化学外加剂对水泥水化历程的调控及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托于国家973重点基础研究发展规划项目“环境友好现代混凝土的基础研究”课题“现代混凝土胶凝浆体微结构形成机理”(2009CB623201)和国家863高技术研究发展计划“高抗渗长寿命大管径隧道管片材料结构设计与工程应用”(2005AA332010),探讨化学外加剂对水泥水化历程的影响及其作用机理。
     本文采用凝结时间、干燥收缩、力学性能等宏观性能,结合化学结合水量的测试方法,通过对水泥水化过程中水化程度、初始结构、体积变化性能等的检测,系统全面地研究化学外加剂(促凝剂和早强剂)作用下水泥的水化历程及浆体结构形成与发展的规律,运用微观测试方法,深入探讨了化学外加剂对水泥水化历程调控的作用机理。
     研究表明:
     (1)硫酸铝和硝酸铝对水泥水化历程有较明显的加速调控效果。其中硫酸铝在掺量为1.5%时水泥各龄期强度发展最好,掺量为2.0%时实现速凝,但强度有所倒缩。硝酸铝在掺量大于2.0%时,凝结较快,后期强度较高,但1d强度发展缓慢。化学结合水测量说明铝盐对水泥水化的加速作用集中在水化初期0~6h。微观测试显示铝盐促进C3A的水化及钙矾石的形成与生长,导致水泥迅速凝结硬化。
     (2)硝酸铁具有较好的促凝作用并且有效抑制水泥石的干燥收缩变形。当硝酸铁掺量为3.0%时,实现速凝,但水泥1d强度发展较慢,后期强度发展良好,28d干缩率较空白样减小25%。SEM观察显示硝酸铁的加入,使水泥水化形成更加密实的硬化体,因为硝酸铁能与水泥水化得到的氢氧化钙反应生成氢氧化铁和硝酸钙,对水泥石水化初始结构有填充空隙的作用。
     (3)硅酸钠能够使水泥速凝,但显著降低水泥强度,各龄期强度不及空白样的50%。硅酸钠能够明显降低水泥石的干缩率。在水泥水化过程中,硅酸钠解离提供大量[SiO4]4-,与水泥表面高浓度Ca2+结合,生成硅酸钙,导致水泥浆体迅速凝结硬化,最初形成的硅酸钙包裹在水泥晶体表面,阻碍进一步水化及强度的发展。
     (4)甲酸钙和三乙醇胺都具有早强效果。其中甲酸钙在初凝前显著增大水化程度,加速水泥水化历程,这种加速调控水化作用随甲酸钙掺量的增加而增强。甲酸钙掺量为2.0%时能够抑制水泥石的干燥收缩变形。三乙醇胺在较低掺量下对水泥水化凝结无加速作用,适量的三乙醇胺不仅具有较好的早强效果,同时水泥的后期强度亦有所提高。微观测试证明甲酸钙在水化早期促进C3S和C3A的水化。
This paper is based on National 973 Key Basic Research Development Program in China, hydration process, development of initial structure and mechanism of cement with chemical admixtures, which is the project of "The formation mechanism of modern concrete cementitious paste microstructure" (NO.2009CB623201), and on National 863 High Tech Research Development Program "Structure desigh and application of large diameter tunnel segment materials with long life and high permeability" (2005AA332010).
     Multiple measurements are unfolded in this paper, such as setting time, drying shrinkage, mechanical properties and chemically combined water etc.. Through these macro-performances, the hydration process, the initial structures and the changes of volume of cement hydration are studied. Further more, the structure formation and development of paste together with chemical admixtures (accelerator and early strength agent) are investigated systematically and comprehensively. In addition, regulative mechanisms of chemical admixtures to hydration process are discussed thoroughly by microstructure analysis techniques.
     The results are listed as follows:
     (1) Al2(SO4)3 and Al(NO3)3 have a significant effect on accelerating the hydration of cement. The strength reaches a maximum at 1.5%addition of Al2(SO4)3. Cement is quickly setting in a few minutes at 2.0%addition of Al2(SO4)3, but with strength recession. Cement is quickly setting and late strength is improved when the Al(NO3)3 content is above 2.0%, although the strength for Id hydration is developed tardily. The test of bonding water content showes the hydration process is accelerated by aluminum salts, almost in the beginning 6 hours of cement hydration. The hydration of C3A and the formation of AFt are promoted by aliminum salts, leading to setting and hardening of cement.
     (2) Fe(NO3)3 has a good effect on accelerator and the drying shrinkage of cement paste is reduced greatly. Cement is quickly setting and late strength is improved at 3.0%addition of Fe(NO3)3, the drying shrinkage of 28d is 25%less than control cement, but the strength for 1d hydration is developed tardily. Fe(OH)3 and Ca(NO3)2 are generated by Fe(NO3)3 reacting with Ca(OH)2. And the interspaces of cement hydration initial structure is filled with Fe(OH)3 and Ca(NO3)2, forming a much more compacted cement paste.
     (3) The setting of cement is speeded up and the drying shrinkage of cement paste is reduced by sodium silicate, but it makes against the development of strength. During the hydration process, a lot of [SiO4]4- is supplied by sodium silicate, combined with Ca2+on the surface of cement particles, forming calcium silicate and leading to cement setting. However, further hydration and strength development are impeded because the crystals are wrapped by calcium silicate formed initial hydration.
     (4) Calcium formate and Triethanolamine have a good effect on early strength. The hydration of cement is accelerated by calcium formate before initial setting. The more the calcium formate is, the faster the hydration is. The drying shrinkage of cement paste is reduced at 2.0%adiition of calcium formate. Triethanolamine is not an effective accelerator in cement setting at such a low addtion. However, it is good for early strength and enhances later strength under the condition of appropriate amount. The microstructure analysis showes that the hydration of C3S and C3A are accelerated by calcium formate during early hydration process.
引文
[1]Chatelier H. Le. Crystalloid against colloid in the theory of cements[J]. Trans Farad. Soc. 1919,14(1):8-11.
    [2]Taylor H. F. W. Cement Chemistry[M]. St Edmundsbury Press Ltd.1990:325-337.
    [3]Kantro D. L, Brunauer S. Weise C. H. Development of surface in the hydration of calcium silicates Ⅱ. Extension of investigations to earlier and later stages of hydration[J]. Phys. Chem.1962,10:1804-1809.
    [4]De Jong J. G. M., Stein H. N. Mutual Interaction of CA and CS during hydration[J]. Ibid. 1962:311-327.
    [5]MEHTA P K. Effect of lime on hydration of pastes containing gypsum and calcium aluminates or calcium sulfoaluminate[J]. Journal of the American Ceramic Society,1973, 56(6):315-319.
    [6]荣辉,高礼雄,李静,等.石灰的掺入对水泥砂浆凝结行为及力学性能的研究[J].2007中国商品混凝土可持续发展论坛论文集,2007:138-142.
    [7]TADROS M E, SKALNY J, KALYONCU R S. Early hydration of tricalcium silicate[J]. Journal of the American Ceramic Society,1976,59(7):344-348.
    [8]COLLEPARDIM, BALDINIG, PAURIM. Retardation of tricalcium aluminate hydration by calcium sulfate[J]. Journal of the American Ceramic Society,1979,68(12):33-36.
    [9]曾晓辉,谢友均,隋同波,等.电学方法研究水泥水化诱导期[J].建筑材料学报,2009,12(2):132-135.
    [10]马振珠,岳汉威,宋晓岚.水泥水化过程的机理、测试及影响因素[J].长沙大学学报,2009,23(2):43-46.
    [11]Johann Plank.当今欧洲混凝土外加剂的研究进展[M].北京:机械工业出版社,2004:13-27.
    [12]王玲.我国混凝土外加剂行业的发展现状与机遇[J].混凝土世界,2009,(6):8-13.
    [13]阮承祥.混凝土外加剂及其工程应用[M].南昌:江西科学技术出版社,2008:53-59.
    [14]和德亮.提高混凝土早期强度的试验研究[J].四川建材,2008,(5):11-21.
    [15]张军,张彤,何晓慧,等.超早强混凝土研发及应用[J].混凝土,2005,(6):104-106.
    [16]陈银洲.混凝土外加剂研究概况与进展[J].武汉工业大学学报,2000,22(1):31-33.
    [17]张承志.商品混凝土[M].化学工业出版社,2006:35-40.
    [18]M. Roger Rixom, Noel P. Mailvaganam. Chemical Admixtures for Concrete (Third edition) [M]. New Fetter Lane, London,1999:166-167.
    [19]沈卫国,周明凯.蔗糖对水泥水化过程影响机理研究[J].建筑材料学报,2007,10(5):566-572.
    [20]王培明,丰曙霞,刘贤萍.水泥水化程度研究方法及其进展[J].建筑材料学报,2005,8(6):646-652.
    [21]Escalante-Garcia J I. Nonevaporable water from neat OPC and replacement materials in composite cement hydrated at different temperatures[J]. Cement and Concrete Research, 2003,33(11):1883-1888.
    [22]Kjellsen, Knut O, Detwiler D, et al. Backscattered electron imaging of cement pastes hydrated at different temperatures[J]. Cement and Concrete Research,1990,20(2):308-311.
    [23]施惠生.无机材料实验[M].上海:同济大学出版社,2003:65-69.
    [24]S. P. Shah, M. E. Karaguler. Effects of shrinkage-reducing admixtures on restrained shrinkage cracking of concrete [J]. ACI Materials Journal,1992,89(3):289-295.
    [25]Karl Wiegrink,Shashidhara Marikunte. Shrinkage cracking of high-strength concrete[J]. ACI Materials Journal,1996,93(5):409-415.
    [26]Surendra P. Shah, Chengsheng Quyang. A method to predict shrinkage cracking of concrete [J]. ACI Materials Journal,1998,95(4):339-346.
    [27]David A. Whiting, Rachel J. Detwiler. Cracking tendency and drying shrinkage of silica fume concrete for bridge deck applications [J]. ACI Materials Journal,2000,97(1):71-77.
    [28]Miroslaw. Shrinkage cracking of fiber reinforced concrete[J], ACI Material Journal,1990, 87(2):138-146.
    [29]K. Kovler. Testing System for Determining the Mechanical Behavior of Early Age Concrete underned and Free Uniaxial Shrinkage[J]. Materials Structure,1994,27(3):69-81.
    [30]孙振平,蒋正武,王培铭.水泥混凝土路面裂缝成因及预防措施[J].公路交通科技,2005,22(4):15-19.
    [31]阎培渝,郑峰.水泥水化反应与混凝土自收缩的动力学模型[J].铁道科学与工程学报,2006,3(1):56-59.
    [32]吴华君,方鹏飞.高性能混凝土干燥收缩规律研究[J]_混凝土,2009,(8):33-35.
    [33]Jeffrey J Brooks. How admixtures affect shrinkage and creep[J]. Concrete International. 1999, (4):35-38.
    [34]赵顺增,刘力.掺减水剂的水泥浆体干燥收缩机理浅析[J].膨胀剂与膨胀混凝土,2008,(3):9-12.
    [35]Terry Holand. Using shrinkage-reducing admixtures [J]. Concrete Construction.1999, (3):
    15-18.
    [36]P. Kumar Mehta, Paulo J. M. Monteiro. Concrete Microstructure, Properties, and Materials (Third edition) [M]. The McGraw-Hill Companies, Inc. United States of America,2006: 27-28.
    [37]向新,丁庆军.水泥速凝剂及其机理研究综述[J].武汉工业大学学报,1999,21(1):28-30.
    [38]高振国,韩玉芳,王长瑞.无碱混凝土早强剂的配制与作用机理研究[J].武汉理工大学学报,2009,31(7):81-83.
    [39]曹德光,苏达根,宋国胜.低模数硅酸钠溶液的结构及其键合反应特性[J].硅酸盐学报,2004,32(8):1036-1039.
    [40]刘会刚,杜广恩.对粘土水泥浆凝结性能的探讨[J].吉林水利,2009,(10):67-68.
    [41]钟白茜,杨南如.水玻璃-矿渣水泥的水化性能研究[J].硅酸盐通报,1994,(1):4-8.
    [42]Darko Krizan, Branislav Zivanovic. Effects of dosage and modulus of water glass on early hydration of alkali-slag cement[J]. Cement and Concrete Research,2002,32:1181-1188.
    [43]Mohamed Heikal. Effect of calcium formate as an accelerator on the physicochemical and mechanical properties of pozzolanic cement pastes[J]. Cement and Concrete Research,2004, 34:1051-1056.
    [44]陈建奎.混凝土外加剂原理与应用(第二版)[M].北京:中国计划出版社,2004
    [45]HEREN Z., OLMEZ H.. The influence of ethanolamine on the hydration and mechanical properties of Portland cement[J]. Cement and Concrete Research,1996,26(5):701-705.
    [46]杨医博,梁松,莫海鸿.三乙醇胺对水泥土长期强度影响的试验研究[J].路基工程,2007,(4):68-69.
    [47]许凤桐,陈瑞波,顾轲.甲酸钙早强剂在干粉砂浆中的应用[J].干混砂浆,2008,(2):56-58.
    [48]黄士元,蒋家奋,杨南如,等.近代混凝土技术[M].西安:陕西科学技术出版社,1998:233-234.
    [49]何廷树.混凝土外加剂[M].西安:陕西科学技术出版社,2003:116-117.
    [50]熊大玉,王小虹.混凝土外加剂[M].北京:化学工业出版社,2002:260-263.
    [51]马保国,许永和,董荣珍.三乙醇胺对水泥初始结构和力学性能的影响[J].建筑材料学报,2006,9(1):6-9.
    [52]Li Zongjin, Li Wenlai. No-Contacting Method for Resistivity measurement of Concrete Specimen [J]. US patent, in process.2001.
    [53]张耀君,赵永林,李海宏,徐德龙.水玻璃碱激发矿渣制备纳米地质聚合物研究[J].非金属矿,2009,32(1):39-42.
    [54]J. S. Lota, J. Bensted, P. L. Pratt. Hydration of class G oilwell cement at 20 ℃ and 5℃ with calcium formate[J]. Proceedings of 21st International Conference on Cement Microscopy, April 25-29, Las Vegas, Nevada, USA,1999:160-179.
    [55]彭家惠,楼宗汉.钙矾石形成机理的研究[J].硅酸盐学报,2000,28(6):511-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700