S, et al. Radical Polymerization Initiated by Bergman Cyclization. Journal of the American Chemical Society.2003,125 (43):12992-12993
    [50]Smith D W, Shah H V, et al. Polyarylene Networks via Bergman Cyclopolymerization of Bis-ortho-diynyl Arenes. Advanced Functional Materials.2007,17 (8):1237-1246
    [51]Takahashi S, Murata E, et al. A New Liquid-Crystalline Material. Transition Metal-Poly(yne) Polymers. Macromolecules.1979,12 (5):1016-1018
    [52]Mori A, Kawashima J, et al. Non-Sonogashira-Type Palladium-Catalyzed Coupling Reactions of Terminal Alkynes Assisted by Silver (Ⅰ) Oxide or Tetrabutylammonium Fluoride. Organic Letters.2000,2 (19):2935-2937
    [53]Yin L X, Liebscher J. Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chemical Reviews.2006,107 (1):133-173
    [54]Rule J D, Moore J S. Polymerizations Initiated by Diradicals from Cycloaromatization Reactions. Macromolecules 2005,38 (17):7266-7273
    [55]Smith D W, Babb D A, et al. Polynaphthalene Networks from Bisphenols. Journal of the American Chemical Society.1998,120 (35):9078-9079
    [56]Perpall M W, Perera K P U, et al. Novel Network Polymer for Templated Carbon Photonic Crystal Structures. Langmuir.2003,19 (18):7153-7156
    [57]Hamley I W. Nanotechnology with Soft Materials. Angewandte Chemie International Edition.2003,42 (15):1692-1712
    [58]Kresge C T, Leonowicz M E, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359 (6397):710-712
    [59]张兆荣,索继栓,等.介孔硅基分子筛研究新进展.化学进展.1999,11(1):11-20
    [60]Zhao D, Feng J, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science.1998,279 (5350):548-552
    [61]Flodstrom K, Wennerstrom H, et al. Mechanism of Mesoporous Silica Formation.A Time-Resolved NMR and TEM Study of Silica-Block Copolymer Aggregation. Langmuir.2003,20 (3):680-688
    [62]Soler-Illia G J de A A, Crepaldi E L, et al. Block copolymer-templated mesoporous oxides. Current Opinion in Colloid& Interface Science.2003,8 (1):109-126
    [63]Zhao D, Huo Q, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society.1998,120 (24):6024-6036
    [64]Tian B, Liu X, et al. Microwave assisted template removal of siliceous porous materials. Chemical Communications.2002,37 (11):1186-1187
    [65]孙锦玉,赵东元.“面包圈”状高有序度大孔径介孔分子筛SBA-15的合成.高等学校化学学报.2000,21(1):21-23
    [66]Zhao D, Sun J, et al. Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials.2000,12 (2):275-279
    [67]郑修成,袁程远,等.介孔分子筛SBA-15的合成与表征.郑州大学学报(理学版).2008,40(1):101-106
    [68]Miyazawa K, Inagaki S. Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15. Chemical Communications.2000,37 (21):2121-2122
    [69]周丽绘,张利中,等.晶化温度对介孔材料SBA-15结构与形貌的影响.过程工程学报.2006,6(3):499-502
    [70]Hoang V T, Huang Q, et al. Structure and Diffusion Characterization of SBA-15 Materials. Langmuir.2005,21 (5):2051-2057
    [71]翟庆洲,于辉,等.SBA-15分子筛的合成研究.硅酸盐学报.2006,34(3):385-388
    [72]朱金华,沈伟,等.水热一步法合成Ti-SBA-15分子筛及其催化性能研究.化学学报.2003,61(2):202-207
    [73]王林芳,马磊,等.氨基硅烷修饰的SBA-15用于C02的吸附.催化学报.2007,28(9):805-810
    [74]高金宝,王丽冰,等.功能化SBA-15的合成、表征及其在Knoevenagel缩合反应中溶剂效应的研究.分子催化.2008,22(2):117-122
    [75]朱华.碳纳米管的制备方法研究进展.江苏陶瓷.2008,49(4):20-22
    [76]杜朝锋,黄英,等.模板技术在纳米材料制备中的应用与发展.材料导报.2006,20(F05):38-42
    [77]Huang M H, Choudrey A, et al. Ag nanowire formation within mesoporous silica. Chemical Communications.2000,37 (12):1063-1064
    [78]Han Y J, Kim J M, et al. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chemistry of Materials.2000,12 (8):2068-2069
    [79]Sun H D, Tang Z K, et al. Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of AlPO4-5 crystals. Applied Physics A.1999,69 (4):381-384
    [80]Tiemann, M. Repeated Templating. Chemistry of Materials.2007,20 (3) 961-971
    [81]Ryoo R, Joo S H, et al. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B. 1999,103 (37):7743-7746
    [82]Jun S, Joo S H, et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society.2000,122 (43):10712-10713
    [83]Joo S H, Choi S J, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature.2001,412 (6843):169-172
    [84]Kruk M, Dufour B, et al. Synthesis of Mesoporous Carbons Using Ordered and Disordered Mesoporous Silica Templates and Polyacrylonitrile as Carbon Precursor. The Journal of Physical Chemistry B.2005,109 (19):9216-9225
    [85]Wang K, Zhang W, et al. Direct Fabrication of Well-Aligned Free-Standing Mesoporous Carbon Nanofiber Arrays on Silicon Substrates. Journal of the American Chemical Society.2007,129(55):13388-13389
    [86]Kim T, Ryoo R, et al. A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls. Angewandte Chemie International Edition.2003,42 (36): 4375-4379
    [87]Zhi L J, Wu J S, et al. Carbonization of Disclike Molecules in Porous Alumina Membranes:Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie International Edition.2005,44 (14):2120-2123
    [88]Sayari A, Yang Y. SBA-15 Templated Mesoporous Carbon:New Insights into the SBA-15 Pore Structure. Chemistry of Materials.2005,17 (24):6108-6113
    [89]Ryoo R, Joo S H, et al. Ordered Mesoporous Carbons. Advanced Materials.2001,13 (9): 677-681
    [90]Schultz M J, Zhang X, et al. Synthesis of linked carbon monolayers:Films, balloons, tubes, and pleated sheets. Proceedings of the National Academy of Sciences.2008,105 (21):7353-7358
    [91]Wautelet P, Le Moigne J, et al. Spin Exchange Interaction through Phenylene-Ethynylene Bridge in Diradicals Based on Iminonitroxide and Nitronylnitroxide Radical Derivatives.1. Experimental Investigation of the Through-Bond Spin Exchange Coupling. The Journal of Organic Chemistry.2003,68 (21):8025-8036
    [92]Hiroya K, Jouka R, et al. Cyclization reactions of 2-alkynylbenzyl alcohol and 2-alkynylbenzylamine derivatives promoted by tetrabutylammonium fluoride. Tetrahedron.2001,57 (48):9697-9710
    [93]Storch J, Cermak J, et al. Synthesis of 1-(2-ethynyl-6-methylphenyl)-and 1-(2-ethynyl-6-methoxyphenyl)-naphthalene and their cyclization. Tetrahedron Letters.
    2007,48(38):6814-6816
    [94]Leadbeater N E, Tominack B J. Rapid, easy copper-free Sonogashira couplings using aryl iodides and activated aryl bromides. Tetrahedron Letters.2003,44 (48):8653-8656
    [95]Schmittel M, Strittmatter M. Cyclization of carbonyl substituted enyne-allenes: C2-C6-cyclization induced by heat or by addition of samarium(Ⅱ) iodide, samarium(Ⅲ) chloride, or boron trifluoride. Tetrahedron.1998,54 (45):13751-13760
    [96]Cui T, Zhang J, et al. CdS-Nanoparticle/Polymer Composite Shells Grown on Silica Nanospheres by Atom-Transfer Radical Polymerization. Advanced Functional Materials. 2005,15 (3):481-486
    [97]Garcia N, Benito E, et al. Use of p-Toluenesulfonic Acid for the Controlled Grafting of Alkoxysilanes onto Silanol Containing Surfaces:Preparation of Tunable Hydrophilic, Hydrophobic, and Super-Hydrophobic Silica. Journal of the American Chemical Society. 2007,129 (16):5052-5060
    [98]Wu J, Tomovic Z, et al. From Branched Hydrocarbon Propellers to C3-Symmetric Graphite Disks. The Journal of Organic Chemistry.2004,69 (16):5179-5186
    [99]Lim I I S, Vaiana C, et al. X-Shaped Rigid Arylethynes to Mediate the Assembly of Nanoparticles. Journal of the American Chemical Society.2007,129 (17):5368-5369
    [100]Williams K A, Eklund P C. Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chemical Physics Letters.2000,320 (3-4): 352-358.
    [101]Peigney A, Laurent C, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon.2001,39 (4):507-514
    [102]Ye Y, Ahn C C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters.1999,74 (16):2307-
    [103]Jiang Q, Qu M Z, et al. Preparation of activated carbon nanotubes. Carbon.2002,40 (14):2743-2745
    [104]Bacsa R R, Laurent C, et al. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chemical Physics Letters.2000,323 (5-6):566-571
    [105]刘云芳,沈曾民,等.活性碳纳米管的制备及其结构的研究.新型炭材料.2004,19(3): 197-203
    [106]Dillon A, Gennett T, et al. Carbon nanotube materials for hydrogen storage. Proceedings of the 1999 U.S. DOE hydrogen program review.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700