高压氧预适应对大鼠减压病的预防作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,以海洋资源开发、考古探险或军事作业等目的的水下活动越来越普遍和频繁。人员进入水下,必须呼吸与周围水压相等的气体。呼吸气体中分压增高的惰性气体(指生理性惰性气体,最常见的是氮气),会随着潜水时间和深度的增加,而不断地溶解于机体组织中,这就要求随后的减压必须遵循一定的规则,否则惰性气体可能过快地溢出,在组织和血液中“就地”生成气泡,出现减压病(decompression sickness, DCS)。DCS可引起皮肤瘙痒、关节疼痛、呼吸循环障碍和神经系统损害的各类表现,严重者可以导致潜水员快速死亡。预防DCS成为水下作业安全保障的核心环节。
     高压氧(hyperbaric oxygen, HBO)是治疗DCS的主要手段。近年研究发现,HBO预适应能够有效预防多种缺血缺氧性损伤。DCS也具有缺血缺氧的病理生理特点,HBO预适应对DCS是否也具有预防保护作用呢?
     本课题旨在观察HBO预适应对于大鼠DCS的预防效应并初步探讨其机制。研究共分两部分进行。
     第一部分,建立空气潜水减压病大鼠模型。以适当“压力-时程-减压速率”高气压暴露方案处理成年Sprague-Dawley (SD)大鼠,暴露结束后立即置于自行研制的电控转笼中,以3 m/min速度运动30 min。从整体行为学、大体及显微病理学、炎症反应等方面筛选建立评估指标体系。通过控制高气压暴露的“压力-时程-减压速率”以及转笼运动方法,可制备出具有稳定发病率的大鼠减压病模型,并能很好地观测大鼠行为学的变化;建立了包括行为学、肺及中枢神经系统大体病理和显微病理以及炎性指标在内的模型评估体系。
     第二部分,探讨HBO预适应对于大鼠DCS的预防效应及其机制。研究又分两部进行。
     ①HBO预适应效应观察。成年SD大鼠以HBO(250 kPa-60min)处理(n=33),18 h后进行模拟空气潜水(700kPa-100min),快速减压(200 kPa/min)后动物在转笼中以3 m/min的速率运动30 min,观察DCS发病情况。对照动物分别以常压空气(n=30)或常氧高氮混合气(11=13)预处理。结果发现,HBO预处理组的发病率(30.3%)显著低于空气对照组(63.3%)(p<0.05);常氧高氮预处理对DCS发病率无显著影响(61.5%)。
     ②HBO预适应机制研究,该部分又分为两步。第一,一氧化氮(nitric oxide, NO)在HBO预适应效应中的作用观察。检测了HBO暴露后即刻和18h大鼠大脑、脊髓和肺NO的含量;并观察了应用一氧化氮合酶(nitric oxide synthetase, NOS)抑制剂N-亚硝基-L-精氨酸甲酯(NG-Nitro-L-arginine Methyl Ester, L-NAME)对于HBO预防作用的影响。HBO暴露后即刻大鼠大脑、脊髓和肺NO含量显著升高(p<0.05),L-NAME可抑制此效应;暴露后18h各组织中NO含量无显著变化。L-NAME可显著对抗HBO对DCS的预防作用,发病率又回升至71.4%(p<0.05)。
     第二,热休克蛋白(heat shock protein, HSP) 70在HBO通过NO预防DCS中的作用观察。检测了HBO暴露后18 h大鼠大脑、脊髓和肺HSP70的表达,观察了L-NAME和HSP抑制剂槲皮素(Quercetin, Q)对于HBO诱导HSP70表达的影响以及Q对HBO预防作用的影响。HBO暴露后18 h,大鼠大脑、脊髓和肺HSP70表达显著增高,L-NAME和Q均可抑制HSP70的增高。Q可有效对抗HBO对DCS的预防作用,动物DCS发病率显著回升至69.2%(p<0.05)。
     上述结果可得出以下结论:
     1.18 h前的HBO预适应能够有效预防大鼠DCS的发生;
     2.HBO通过NO诱导HSP70表达,进而发挥对DCS损伤的保护作用。
Diving, which is an exposure to the underwater hyperbaric environment for recreational or occupational purposes, is growing in popularity every year. Personnel into the water, they must breathe with gas which has the same pressure with the surrounding water pressure. During a diving, inert gas (nitrogen is the most common one) becomes dissolved in tissues as a function of time and depth. This requires the following decompression must follow certain rules. As the partial pressure of inert gas in the blood and tissues exceeds ambient pressure, bubbles form in the tissues and blood vessels, which may result in the clincal syndrome of decompression sickness (DCS). It may present not only as minor symptoms such as skin itching and pain in joint (often termed "bends"), but also as serious neurological symptoms that can even lead to death. Prevention of DCS is becoming the core of the underwater security operations.
     Hyperbaric oxygen (HBO) is a clinical therapy method for many diseases, such as carbon monoxide poisoning. HBO therapy is the most effective treatment for DCS. Furthermore, HBO preconditioning has been used to prevent various ischemia and anoxemic injuries. DCS also experiences the pathological process of ischemia and anoxemic. Does HBO preconditioning have the protective effect on DCS?
     The objective of our study is to investigate the prophylactic effect of HBO preconditioning on DCS. The study is divided into two parts.
     The first part is to establish the rat model of air diving DCS. Adult SD rats were exposed with appropriate "pressure-duration-decompression rate" profiles of hyperbaric air, and were subjected to run in the cylindrical cage rotating at 3 m/min for 30 min following exposure. Evaluating parameters were selected from the ethology, macropathology, micropathology and inflammatory indices. Our results suggested that controlling the pressure-duration of hyperbaric exposure and the rate of decompression, and making the animals exercises in a rotating cage at a constant speed, can produce a model of rat decompression sickness with a stable incidence, which could be observed efficiently. The evaluating parameters of ethology, macropathology, micropathology and inflammation were established.
     The second part is to investigate the prophylactic effect of HBO preconditioning on DCS. The study is divided into two steps.
     ①HBO preconditioning effect observing. Adult SD rats were pretreated with HBO (250 kPa-60 min) (all the pressures described here are absolute pressure) 18 h before a simulated air dive (700 kPa-100 min) with fast decompression to the surface at the rate of 200 kPa/min (n=33). During the following 30 min, the rats walked in a 3 m/min rotating cage and were monitored for signs of DCS. The control rats were pretreated with normobaric air (n=30) or normoxic hyperbaric nitrox (250 kPa,8.4% O2) (n=13). The results showed that the incidence of DCS in rats pretreated with HBO was 30.3%, which was significantly lower than those treated with normobaric air (63.3%) (p<0.05); the hyperbaric nitrox preconditioning had no significantly effect on the incidence of DCS (61.5%).
     ②Study of mechanism is divided into two steps. First is the role of nitric oxide (NO) in the effect of HBO preconditioning on DCS. NO levels were recorded immediately and 18 h after HBO exposure in the brain, spinal cord and lung; the effect of the nitric oxygen synthetase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on the prophylactic effect of HBO was observed. HBO increased NO level significantly in the rat brain, spinal cord and lung right after exposure; this effect was inhibited by L-NAME. L-NAME nullified the prophylactic effect of HBO on DCS, and dragged the morbidity back to 71.4%.
     Second is the role of the heat shock protein (HSP) 70 in the prophylactic effect of HBO preconditioning on DCS via NO. HSP70 levels were detected 18 h after HBO exposure in the brain, spinal cord and lung; the effects of L-NAME and quercetin (Q) (the inhibitor of HSP) on the expression of HSP70 induced by HBO exposure were observed; the effect of Q on the prophylactic effect of HBO was also observed. It was showed that HBO increased HSP70 level in the rat brain, spinal cord and lung 18 h after HBO exposure, which could be inhibited by both L-NAME and Q. Moreover Q could nullify the prophylactic effect of HBO on DCS, and dragged the morbidity back to 69.2%.
     The main conclusions are as follows:
     1. HBO preconditioning 18 h ahead of diving could effectively prevent the DCS;
     2. The prophylactic effect of the HBO preconditioning might be through the induced expression of HSP70, in which NO might be involved
引文
[1]Mahon RT, Dainer HM, Nelson JW. Decompression sickness in a swine model:isobaric denitrogenation and perfluorocarbon at depth. Aviat Space Environ Med,2006,77 (1):8-12
    [2]Leach RM, Rees PJ, Wilmshurst P. Hyperbaric oxygen therapy. BMJ,1998,317 (7166):1140-1143
    [3]范丹峰,张荣佳,郑娟,徐伟刚.运动和一氧化氮对减压病的预防作用.职业与健康,2009,25(7):755-756
    [4]Huang KL, Wu CP, Chen YL, Kang BH, Lin YC. Heat stress attenuates air bubble-induced acute lung injury:a novel mechanism of diving acclimatization. J Appl Physiol,2003,94 (4):1485-1490
    [5]Katsenelson K, Arieli Y, Abramovich A, Feinsod M, Arieli R. Hyperbaric oxygen pretreatment reduces the incidence of decompression sickness in rats. Eur J Appl Physiol,2007,101 (5):571-576
    [6]Katsenelson K, Arieli R, Arieli Y, Abramovich A, Feinsod M, Tal D. Hyperbaric oxygen pretreatment according to the gas micronuclei denucleation hypothesis reduces neurologic deficit in decompression sickness in rats. J Appl Physiol,2009,107 (2):558-563
    [7]Arieli Y, Arieli R, Marx A. Hyperbaric oxygen may reduce gas bubbles in decompressed prawns by eliminating gas nuclei. J Appl Physiol,2002,92 (6):2596-2599
    [8]Arieli Y, Katsenelson K, Arieli R. Bubble reduction after decompression in the prawn Palaemon elegans by pretreatment with hyperbaric oxygen. Undersea Hyperb Med,2007,34 (5):369-378
    [9]Skogland S, Stuhr LEB, Sundland H, Marstein S, Hope A. Increased oxygen before and during decompression reduces bubble formation in rats. Undersea Hyperb Med,2003,30 (1):37-46
    [10]Mahon RT, Dainer HM, Gibellato MG, Soutiere SE. Short oxygen pre-breathe periods reduce or prevent severe decompression sickness in a 70 kg swine saturation model. J Appl Physiol,2009,106 (4): 1459-1463
    [11]Bosco G, Yang ZJ, Di Tano G, Camporesi EM, Faralli F, Savini F, Landolfi A, Doria C, Fano G. Effect of in-water oxygen pre-breathing at different depth on decompression-induced bubble formation and platelet activation. J Appl Physiol (February 25,2010). doi:10.1152/japplphysiol.01058.2009
    [12]Arieli R, Boaron E, Abramovich A. Combined effect of denucleation and denitrogenation on the risk of decompression sickness in rats. J Appl Physiol,2009,106 (4):1453-1458
    [13]Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG, Tao HY, Ostrowski RP, Zhang JH, Sun XJ. Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1 alpha and erythropoietin in rats. J Appl Physiol,2008,104 (4):1185-1191
    [14]Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH, Sun X. Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res,2008,1210:223-229
    [15]Ren P, Kang ZM, Gu GJ, Liu Y, Xu WG, Tao HY, Zhang JH, Sun XJ, Ji H. Hyperbaric oxygen preconditioning promotes angiogenesis in rat liver after partial hepatectomy. Life Sci,2008,83 (7-8): 236-241
    [16]Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H, Xu W, Li R, Sun X, Zhang JH. Hyperbaric oxygen preconditioning attenuates early apotosis after spinal cord ischemia in rats. J Neurotrauma,2009,26 (1): 55-66
    [17]Mori H, Shinohara H, Arakawa Y, Kanemura H, Ikemoto T, Imura S, Morine Y, Ikegami T, Yoshizumi T, Shimada M. Beneficial effects of hyperbaric oxygen pretreatment on massive hepatectomy model in rats. Transplantation,2007,84 (12):1656-1661
    [18]Prass K, Wiegand F, Schumann P, Ahrens M, Kapinya K, Harms C, Liao W, Trendelenburg G, Gertz K, Moskowitz MA, Knapp F, Victorov IV, Megow D, Dirnagl U. Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res,2000,871 (1): 146-150
    [19]Wada K, Miyazawa T, Nomura N, Tsuzuki N, Nawashiro H, Shima K. Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery,2001,49 (1):160-166
    [20]Arieli R, Svidovsky P, Abramovich A. Decompression sickness in the rat following a dive on trimix: recompression therapy with oxygen vs. heliox and oxygen. J Appl Physiol,2007,102 (4):1324-1328
    [21]Little T, Butler BD. Pharmacological intervention to the inflammatory response from decompression sickness in rats. Aviat Space Environ Med,2008,79 (2):87-93
    [22]Jeng MJ, Kou YR, Shen CC, Hwang B. Effects of partial liquid ventilation with FC-77 on acute lung injury in newborn piglets. Pediatr Pulmonol,2002,33 (1):12-21
    [23]Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia:a light microscopic study. Brain Res Dev Brain Res, 1997,100(2):149-160
    [24]Lin S, Rhodes PG, Lei M, Zhang F, Cai Z. alpha-Phenyl-n-tert-butyl-nitrone attenuates hypoxic-ischemic white matter injury in the neonatal rat brain. Brain Res,2004,1007 (1-2):132-141
    [25]Lillo RS, Himm JF, Weathersby PK, Temple DJ, Gault KA, Dromsky DM. Using animal data to improve prediction of human decompression risk following air-saturation dives. J Appl Physiol,2002, 93 (1):216-226
    [26]Wislφff U, Richardson RS, Brubakk AO. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats. J Physiol,2003,546 (2):577-582
    [27]Claybaugh JR, Lin YC. Exercise and decompression sickness:a matter of intensity and timing. J Physiol,2004,555 (3):588
    [28]Lillo RS, Flynn ET, Homer LD. Decompression outcome following saturation dives with multiple inert gases in rats. J Appl Physiol,1985,59 (5):1503-1514
    [29]Lillo RS. Effect of N2-He-O2 on decompression outcome in rats after variable time-at-depth dives. J Appl Physiol,1988,64(5):2042-2052
    [30]Levett DZ, Millar IL. Bubble trouble:a review of diving physiology and disease. Postgrad Med J, 2008,84 (997):571-578
    [31]Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. Neurosurg Clin N Am,2002, 13 (3):371-383
    [32]Bookspan J. Decompression Theory in Plain English. In:Westerfield R, ed. The Best of Alert Diver. Flagstaff:Best Publishing Company,1997:127-135
    [33]Nishi RY. Doppler evaluation of decompression tables. In:Lin YC, Shida KK, eds. Man in the sea. San Pedro, CA:Best Publishing; 1990:297-316
    [34]Yount DE. On the evolution, generation and regeneration of gas cavitation nuclei. J Acoust Soc Am,1982,71 (6):1473-1481
    [35]Libermann L. Air bubbles in water. J Appl Physics,1957,28 (2):205-211
    [36]Hills BA. A hydrophobic oligolamellar lining to the vascular lumen in some organs. Undersea Biomed Res,1992,19 (2):107-120
    [37]Dervay JP, Powell MR, Butler B, Fife CE. The effect of exercise and rest duration on the generation of venous gas bubbles at altitude. Aviat Space Environ Med,2002,73 (1):22-27
    [38]Ikeda T, Okamoto Y, Hashimoto A. Bubble formation and decompression sickness on direct ascent from shallow air saturation diving. Aviat Space Environ Med,1993,64 (2):121-125
    [39]Pontier JM, Vallee N, Bourdon L. Bubble-induced platelet aggregation in a rats model of decompression sickness. J Appl Physiol,2009,107 (6):1825-1829
    [40]Vann RD, Freiberger JJ, Caruso JL. Report on decompression illness, diving fatalities and project diver exploration. DAN's Annual Review of Recreational Scuba Diving,2005:1.
    [41]Germonpre P, Pontier JM, Gempp E, Blatteau JE, Deneweth S, Lafere P, Marroni A, Balestra C. Pre-dive vibration effect on bubble formation after a 30-m dive requiring a decompression stop. Aviat Space Environ Med,2009,80 (12):1044-1048
    [42]Tikuisis P. Modeling the observations of in vivo bubble formation with hydrophobic crevices. Undersea Biomed Res,1986,13 (2):165-180
    [43]Evans A, Walder DN. Significance of gas micronuclei in the aetiology of decompression sickness. Nature,1969,222 (5190):251-252
    [44]Hodges AN, Delaney S, Lecomte JM, Lacroix VJ, Montgomery DL. Effect of hyperbaric oxygen on oxygen uptake and measurements in the blood and tissues in a normobaric environment. Br J Sports Med,2003,37 (6):516-520
    [45]Martin JD, Thom SR. Vascular leukocyte sequestration in decompression sickness and prophylactic hyperbaric oxygen therapy in rats. Aviat Space Environ Med,2002,73 (6):565-569
    [46]Wislφff U, Richardson RS, Brubakk AO. Exercise and nitric oxide prevent bubble formation:a novel approach to the prevention of decompression sickness? J Physiol,2004,555 (3):825-829
    [47]Mφllerlφkken A, Berge VJ, Jφrgensen A, Wislφff U, Brubakk AO. Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs. J Appl Physiol,2006,101 (6):1541-1545
    [48]Dujic Z, Palada I, Valic Z, DuplancicD, Obad A, Wislφff U, Brubakk AO. Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc,2006,38 (8):1432-1435
    [49]Bondi M, Cavaggioni A, Michieli P, Schiavon M, Travain G. Delayed effect of nitric oxide synthase inhibition on the survival of rats after acute decompression. Undersea Hyperb Med,2005,32 (2):121-128
    [50]Marietta MA, Hurshman AR, Rusche KM. Catalysis by nitric oxide synthase. Curr Opin Chem Biol,1998,2 (5):656-663
    [51]Bath PM. The effect of nitric oxide-donating vasodilators on monocyte chemotaxis and intracellular cGMP concentrations in vitro. Eur J Clin Pharm,1993,45 (1):53-58
    [52]Lefer AM, Ma XL, Weyrich A, Lefer DJ. Endothelial dysfunction and neutrophil adherence as critical events in the development of reperfusion injury. Agents Actions Suppl,1993,41:127-135
    [53]Radomski MW, Palmeria RM, Moncada S. Modulation of platelet aggregation by an L-arginine-nitric oxide pathway. Trends Pharmacol Sci,1991,12 (3):87-88
    [54]Duplessis CA, Fothergill D. Investigating the potential of statin medications as a nitric oxide (NO) release agent to decrease decompression sickness:a review article. Med Hypotheses,2008,70 (3): 560-566
    [55]Roberts CK, Barnard RJ, Jasman A, Balon TW. Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol,1999,277 (2 pt 1):E390-394
    [56]Thom SR, Fisher D, Zhang J, Bhopale VM, Ohnishi ST, Kotake Y, Ohnishi T, Buerk DG. Stimulation of perivascular nitric oxide synthesis by oxygen. Am J Physiol,2003,284 (4): H1230-H1239
    [57]Kiang JG, Tsokos GC. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacol Ther,1998,80 (2):183-201
    [58]Li WJ, Zhao ZJ, Liu B, Zhang DX, Li F, Wang HC, Guo WY, Jia GL, Kitakaze M, Hori M. Nitric oxide induces heat shock protein 72 production and delayed protection against myocardial ischemia in rabbits via activating protein kinase C. Chin Med J,2008,121 (12):1109-1113
    [59]Hall DM, Buettner GR, Matthes RD, Gisolfi CV. Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol,1994,77 (2):548-553
    [60]Malyshev IY, Manukhina EB, Mikoyan VD, Kubrina LN, Vanin AF. Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett,1995,370 (3):159-162
    [61]Malyshev IY, Malugin AV, Golubeva LY, Zenina TA, Manukhina EB, Mikoyan VD, Vanin AF. Nitric oxide donor induces HSP70 accumulation in the heart and in cultured cells. FEBS Lett,1996,391 (1-2):21-23
    [62]Welch WJ, Feramisco JR. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Bio Chem,1984,259 (7):4501-4513
    [63]Benjamin IJ, McMillan DR. Stress (heat shock) proteins:molecular chaperones in cardiovascular biology and disease. Circ Res,1998,83 (2):117-132
    [64]Dennog C, Radermacher P, Barnett YA, Speit G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat Res,1999,428 (1-2):83-89
    [65]Shyu WC, Lin SZ, Saeki K, Kubosaki A, Matsumoto Y, Onodera T, Chiang MF, Thajeb P, Li H. Hyperbaric oxygen enhances the expression of prion protein and heat shock protein 70 in a mouse neuroblastoma cell line. Cell Mol Neurobiol,2004,24 (2):257-268
    [66]Su CL, Wu CP, Chen SY, Kang BH, Huang KL, Lin YC. Acclimatization to neurological decompression sickness in rabbits. Am J Physiol,2004,287 (5):R1214-1218
    [67]Bye A, Medbye C, Brubakk AO. Heat shock treatment prior to dive increases survival in rats. In: Grandjiean B, Meliet JL, eds. Proceedings of the 30th annual scientific meeting of the EUBS. Ajaccio, France:EUBS; 208,2004
    [68]Blatteau JE, Gempp E, Balestra C, Mets T, Germonpre P. Predive sauna and venous gas bubbles upon decompression from 400 kPa. Aviat Space Environ Med,2008,79 (12):1100-1105
    [69]Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct,1990, 15 (6):393-401
    [70]Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep, 2003,5 (6):473-480
    [71]Ribeiro SP, Villar J, Downey GP, Edelson JD, Slutsky AS. Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rats against sepsis. Crit Care Med,1994,22 (6):922-929
    [72]Durand P, Bachelet M, Brunet F, Richard, MJ, Dhainaut JF, Dall'ava J, Polla BS. Inducibility of the 70 kD heat shock protein in peripheral blood monocytes is decreased in human acute respiratory distress syndrome and recovers over time. Am J Respir Crit Care Med,2000,161 (1):286-292
    [73]van der Weerd L, Lythgoe MF, Badin RA, Valentim LM, Akbar MT, de Belleroche JS, Latchman DS, Gadian DG. Neuroprotective effects of HSP70 overexpression after ischaemia-An MRI study. Exp Neurol,2005,195 (1):257-266
    [74]Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J. HSP70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab,2005,25 (7):899-910
    [75]Klosterhalfen B, Tons C, Hauptmann S, Tietze L, Offner FA, Kupper W, Kirkpatrick CJ. Influence of heat shock protein 70 and metallothionein induction by zinc-bis-(DL-hydrogenaspartate) on the release of inflammatory mediators in a porcine model of recurrent endotoxemia. Biochem Pharmacol, 2006,52(8):1201-1210
    [76]Van Molle W, Wielockx B, Mahieu T, Takada M, Taniquchi T, Sekikawa K, Libert C. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity,2002,16 (5):685-695
    [77]Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H. Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation,2002,106 (20): 2601-2607
    [78]Jy W, Horstman LL, Wang F, Duncan RC, Ahn YS. Platelet factor 3 in plasma fractions:its relation to microparticle size and thromboses. Thromb Res,1995,80 (6):471-482
    [1]Mahon RT, Dainer HM, Nelson JW. Decompression sickness in a swine model:isobaric denitrogenation and perfluorocarbon at depth. Aviat Space Environ Med,2006,77(1):8-12
    [2]Nishi RY. Doppler evaluation of decompression tables. In:Lin YC, Shida KK, eds. Man in the sea. San Pedro, CA:Best Publishing; 1990:297-316
    [3]Ikeda T, Okamoto Y, Hashimoto A. Bubble formation and decompression sickness on direct ascent from shallow air saturation diving. Aviat Space Environ Med,1993,64 (2):121-125
    [4]Levett DZH, Millar IL. Bubble trouble:a review of diving physiology and disease. Postgrad Med J, 2008,84 (997):571-578
    [5]Yount DE. On the evolution, generation and regeneration of gas cavitation nuclei. J Acoust Soc Am, 1982,71 (6):1473-1481
    [6]Libermann L. Air bubbles in water. J Appl Physics,1957,28 (2):205-211
    [7]Hills BA. A hydrophobic oligolamellar lining to the vascular lumen in some organs. Undersea Biomed Res,1992,19 (2):107-120
    [8]Dervay JP, Powell MR, Butler B, Fife CE. The effect of exercise and rest duration on the generation of venous gas bubbles at altitude. Aviat Space Environ Med,2002,73 (1):22-27
    [9]Harvey EN, Whiteley AH, McElroy WD, Pease DC, Barnes DK. Bubble formation in animals. II. Gas nuclei and their distribution in blood and tissues. J Cell Comp Physiol,1944,24 (1):23-34
    [10]Rattner BA, Gruenau SP, Altland PD. Cross-adaptive effects of cold, hypoxia, or physical training on decompression sickness in mice. J Appl Physiol,1979,47 (2):412-417
    [11]Wislφff U, Brubakk AO. Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure. J Physiol,2001,537 (2):607-611
    [12]Broome JR, Dutka AJ, McNamee GA. Exercise conditioning reduces the risk of neurologic decompression illness in swine. Undersea Hyperb Med,1995,22 (1):73-85
    [13]Dujic Z, Duplancic D, Marinovic-Terzic I, Bakovic D, Ivancev V, Valic Z, Eterovic D, Petri NM, Wislφff U, Brubakk AO. Aerobic exercise before diving reduces venous gas bubble formation in humans. J Physiol,2004,555 (3):637-642
    [14]Berge VJ, Jorgensen A, Lφset A, Wislφff U, Brubakk AO. Exercise ending 30 min pre-dive has no effect on bubble formation in the rat. Aviat Space Environ Med,2005,76 (4):326-328
    [15]Wisloff U, Richardson RS, Brubakk AO. Exercise and nitric oxide prevent bubble formation:a novel approach to the prevention of decompression sickness? J Physiol,2004,555 (3):825-829
    [16]Loset A, Mφllerlφkken A, Berge V,Wislφff U, Brubakk AO. Post-dive bubble formation in rats: effects of exercise 24 h ahead repeated 30 min before the dive. Aviat Space Environ Med,2006,77 (9): 905-908
    [17]Wisloff U, Richardson RS, Brubakk AO. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats. J Physiol,2003,546 (2):577-582
    [18]Haram PM, Adams V, Kemi OJ, Brubakk AO, Hambrecht R, Ellingsen O,Wislφff U. Time-course of endothelial adaptation following acute and regular exercise. Eur J Cardiovasc Prev Rehabil,2006,13 (4):585-591
    [19]Blatteau JE, Gempp E, Galland FM, Pontier JM, Sainty JM, Robinet C. Aerobic exercise 2 hours before a dive to 30 msw decreases bubble formation after decompression. Aviat Space Environ Med, 2005,76 (7):666-669
    [20]Blatteau JE, Boussuges A, Gempp E, Pontier JM, Castagna O, Robinet C, Galland FM, Bourdon L. Haemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation. Br J Sports Med,2007,41(6):375-379
    [21]Marletta MA, Hurshman AR, Rusche KM. Catalysis by nitric oxide synthase. Curr Opin Chem Biol,1998,2 (5):656-663
    [22]Buga GM, Gold ME, Fukuto JM, Ignarro LJ. Shear stress induced release of nitric oxide from endothelial cells grown on beads. Hypertension,1991,17 (2):187-193
    [23]Roberts CK, Barnard RJ, Jasman A, Balon TW. Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol,1999,277 (40):E390-394
    [24]Mφllerlφkken A, Berge VJ, Jφrgensen A, Wislφff U, Brubakk AO. Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs. J Appl Physiol,2006,101 (6):1541-1545
    [25]Dujic Z, Palada I, Valic Z. Exogenous nitric oxide and bubble formation in divers. Med Sci Sports Exerc.2006,38 (8):1432-1435
    [26]Bondi M, Cavaggioni A, Michieli P, Schiavon M, Travain G. Delayed effect of nitric oxide synthase inhibition on the survival of rats after acute decompression. Undersea Hyperb Med,2005,32 (2):121-128
    [27]Behrendt D, Ganz P. Endothelial function:from vascular biology to clinical applications. Am J Cardiol,2002,90 (10C):40-48
    [28]Martin JD, Thom SR. Vascular leukocyte sequestration in decompression sickness and prophylactic hyperbaric oxygen therapy in rats. Aviat Space Environ Med,2002,73 (6):565-569
    [29]Mason R, Walter MF, Jacob RF. Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxidative stress. Circulation,2004,109 (21):34-41
    [30]Foster PP, Butler BD. Decompression to altitude:assumptions, experimental evidence, and future directions. J Appl Physiol,2009,106 (2):678-690
    [31]Blogg SL, Gennser M, Loveman GAM, Seddon FM, Thacker JC, White MG. The effect of breathing hyperoxic gas during simulated submarine escape on venous gas emboli and decompression illness. Undersea Hyperb Med,2003,30 (3):163-174
    [32]Skogland S, Stuhr LEB, Sundland H, Marstein S, Hope A. Increased oxygen before and during decompression reduces bubble formation in rat. Undersea Hyperb Med,2003,30 (1):37-46
    [33]Mahon RT, Dainer HM, Gibellato MG, Soutiere SE. Short oxygen pre-breathe periods reduce or prevent severe decompression sickness in a 70 kg swine saturation model. J Appl Physiol,2009,106 (4): 1459-1463
    [34]Sobakin AS, Wilson MA, Lehner CE, Dueland RT, Gendron-Fitzpatrick AP. Oxygen pre-breathing decreases dysbaric diseases in UW sheep undergoing hyperbaric exposure. Undersea Hyperb Med,2008, 35 (1):61-67
    [35]Ertracht O, Arieli R, Arieli Y, Ron R, Erlichman Z, Adir Y. Optimal oxygen pressure and time for reduced bubble formation in the N2-saturated decompressed prawn. J Appl Physiol,2005,98 (4): 1309-1313
    [36]Arieli Y, Arieli R, Marx A. Hyperbaric oxygen may reduce gas bubbles in decompressed prawns by eliminating gas nuclei. J Appl Physiol,2002,92 (6):2596-2599
    [37]Arieli Y, Katsenelson K, Arieli R. Bubble reduction after decompression in the prawn Palaemon elegans by pretreatment with hyperbaric oxygen. Undersea Hyperb Med,2007,34 (5):369-378
    [38]Katsenelson K, Arieli Y, Abramovich A, Feinsod M, Arieli R. Hyperbaric oxygen pretreatment reduces the incidence of decompression sickness in rats. Eur J Appl Physiol,2007,101 (5):571-576
    [39]Katsenelson K, Arieli R, Arieli Y, Abramovich A, Feinsod M, Tal D. Hyperbaric oxygen pretreatment according to the gas micronuclei denucleation hypothesis reduces neurologic deficit in decompression sickness in rats. J Appl Physiol,2009,107 (2):558-563
    [40]Castagna O, Gempp E, Blatteau JE. Pre-dive normobaric oxygen reduces bubble formation in scuba divers. Eur J Appl Physiol,2009,106 (2):167-172
    [41]Landolfi A, Yang ZJ, Savini F, Camporesi EM, Faralli F, Bosco G. Pre-treatment with hyperbaric oxygenation reduces bubble formation and platelet activation. Sport Sci Health,2006,1 (3):122-128
    [42]Blatteau JE, Souraud JB, Gempp E, Boussuges A. Gas nuclei, their origin, and their role in bubble formation. Aviat Space Environ Med,2006,77 (10):1068-1076
    [43]Arieli R, Boaron E, Abramovich A. Combined effect of denucleation and denitrogenation on the risk of decompression sickness in rats. J Appl Physiol,2009,106 (4):1453-1458
    [44]Martin J, Thom SR. Vascular leukocyte sequestration in decompression sickness and prophylactic hyperbaric oxygen therapy in rats. Aviat Space Environ Med,2002,73 (6):565-569
    [45]Thom SR, Fisher D, Zhang J, Bhopale VM, Ohnishi ST, Kotake Y, Ohnishi T, Buerk DG. Stimulation of perivascular nitric oxide synthesis by oxygen. Am J Physiol,2003,284 (4): H1230-H1239
    [46]Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG, Tao HY, Ostrowski RP, Zhang JH, Sun XJ. Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1 alpha and erythropoietin in rats. J Appl Physiol,2008,104 (4):1185-1191
    [47]Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH, Sun X. Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res,2008,1210:223-229
    [48]Ren P, Kang ZM, Gu GJ, Liu Y, Xu WG, Tao HY, Zhang JH, Sun XJ, Ji H. Hyperbaric oxygen preconditioning promotes angiogenesis in rat liver after partial hepatectomy. Life Sci,2008,83 (7-8): 236-241
    [49]Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H, Xu W, Li R, Sun X, Zhang JH. Hyperbaric oxygen preconditioning attenuates early apotosis after spinal cord ischemia in rats. J Neurotrauma,2009,26 (1): 55-66
    [50]Mori H, Shinohara H, Arakawa Y, Kanemura H, Ikemoto T, Imura S, Morine Y, Ikegami T, Yoshizumi T, Shimada M. Beneficial effects of hyperbaric oxygen pretreatment on massive hepatectomy model in rats. Transplantation,2007,84 (12):1656-1661
    [51]Prass K, Wiegand F, Schumann P, Ahrens M, Kapinya K, Harms C, Liao W, Trendelenburg G, Gertz K, Moskowitz MA, Knapp F, Victorov IV, Megow D, Dirnagl U. Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res,2000,871 (1): 146-150
    [52]Wada K, Miyazawa T, Nomura N, Tsuzuki N, Nawashiro H, Shima K. Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery,2001,49 (1):160-166
    [53]Fan DF, Liu Kan, Xu WG, Zhang RJ, Liu Yun, Kang ZM, Sun XJ, Li RP, Tao HY, Zhang JL. Hyperbaric oxygen preconditioning reduces the incidence of decompression sickness in rats via nitric oxide. Undersea Hyperb Med,2010. in press
    [54]Butler BD, Little T, Cogan V, Powell M. Hyperbaric oxygen pre-breathe modifies the outcome of decompression sickness. Undersea Hyperb Med,2006,33 (6):407-417
    [55]Benjamin IJ, McMillan DR. Stress (heat shock) proteins:molecular chaperones in cardiovascular biology and disease. Circ Res,1998,83 (2):117-132
    [56]Kiang JG, Tsokos GC. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacol Ther,1998,80 (2):183-201
    [57]Su CL, Wu CP, Chen SY, Kang BH, Huang KL, Lin YC. Acclimatization to neurological decompression sickness in rabbits. Am J Physiol,2004,287 (5):R1214-1218
    [58]Bye A, Medbye C, Brubakk AO. Heat shock treatment prior to dive increases survival in rats. In: Grandjiean B, Meliet JL, eds. Proceedings of the 30th annual scientific meeting of the EUBS. Ajaccio, France:EUBS; 208,2004
    [59]Huang KL, Wu CP, Chen YL, Kang BH, Lin YC. Heat stress attenuates air bubble-induced acute lung injury:a novel mechanism of diving acclimatization. J Appl Physiol,2003,94 (4):1485-1490
    [60]Blatteau JE, Gempp E, Balestra C, Mets T, Germonpre P. Predive sauna and venous gas bubbles upon decompression from 400 kPa. Aviat Space Environ Med,2008,79 (12):1100-1105
    [61]Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J, Uney JB. Targeting expression of hsp70i to discrete neuronal populations suing the Lmo-1 promoter:assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab,2001,21 (8):972-981
    [62]Jee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RGDifferential neuroprotection from human heat shock protein 70 overexpression in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol,2001,170 (1):129-139
    [63]van der Weerd L, Lythgoe MF, Badin RA, Valentim LM, Akbar MT, de Belleroche JS, Latchman DS, Gadian DG. Neuroprotective effects of HSP70 overexpression after ischaemia-An MRI study. Exp Neurol,2005,195 (1):257-266
    [64]Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW. Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke,2004,35 (9):2195-2199
    [65]Schroeder S, Lindemann C, Hoeft A, Putensen C, Decker D, von Ruecker AA, Stuber F. Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med,1999,27 (6):1080-1084
    [66]Weiss YG, Tazelaar J, Gehan B, Bouwman A, Christofidou-Solomidou M, Yu Q-C, Raj N, Deutschman CS. Adenoviral vector transfection into the pulmonary epithelium after cecal ligation and puncture (CLP) in rats. Anesthesiology,2001,95 (4):974-982
    [67]Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med,1994,22 (6):914-922
    [68]Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H. Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation,2002,106 (20): 2601-2607
    [69]Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity,2002,16 (5):685-695
    [70]Abraini JH, Gardette-Chauffour MC, Martinez E, Rostain JC, Lemaire C. Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture. J Appl Physiol,1994,76 (3):1113-1118
    [71]Brauer RW, Naquet R. Contributions of animal experimentation to the establishment of appropriate conditions for ethical use of hydrogen as a component of deep diving atmospheres. In:Hydrogen as a Diving Gas, R. W. Brauer, ed. Bethesda, MD:Undersea and Hyperbaric Medical Society,1987, p.3-12. (33 rd Undersea and Hyperbaric Medical Society Workshop)
    [72]Kayar SR, Axley MJ, Homer LD, Harabin AL. Hydrogen gas is not oxidized by mammalian tissues under hyperbaric conditions. Undersea Hyper Med,1994,21 (3):265-275
    [73]Miller TL. Biogenic sources of methane. In:Microbial Production and Consumption of Greenhouse Gases:Methane, Nitrogen Oxides, and Halomethanes, edited by JE Rogers and W. B. Whitman. Washington, DC:American Society of Microbiologists, p.175-187,1991
    [74]Kayar SR, Miller TL, Wolin MJ, Aukhert EO, Axley MJ, Kiesow LA. Decompression sickness risk in rats by microbial removal of dissolved gas. Am J Physiol,1998,275 (44):R677-682
    [75]Kayar SR, Fahlman A, Lin WC, Whitman WB. Increasing activity of H2-metabolizing microbes lowers decompression sickness risk in pigs during H2 dives. J Appl Physiol,2001,91 (6):2713-2719
    [76]Jacobsen G, Jacobsen JE, Peterson RE, McLellan JH, Brooke ST, Nome T, Brubakk AO. Decompression sickness from saturation diving:a case control study of some diving exposure characteristics. Undersea Hyperb Med,1997,24 (2):73-80
    [77]Weathersby PK, Survanshi SS, Hays JR, MacCallum ME. Statistically Based Decompression Tables Ⅲ:Comparative Risk Using U. S. Navy, British, and Canadian Standard Air Schedules. Bethesda, MD:Naval Medical Research Institute,1986, p.2. (Technical Report NMRI 86-50)
    [78]Kayar SR, Fahlman A. Decompression sickness risk reduced by native intestinal flora in pigs after H2 dives. Undersea Hyperbaric Med,2001,28 (2):89-97
    [79]Little TM, Butler BD. Dibutyryl cAMP effects on thromboxane and leukotriene production in decompression induced lung injury. Undersea Hyperb Med,1997,24 (3):185-191
    [80]Little T, Butler BD. Pharmacological intervention to the inflammatory response from decompression sickness in rats. Aviat Space Environ Med,2008,79 (2):87-93
    [81]Kayar SR, Aukhert EO, Axley MJ, Homer LD, Harabin AL. Lower decompression sickness risk in rats intravenous injection of foreign protein. Undersea Hyperb Med,1997,24 (4):329-335
    [82]Germonpre P, Pontier JM, Gempp E, Blatteau JE, Deneweth S, Lafere P, Marroni A, Balestra C. Pre-dive vibration effect on bubble formation after a 30-m dive requiring a decompression stop. Aviat Space Environ Med,2009,80 (12):1044-1048
    [83]Walsh JM, Vorosmarti J Jr. Reduction of the incidence of decompression sickness in rats by smooth-muscle activating factor (SMAF). Undersea Biomed Res,1978,5 (2):129-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700