行星大气数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用NCAR的大气环流模式CAM2,研究了不同地转速度和倾角对地球大气环流的影响。并将CAM2推广到行星大气数值模拟,初步对土卫六大气环流进行了模拟,进而研究了不同自转速度下土卫六大气环流的差异。本文主要结论如下:
     1三圈环流的变化无论从年平均气候态,还是季节平均气候态来讲,均以慢地转条件下全球范围的环流增强,快地转条件下全球范围的环流减弱为主要特征。强度变化存在季节差异,秋季变化最大。
     2慢地转条件下,年平均气候态温度场北半球为负异常,南半球为正异常。正负异常大致以15°S为界。
     3改变地转速度后,年平均气候态纬向风场发生了正负相间的异常变化,且快地转与慢地转反向变化发生的纬度稍有南北移动。
     4不同地转速度下春季,位势高度场、温度场、平流层经向风场、平流层垂直速度场的变化趋势与夏、秋两个季节以及年平均气候态的结果相反。
     5慢地转时,中纬度西风加强的现象在四季表现的都很明显,两半球纬向风的变化趋势在春季和秋季基本反向。冬夏两半球纬向风的变化不存在明显的反向变化趋势。慢地转和快地转条件下纬向风的变化趋势是反向的。
     6不同地转速度条件下,各要素场的变化有明显的季节差异。以秋季的变化最为明显。
     7非洲季风和温寒带季风大致表现为慢地转条件下减弱,快地转条件下增强的特征。
     8除了冬季北半球三圈环流、春季南半球Hadley环流和夏季南半球Hadley环流随着地转倾角增大而增强外,其他季节、其他环流均随着地转倾角增大而减弱。对于年平均而言,随着倾角增大,三圈环流强度逐渐减弱。南半球Hadley环流上升支在倾角为60°条件下明显增强。随着倾角增大,南半球Hadley环流范围有所增加,北半球Hadley环流和南半球Ferrel环流的范围有所减小。
     9随着倾角不同,风速变化有共同点但也存在明显季节差异。相同点为在四季均表现为随着倾角变大赤道东风范围增大,东风风速增强,赤道上空对流层东风减弱,北半球西风减弱,北半球中纬度急流减弱。不同点为,春季南半球中纬度急流增强,其余均为西风减弱,夏季和秋季南半球中纬度(西风增强)和高纬度(西风减弱)西风存在反向变化趋势,冬季全球西风减弱。对于年平均而言,倾角变大时,平流层东风范围增大、风速增强:而南北半球西风范围减小,北半球急流减弱,南半球急流增强;近地面,随着倾角变大,除了10°S-10°N之间东风增强以外,其他地区原有东西风场均减弱。
     10随着倾角变大,全球季风范围变大。这种变化又有水平和垂直方向的复杂性。850 hPa面上,当倾角增加时,非洲季风、南美季风、北太平洋上的季风和东亚季风都显著增强,全球季风范围有所增加;倾角减小时,非洲季风、南美季风、北太平洋上的季风和东亚季风都显著减弱,全球季风范围有所减小。
     11基于地球大气环流模式CAM2发展了可移植行星大气环流模式PGCM。通过模拟土卫六大气环流测试了PGCM模式的基本性能。并将PGCM模式结果与LMD模式结果进行比较。进而我们研究了地球转速下土卫六大气环流的特征,来研究旋转速度对土卫六大气环流产生的可能影响。PGCM模式可以充分模拟土卫六大气环流的基本结构,例如赤道上空平流层超级旋转(~108 m/s)、垂直经圈环流、一些垂直廓线及近地面东风等等。土卫六自转速度的大小可以显著影响土卫六大气环流的动力结构。当自转速度变为地球自转速度之后,土卫六大气环流表现为,整层西风减弱,而近地面东风加强。不同旋转速度对于土卫六经向环流的影响主要体现在对流层。在地转速度下,土卫六对流层大气环流表现为,两半球分别为三圈环流;而在土卫六转速下对流层南北半球各仅有两个环流圈。
     12日长在5倍地球日长到50倍地球日长范围内以及上层大气水平温度梯度要大于下层大气水平温度梯度,且下层大气水平温度梯度要很小,是土卫六存在西风塌陷的两个必要条件。
By using the NCAR'S atmospheric general circulation model (AGCM) CAM2, the features of circulation have been investigated under different rotation rates and obliquities on Earth. Furthermore, the CAM2 was developed to simulate the Titan's circulation. We name it the PGCM. The features of Titan's circulation when assuming the Earth's rotation rate are investigated to search for possible influences of the rotation rate on Titan's circulation. The results of this paper can be summarized in the following aspects:
     1 The intensity of three-cell circulation turn strong when the rotation rate turn slow either for annual mean or for seasonal mean. The intensity of three-cell circulation turns weak when the rotation rate turns faste. The change of the intensity of three-cell circulation is different in different season. The change is the biggest in autumn.
     2 Under slow rotation rate, for annual mean temperature field, there exist the negative anomalies in the Northern Hemisphere and positive anomalies in the Southern Hemisphere. The region of negative anomaly and that of positive anomaly are divided by 15°S.
     3 The annual mean zonal wind field has positive anomaly and negative anomaly when the rotation rate is changed. The positive anomalies and negative anomalies are cross.
     4 Compared with summer and autumn, in spring, the changes of geopotential height field, temperature field, meridional wind field in the stratosphere and vertical velocity field are opposite under different rotation rates. Compared with annual mean result, the situation of these three fields is reverse.
     5 The westerly in mid-latitude are all strengthened in four seasons under slow rotation rate. The change trends of the zonal wind in two Hemisphere are opposite in spring and autumn.
     6 The changes of physical quantities have significant seasonal difference. The change in autumn is the biggest.
     7 African monsoon and monsoon in temperate zone and Frigid Zone are weakening when the rotation rate turn slow.
     8 Three-cell circulation turn weak when the obliquity turn large except that the three-cell circulation in Northern Hemisphere in winter, Hadley circulation in Southern Hemisphere in spring and Hadley circulation in Southern Hemisphere in summer turn strong with the obliquity turn large. For annual mean three-cell circulation, its intensity turns weak with the obliquity turn large.
     9 The extension and the velocity of easterly wind in stratosphere over the equator turn large when the obliquity turns large. While the easterly in the troposphere and westerly in the Northern Hemisphere turn weak when the obliquity turns large.
     10 The scope of global monsoon turn large with the obliquity turns large. The African monsoon, South American monsoon, monsoon over the north of Pacific Ocean and East Asian monsoon are strengthened with the obliquity turn large.
     11 The transplantable Planetary General Circulation model (PGCM) based on the earth-representative CAM2 is developed to simulate other planetary atmospheres. In this research we test the basic performance of the PGCM by simulating Titan's atmospheric circulation. The results of the PGCM model are compared with those of the LMD model. Moreover, the features of Titan's circulation when assuming the Earth's rotation rate are investigated to search for possible influences of the rotation rate on Titan's circulation. The PGCM is able to adequately simulate basic circulation structures of Titan, e.g., the equatorial superrotation (~108 m/s) in the Titan's stratosphere, vertical meridional circulations, some vertical profiles, easterly wind near the surface etc. The magnitude of Titan's rotation rate can significantly affect the dynamical structure of the Titan's circulation. The westerly winds of a whole layer are weakened, but the easterly winds are strengthened near the surface, when the rotation rate of Titan is changed to that of the Earth. The effects of the different Titan rotation rates on the meridional circulation mainly pertain to the troposphere. Furthermore, when the Earth's rotation rate is assumed, three cells are present in the troposphere in the two hemispheres, whereas only two cells occur for Titan's rotation rate.
     12 There are two necessary conditions about existence of the zonal wind sink on Titan. First, the length of solar day on Titan must lie between five times the length of earth's day and fifty times the length of earth's day. Second, the gradient of temperature in upper atmosphere must larger than that in deeper atmosphere, and the gradient of temperature in deeper atmosphere is very small.
引文
丁仲礼,熊尚发,2006:古气候数值模拟:进展评述。地学前缘,13,21-31。
    李建半,曾庆存,2000:风场标准化季节变率的显著性及其表征季风的合理性。中国科学(D 辑),30,331-336。
    李建平,曾庆存,2005:一个新的季风指数及其年际变化和与雨量的关系。气候与环境研究,10,351-365。
    刘式适,刘式达,傅遵涛,辛国君,1999:地球自转与气候动力学-振荡理论。地球物理学报,42,590-598。
    钱维宏,1988:长期天气变化与地球自转速度的若干关系。地理学报,1,60-66。
    钱维宏,1991:地球自转速度变化对副高脊线南北进退的作用。气象学报,49,239-243。
    钱维宏,1993:我国气候振动与地球自转速度变化的关系。热带气象,2,171-178。
    钱维宏,丑纪范,1996:地气角动量交换与ENSO循环。中国科学(D),26,80-86。
    任振球,张素琴,1985:地转与EL Nino现象。科学通报,30,444-447。
    任振球,张素琴,1986:地球自转减慢与EL Nino现象的形成。气象学报,44,411-416。
    田军,汪品先,成鑫荣,等,2005:从相位差探讨更新世东业季风的驱动机制。中国科学(D 辑),35,158-166。
    徐钦琦,1991:天文气候学。中国科学技术出版社,141。
    游性恬,谷湘潜,1997:不同地转速度下的冬季大气环流及气候异常的数值模拟。大气科学,21,545-551。
    赵文杰,1990:地球自转减慢对大气影响的数值试验。中国科学院大气物理研究所硕士毕业论文。22。
    郑大伟,1988:地球自转与大气、海洋活动。天文学进展,6,316-328。
    郧大伟,陈剑利,华英敏等,1996:地球自转速率对海平面纬向变化的影响。天文学报,37,97-104。
    郑大伟,罗时芳,宋国玄,1988:地球自转年际变化,ELNino事件和大气角动量。中国科学(B),31,332-337。
    Barnes,J.R.,J.B.,Pollack,R.M.,Haberle,B.,Leovy,R.W.,Zurek,H.,Lee,J.,Schaeffer,1993:Mars atmospheric dynamics as simulated by the NASA Ames general circulation model.2.Transient baroclinic eddies.J.Geophys.Res.,98(E2),3125-3148.
    Barnes,J.R.,R.M.,Haberle,J.B.,Pollack,H.,Lee,J.,Schaeffer,1996:Mars atmospheric dynamics as simulated by the NASA Ames general circulation model 3.Winter quasi-stationary. J. Geophys. Res., 101, 12753-12776.
    Barron, E. J., P. J., Fawcett, D., Pollard, et al., 1993 : Model simulations of Cretaceous climates : the role of geography and carbon dioxide. Philos. Trans. R. Soc. London B, 341, 307-316.
    Barron, E. J., P. J., Fawcett, W. H., Peterson, et al., 1995: A 'simulation' of mid-Cretaceous climate. Paleoceanography, 10, 953-962.
    Basu, S., M. I., Richardson, R. J., Wilson, 2004: Simulation of the martian dust cycle with the GFDL Mars GCM, J. Geophys. Res. ,109, El 1906, 10.1029/2004JE002243.
    Basu, S., J., Wilson, M., Richardson, A., Ingersoll, 2006: Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res., 111, E09004, 10.1029/2005 JE002660.
    
    Beatty, J. K., A., Chaikin, The enw solar system. Cambridge: Cambridge University Press. 1990. Bezard, B., A., Coustenis, C. P., McKay, 1995: Titan's stratospheric temperature asymmetry: a radiative origin? Icarus, 113,267-276.
    Bird, M. K., M., Allison, S. W., Asmar, D. H., Atkinson, I. M., Avruch, R., Dutta-Roy, Y., Dzierma, P., Edenhofer, W. M., Folkner, L. I., Gurvits, D. V, Johnston, D., Plettemeier, S. V, Pogrebenko, R. A., Preston, G. L., Tyler, 2005: The vertical profile of winds on Titan. Nature 438, 800-802,10.1038/nature04060.
    
    Bush, A. B. G., S. G H., Philander, 1997: The late Cretaceous: Simulation with a coupled atmosphere-ocean general circulation model. Paleoceanography, 12,495-516.
    Cane, M. A., P., Molnar, 2001: closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago. Nature, 411, 157-162.
    Clemens, S. C, W., Prell, D., Murray, et al., 1991: Forcing mechanisms of the Indian Ocean Monsoon. Nature, 353, 720-725.
    COHMAP Members, 1988: Climatic changes of the last 18 000 years: Observations and model simulations. Science, 241, 1043-1052.
    Collins, W. D., J. J., Hack, B. A., Boville, P. J., Rasch, D. L.,Williamson, J. T., Kiehl, B., Briegled, J. R., Mccaa. C, Bitz, S-J., Lin, R. B., Rood, M. H.,Zhang, Y.J., Dai, 2003: Description of the NCAR Community Atmosphere Model (CAM2). Boulder, Colorado, http:// www.ccsm.ucar.edu/models/atm-cam/docs/cam2.0/description/index.html.
    Coustenis, A., B., Bezard, 1995: Titan's atmosphere from Voyager infrared observations, IV: latitudinal variations of temperature and composition. Icarus, 115, 126-140.
    Coustenis, A., R., Achterberg, B., Conrath, D., Jennings, A., Marten, D., Gautier, G., Bjoraker, C., Nixon, P., Romani, R., Carlson, M., Flasar, R. E., Samuelson, N., Teanby, P., Irwin, B., Bezard, G., Orton, V., Kunde, M., Abbas, R., Courtin, Th., Fouchet, A., Hubert, E., Lellouch, J., Mondellini, F. W., Taylor, S., Vinatier, 2007: The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus, 189, 35-62.
    
    Dehant, V, O. D., Viron, 2002: Earth rotation as an interdisciplinary topic shared by Astronomers, Astronomers, Geodesists and Geophysicists. Adv. Space Res., 30, 163-173.
    
    Del Genio, A. D., W., Zhou, 1996: Simulations of superrotation on slowly rotating planets: sensitivity to rotation and initial condition. Icarus, 120, 332-343.
    Del Genio, A. D., W., Zhou, T.P., EICHLER, 1993: Equatorial superrotation in a slowly rotating GCM: Implications for Titan and Venus. Icarus 101, 1-17.
    Dowling, T. E., M. E., Bradley, E., Colon, J., Kramer, R. L., LeBeau, G. C. H., Lee, T. I., Mattox, R., Morales-Juberias, C. J., Palotai, V. K., Parimi, A. P.,Showman, 2006: The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182, 259-273.
    Dowling, T. E., A. S., Fischer, P. J., Gierasch, J., Harrington, R. P., LeBeau., C. M.,Santori, 1998: The explicit planetary isentropic-coordinate (EPIC) atmospheric model. Icarus, 132, 221-238.
    
    Eubanks, T. M., 1993: Variations in the orientation of the Earth, contribution of space geodesy to geodynamics: earth dynamics series. Vol. 24, Edited by David E. Smith and Donald L. Turcotte. Washington, D.C. AGU, 1-54.
    
    Flasar, F. M., B. J.,Conrath, 1990: Titan's stratospheric temperatures: a case for dynamical inertia? Icarus, 85, 346-354.
    
    Forget, F., F., Hourdin, R., Fournier, C, Hourdin, O., Talagrand, 1999: Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104, 24155-24176.
    Gates, W. L., 1976: Modeling the ice age climate. Science, 191, 1138-1144.
    Grieger, B., J., Segschneider, H.U., Keller, A. V, Rodin, F., Lunkeit, E., Kirk, K., Fraedrich, 2004: Simulating Titan's tropospheric circulation with the Portable University Model of the Atmosphere. Adv. Space Res., 34, 1650-1654.
    Haberle, R. A., J. R., Murphy, J., Schaeffer, 2003: Orbital change experiments with a Mars general circulation model. Icarus, 161, 66-89.
    Haberle, R. M., M. M., Joshi, J. R., Murphy, J. R., Barnes, J. T., Schofield, G., Wilson, M., Lopez-Valverde, J. L., Hollingsworth, A. F. C., Bridger, J., Schaeffer, 1999: General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104(E4), 8957-8974.
    Haberle, R. M., J. B.,Pollack, J. R., Barnes, R. W., Zurek, C. B., Leovy, J. R., Murphy, H., Lee, J., Schaeffer, 1993: Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model. 1. The zonal-mean circulation. J. Geophys. Res., 98(E2), 3093-3123.
    Hall, A., A., Clement, D. W. J., Thompson, A., Broccoli, C, Jackson, 2005: The Importance of Atmospheric Dynamics in the Northern Hemisphere Wintertime Climate Response to Changes in the Earth's orbit. J. Clint., 18, 1315-1325.
    Hartogh, P., A. S., Medvedev, C, Jarchow, 2007: Middle atmosphere polar warmings on Mars: Simulations and study on the validation with sub-millimeter observations, Planet. Space Sci., 55, 1103-1112, 10.1016/j.pss.2006.11.018.
    Hartogh, P., A. S., Medvedev, T., Kuroda, R., Saito, G., Villanueva, A. G., Feofilov, A. A., Kutepov, U., Berger, 2005: Description and climatology of a new general circulation model of the Martian atmosphere. J. Geophys. Res., 110, E11008, doi:10.1029/2005JE002498.
    Held, I. M., M. J., Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc, 75, 1825-1830.
    Herrnstein, A., T. E., Dowling, 2007: Effects of topography on the spin-up for a Venus atmospheric model. J. Geophys. Res., 112, E04S11, doi:10.1029/2006JE002804.
    Hollingsworth, J. L., J. R., Barnes, 1996: Forced, stationary planetary waves in Mars' winter atmosphere. J. Atmos. Sci., 53,428-448.
    Hourdin, F., S., Lebonnois, D., Luz, P., Rannou, 2004 : Titan's stratospheric composition driven by condensation and dynamics, J. Geophys. Res., 109, E12005, doi: 10.1029/2004JE002282.
    Hourdin, F., O., Talagrand, R., Sadourny, R., Courtin, D., Gautier, C.P., McKay, 1995: Numerical simulation of the general circulation of the Titan. Icarus, 117, 358-374.
    Hunt, B.G., 1979: The influence of the earth's rotation rate on the general circulation of the atmosphere. J. Atmos. Sci., 36, 1392-1407.
    Jenkins, G S., 1993: A general circulation model study of the effects of faster rotation, enhanced CO2 concentrations and reduced solar forcing: Implications for the Faint-Young Sun Paradox. J. Geophys. Res., 98, 20803-20811.
    Jenkins, G. S., 1996: A sensitivity study of changes in Earth's rotation with an atmospheric general circulation model. Global Planet. Change, 11, 141-154.
    Jenkins, G. S., H. G., Marshall, W. R., Kuhn, 1993: Precambrian climate: The effects of land area and Earth's rotation rate. J. Geophys. Res., 98, 8785-8791.
    
    Jian, Z., B., Huang, W., Kuhnt, et al., 2001 : Late quatemary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quatemary Research, 55, 363-370.
    Jochmann, H, H. Greiner-Mai, 1996: Climate variations and the earth's rotation. J. Geodynamics, 21,161-176.
    Joussaume, S., K. E., Taylor, 1995: Status of the paleoclimate modeling intercomparison project (PMIP). Proceedings of the first international AMIP scientific conference (WCRP Report, 1995), 425-430.
    Knutti, R., J., Fluckiger, T. F., Stocker, et al., 2004: Strong hemispheric coupling of glacial climate through fresh water discharge and ocean circulation. Nature, 430, 851-856.
    Kuroda, T., N., Hashimoto, D., Sakai, M., Takahashi, 2005: Simulation of the Martian atmosphere using a CCSR/NIES AGCM, J. Meteor. Soc. Japan, 83, 1-19.
    
    Kutzbach, J. E., B. L., Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39, 1177-1188.
    Kutzbach, J. E., F. A., Street-perrott, 1985: Milankovitch forcing of fluctuations in the level of tropical lakes from 18-0 kyr BP. Nature, 317, 130-134.
    Kutzbach, J. E., G., Bonan, J., Foley, et al., 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the Early to Middle Holocene. Nature, 384, 623-626.
    Kutzbach, J. E., P. J., Guetter, 1986: The influence of Changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726-1759.
    Kutzbach, J. E., P. J., Guetter, W. F., Ruddiman, et al., 1989: The sensitivity of climate to late Cenozoic uplift in south-east Asia and the American southwest: Numerical experiments. J. Geophys. Res., 94, 18393-18407.
    Kutzbach, J. E., R. G., Gallimore, 1989: Pangean climates: Megamonsoons of the megacontinent. J. Geophys. Res., 94 (D3), 3341-3357.
    Kutzbach, J. E., W. L., Prell, W. F., Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan plateau. The Journal of Geology, 101, 177-190.
    Kutzbach, J. E., Z., Liu, 1997: Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science, 278, 440-443.
    Lavvas, P. P., A., Coustenis, I. M., Vardavas, 2007a : Coupling photochemistry with haze formation in Titan's atmosphere. Part I : Model description. Planet. Space Sci., 56, 27-66.
    Lavvas, P. P., A., Coustenis, I. M.,Vardavas, 2007b : Coupling photochemistry with haze formation in Titan's atmosphere. Part II: Results and Validation with Cassini/Huygens data. Planet. Space Sci., 56, 67-99.
    Lebonnois, S., F., Hourdin, P., Rannou, D., Luz, D., Toublanc, 2003 : Impact of the seasonal variations of composition on the temperature field of Titan's stratosphere, Icarus, 163, 164-174.
    Lee., C., S. R., Lewis, P. L., Read, 2005: A numerical model of the atmosphere of Venus. Adv. Space Res., 36, 2142-2145.
    Lee., C., S. R., Lewis, P. L., Read, 2007: Superrotation in a Venus general circulation model. J. Geophys. Res., 112, E04S11, 10.1029/2006JE002874.
    Leovy, C., Y., Mintz, 1969: The numerical simulation of atmospheric circulation and climate of Mars. J. Geophys. Res., 104(E10), 24177-24194.
    
    Lewis, S. R., M., Collins, P. L., Read, F., Forget, F., Hourdin, R., Fournier, C, Hourdin, O., Talagrand, J.O., Huot, 1999: A climate database for Mars. J. Geophys. Res., 104(E10), 24177-24194.
    Li, J. P., Q. C., Zeng, 2002: A unified monsoon index. Geophys. Res. Letts., 29, 115.
    Li, J. P., Q. C., Zeng, 2003: A new monssoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299-302.
    Liu, X. H., J. P., Li and A. Coustenis, A transposable Planetary General Circulation Model (PGCM) and its preliminary simulation on Titan, Planet. Space Sci. (In press).
    
    Luz, D., R, Hourdin, P., Rannou, S., Lebonnois, 2003: Latitudinal transport by barotropic waves in Titan's stratosphere. II. Results from a coupled dynamics-microphysics-photochemistry GCM, Icarus, 166, 343-358.
    Mitchell, J. F. B., N. S., Grahame, K. H., Needham, 1988: Climate simulation for 9 000 years before present: Seasonal variations and the effects of Laurentide ice sheet. J. Geophys. Res., 93, 8283-8303.
    Montmessin, F., F., Forget, P., Rannou, M., Cabane, R. M., Haberle, 2004: Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109, E10004, 10.1029/2004JE002284.
    Moudden Y, J. C, McConnell, 2005: A new model for multiscale modeling of the martian atmosphere, GM3.J. Geophys. Res., 110, E04001, 10.1029/2004JE002354.
    Murphy, J. R., J. B., Pollack, R. M., Haberle, C. B., Leovy, O. B., Toon, J., Schaeffer, 1995: Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res., 100(E12), 26357-26376.
    
    Oort, A. H., J. J., Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate., 9, 2751-2767.
    Otto-bliesner, B. L., G R., Upchurch Jr, 1997: Vegetation induced warming of high-latitude regions during the Late Cretaceous period. Nature, 385, 804-807.
    
    Ouyang ziyuan, 1988: Cosmochemistry. Beijing, Science Press, 1-145 (in Chinese).
    Pollack, J. B., R. M., Haberle, J. R., Murphy, J., Schaeffer, H., Lee, 1993: Simulations of the general circulation of the Martian atmosphere: 2. Seasonal pressure variations. J. Geophys. Res.,98(E2), 3149-3181.
    Pollack, J. B., R. M., Haberle, J., Schaeffer, H., Lee, 1990: Simulations of the general circulation of the Martian atmosphere: 1. Polar processes. J. Geophys. Res., 95(B2), 1447-1473.
    Pollack, J. B., C. B., Leovy, P. W., Greiman, Y., Mintz, 1981: A Martian general-circulation experiment with large topography, J. Atmos. Sci., 38, 3-29.
    Prell, W. L., J. E., Kutzbach, The impact of Tibet-Himalayan elevation on the sensitivity of the monsoon climate system to changes in solar radiation. Ruddiman, W. F., Tectonic uplift and climate change. New York: Plenum Press, 1997: 171-201.
    Qian, W. H., 1995: The observational study and numerical experiment on the effect of the variation of the earth's rotation on the global sea surface temperature anomaly. Chinese J. Atmos. Sci., 19, 654-662.
    
    Quan, X. W., H. F., Diaz, M. P., Hoerling, 2004: Change in the tropical Hadley cell since 1950, in the Hadley Circulation : Past, Present, and Future, edited by H. F. Diaz and R. S. Bradley, Cambridge Univ. Press, New York.
    
    Radebaugh, J., R. D., Lorenz, R. L., Kirk, J. I., Lunine, E. R., Stofan, R. M.C., Lopes, S. D., Wall, the Cassini Radar Team, 2007: Mountains on Titan observed by Cassini Radar. Icarus, 192,77-91.
    
    Randall, D., J., Curry, D., Battisti, G., Flato, R., Grumbine, S., Hakkinen, D., Martinson, R.,Preller, J., Walsh, J., Weatherly, 1998: Status of and Outlook for Large-Scale Modeling of Atmosphere-Ice-Ocean Interactions in the Arctic. Bull. Am. Meteorol. Soc, 79, 197-219.
    
    Rahmstorf, S., 1994: Rapid climate transitions in a coupled ocean-atmosphere model. Nature, 372, 82-85.
    
    Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 145-149.
    
    Ramstein, G., F., Fluteau, J., Besse, et al., 1997: Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788-795.
    Rannou, P., F., Hourdin, C.P., McKay, D., Luz, 2004: A coupled dynamics-microphysics model of Titan's atmosphere. Icarus, 170,443-462.
    Rannou, P., S., Lebonnois, F., Hourdin, D., Luz, 2005: Titan atmosphere database. Adv. Space Res., 36,2194-2198.
    Richardson, M. I., A. D., Toigo, C. E., Newman, 2007: PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09001, 10.1029/2006JE002825.
    
    Rossow, W. B., 1983: A General Circulation Model of a Venus-Like Atmosphere. J. Atmos. Sci., 40, 273-302.
    Schaller, E. L., M. E., Brown, H. G., Roe, 2007: Titan's methane hydrological cycle: detection of seasonal change. European Planetary Science Congress 2007, Vol. 2, EPSC2007-A-00285.
    Takahashi, Y. Q., H., Fujiwara, H., Fukunishi, M., Odaka, Y., Hayashi, S., Watanabe, 2003: Topographically induced north-south asymmetry of the meridional circulation in the Martian atmosphere. J. Geophys. Res., 108(E3), 5018, doi:10.1029/2001 JE001638.
    Takahashi, Y. Q., M., Odaka, Y.-Y, Hayashi, 2004 : Martian Atmospheric General Circulation Simulation Simulated by GCM: A Comparison with the Observational Data, Bull. Amer. Astron. Society, 36, 1157.
    
    Tokano, T., 2007: Dune-forming winds on Titan and the influence of topography, Icarus, in press. Tokano, T., R. D., Lorenz, 2006: GCM simulation of balloon trajectories on Titan. Planet. Space Sci., 54, 685-694.
    Tokano, T., F. M., Neubauer, M., Laube, C. P., McKay, 1999: Seasonal variation of Titan's atmospheric structure simulated by a general circulation model. Planet. Space Sci., 47, 493-520.
    
    Weaver, A. J., M., Eby, A. F., Fanning, et al., 1998: Simulated influence of carbon dioxide, orbital forcing, and ice sheets on the climate of the last glacial maximum. Nature, 394, 847-853.
    
    Williamson, D. L., J. G., Olson, B. A., Boville, 1998: A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev., 126, 1001-1012.
    Williams, J. R. G., R. G., Barry, W. M., Washington, 1974: Simulation of the atmospheric circulation using the NCAR global circulation model with ice age boundary conditions. J. Appl. Meteorol, 13, 305-317.
    
    Wilson, R. J., K., Hamilton, 1996: Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci., 53, 1290-1326.
    Wilson, R. J., M. I.,Richardson, R. T., Clancy, A. V., Rodin 1997: Simulation of Aerosol and Water Vapor Transport with the GFDL Mars General Circulation Model. Bull. Amer. Astron. Society, 29, 966.
    Yamamoto, M., M., Takahashi, 2003: The fully developed super-rotation simulated by a general circulation model of Venus-like atmosphere. J. Atmos. Sci., 60, 561-574.
    Yamamoto, M., M., Takahashi, 2004: Dynamics of Venus' super-rotation: the eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett, 31, L09701, 10.1029/2004GL019518.
    Young, R. E., J. B., Pollack, 1977: A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci., 34, 1315-1351.
    Zeng, Q. C., 1989: Documentation of IAP two-level AGCM. TRO44, DOE/ER/60314-HI.
    Zheng, D., X., Ding, Y., Zhou, Y., Chen, 2003: Earth rotation and ENSO events: combined excitation of interannual LOD variations by multiscale atmospheric oscillations. Global Planet. Change, 36, 89-97.
    Zheng, D. W., G., Chen, 1994: Relation between equatorial oceanic activities and LOD changes. Science in China (A), 37, 341-347.
    Zhu, X., D. F., Strobel, 2005: On the maintenance of thermal wind balance and equatorial superrotation in Titan's stratosphere. Icarus, 176, 331-350.
    李建平,曾庆存,2000:风场标准化季节变率的显著性及其表征季风的合理性。中国科学(D 辑),30,331-336。
    李建平,曾庆存,2005:一个新的季风指数及其年际变化和与雨量的关系。气候与环境研究,10,351-365。
    刘式适,刘式达,傅遵涛,辛国君,1999:地球自转与气候动力学-振荡理论。地球物理学报,42,590-598。
    钱维宏,1988:长期天气变化与地球自转速度的若干关系。地理学报,1,60-66。
    钱维宏,1991:地球自转速度变化对副高脊线南北进退的作用。气象学报,49,239-243。
    钱维宏,1993:我国气候振动与地球自转速度变化的关系。热带气象,2,171-178。
    钱维宏,丑纪范,1996:地气角动量交换与ENSO循环。中国科学(D),26,80-86。
    任振球,张素琴,1985:地转与EL Nino现象。科学通报,30,444-447。
    任振球,张素琴,1986:地球自转减慢与EL Nino现象的形成。气象学报,44,411-416。
    徐饮琦,1991:天文气候学。中国科学技术出版社,141。
    游性恬,谷湘潜,1997:不同地转速度下的冬季大气环流及气候异常的数值模拟。大气科学,21,545-551。
    赵文杰,1990:地球自转减慢对大气影响的数值试验。中国科学院大气物理研究所硕士毕业论文。22。
    郑大伟,1988:地球自转与大气、海洋活动。天文学进展,6,316-328。
    郑大伟,陈剑利,华英敏等,1996:地球自转速率对海平面纬阳变化的影响。天文学报,37,97-104。
    郑大伟,罗时芳,宋国玄,1988:地球自转年际变化,ELNino事件和大气角动量。中国科学(R),31.332-337.
    Collins,W.D.,Hack,J.J.,Boville,B.A.,Rasch,P.J.,Williamson,D.L.,Kiehl,J.T.,Briegled,B.,Mccaa.J.R.,Bitz,C.,Lin,S-J.,Rood,R.B.,Zhang,M.H.,Dai.Y.J.,2003.Description of the NCAR Community Atmosphere Model(CAM2).Boulder,Colorado,http://www.ccsm.ucar.edu/models/atm-cam/docs/cam2.0/description/index.html.
    Dehant,V.,Viron,O.D.,2002:Earth rotation as an interdisciplinary topic shared by Astronomers,Astronomers,Geodesists and Geophysicists.Adv.Space Res.,30,163-173.
    Del Genio,A.D.,W.,Zhou,1996:Simulations of superrotation on slowly rotating planets:sensitivity to rotation and initial condition.Icarus,120,332-343.
    Eubanks,T.M.,1993:Variations in the orientation of the Earth,contribution of space geodesy to geodynamics:earth dynamics series.Vol.24,Edited by David E.Smith and Donald L.Turcotte. Washington, D.C. AGU, 1-54.
    Hall, A., A., Clement, D. W. J., Thompson, A., Broccoli, C, Jackson, 2005: The Importance of Atmospheric Dynamics in the Northern Hemisphere Wintertime Climate Response to Changes in the Earth's orbit. J. Clim., 18, 1315-1325.
    Hourdin, F., Talagrand, O., Sadourny, R., Courtin, R., Gautier, D., McKay, C.P., 1995. Numerical simulation of the general circulation of the Titan. Icarus, 117, 358-374.
    Hunt, B.G., 1979: The influence of the earth's rotation rate on the general circulation of the atmosphere. J. Atmos. Sci., 36, 1392-1407.
    Jenkins, G. S., 1993: A general circulation model study of the effects of faster rotation, enhanced CO2 concentrations and reduced solar forcing: Implications for the Faint-Young Sun Paradox. J. Geophys. Res., 98, 20803-20811.
    Jenkins, G. S., 1996: A sensitivity study of changes in Earth's rotation with an atmospheric general circulation model. Global Planet. Change, 11, 141-154.
    Jenkins, G. S., H. G., Marshall, W. R., Kuhn, 1993: Precambrian climate: The effects of land area and Earth's rotation rate. J. Geophys. Res., 98, 8785-8791.
    Jochmann, H, H. Greiner-Mai, 1996: Climate variations and the earth's rotation. J. Geodynamics, 21,161-176.
    Kutzbach, J. E., P. J., Guetter, 1986: The influence of Changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726-1759.
    Kutzbach, J. E., B. L., Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39, 1177-1188.
    
    Li, J. P., Q. C., Zeng, 2002: A unified monsoon index. Geophys. Res. Letts., 29, 115.
    Li, J. P., Q. C., Zeng, 2003: A new monssoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299-302.
    Oort, A. H., J. J., Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate., 9, 2751-2767.
    Qian, W. H., 1995: The observational study and numerical experiment on the effect of the variation of the earth's rotation on the global sea surface temperature anomaly. Chinese J. Atmos. Sci., 19, 654-662.
    Quan, X. W., H. F., Diaz, M. P., Hoerling, 2004: Change in the tropical Hadley cell since 1950, in the Hadley Circulation : Past, Present, and Future, edited by H. F. Diaz and R. S. Bradley, Cambridge Univ. Press, New York.
    
    Zeng, Q. C., 1989: Documentation of IAP two-level AGCM. TRO44, DOE/ER/60314-HI. Zheng, D., X., Ding, Y., Zhou, Y, Chen, 2003: Earth rotation and ENSO events: combined excitation of interannual LOD variations by multiscale atmospheric oscillations. Global Planet. Change, 36, 89-97.
    Zheng, D. W., G., Chen, 1994: Relation between equatorial oceanic activities and LOD changes. Science in China (A), 37, 341-347.
    李建平,曾庆存,2000:风场标准化季节变率的显著性及其表征季风的合理性。中国科学(D 辑),30,331-336。
    李建平,曾庆存,2005:一个新的季风指数及其年际变化和与雨量的关系。气候与环境研究,10,351-365。
    徐钦琦,1991:天文气候学。中国科学技术出版社,141。
    游性恬,谷湘潜,1997:不同地转速度下的冬季大气环流及气候异常的数值模拟。大气科学,21.545-551.
    Barton,E.J.,P.J.,Fawcett,D.,Pollard,et al.,1993:Model simulations of Cretaceous climates:the role of geography and carbon dioxide.Philos.Trans.R.Soc.London B,341,307-316.
    Barton,E.J.,P.J.,Fawcett,W.H.,Peterson,et al.,1995:A 'simulation' of mid-Cretaceous climate.Paleoceanography,10,953-962.
    Bush,A.B.G.,S.G.H.,Philander,1997:The late Cretaceous:Simulation with a coupled atmosphere-ocean general circulation model.Paleoceanography,12,495-516.
    Cane,M.A.,P.,Molnar,2001:closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago.Nature,411,157-162.
    Collins,W.D.,Hack,J.J.,Boville,B.A.,Rasch,P.J.,Williamson,D.L.,Kiehl,J.T.,Briegled,B.,Mccaa.J.R.,Bitz,C.,Lin,S-J.,Rood,R.B.,Zhang,M.H.,Dai.Y.J.,2003.Description of the NCAR Community Atmosphere Model(CAM2).Boulder,Colorado,http://www.ccsm.ucar.edu/models/atm-cam/docs/cam2.0/description/index.html.
    Hall,A.,A.,Clement,D.W.J.,Thompson,A.,Broccoli,C.,Jackson,2005:The Importance of Atmospheric Dynamics in the Northern Hemisphere Wintertime Climate Response to Changes in the Earth's orbit.J.Clim.,18,1315-1325.
    Hourdin,F.,Talagrand,O.,Sadourny,R.,Courtin,R.,Gautier,D.,McKay,C.P.,1995.Numerical simulation of the general circulation of the Titan.Icarus,117,358-374.
    Hunt,B.G.,1979:The influence of the earth's rotation rate on the general circulation of the atmosphere.J.Atmos.Sci.,36,1392-1407.
    Jenkins,G.S.,1993:A general circulation model study of the effects of faster rotation,enhanced CO2 concentrations and reduced solar forcing:Implications for the Faint-Young Sun Paradox.J.Geophys.Res.,98,20803-20811.
    Jenkins,G.S.,1996:A sensitivity study of changes in Earth's rotation with an atmospheric general circulation model.Global Planet.Change,11,141-154.
    Jenkins,G.S.,H.G.,Marshall,W.R.,Kuhn,1993:Precambrian climate:The effects of land area and Earth's rotation rate. J. Geophys. Res., 98, 8785-8791.
    Jochmann, H, H. Greiner-Mai, 1996: Climate variations and the earth's rotation. J. Geodynamics, 21,161-176.
    Kutzbach, J. E., B. L., Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39, 1177-1188.
    Knutti, R., J., Fluckiger, T. F., Stocker, et al., 2004: Strong hemispheric coupling of glacial climate through fresh water discharge and ocean circulation. Nature, 430, 851-856.
    Kutzbach, J. E., F. A., Street-perrott, 1985: Milankovitch forcing of fluctuations in the level of tropical lakes from 18-0 kyr BP. Nature, 317, 130-134.
    Kutzbach, J. E., G., Bonan, J., Foley, et al., 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the Early to Middle Holocene. Nature, 384, 623-626.
    Kutzbach, J. E., P. J., Guetter, 1986: The influence of Changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726-1759.
    Kutzbach, J. E., P. J., Guetter, W. F., Ruddiman, et al., 1989: The sensitivity of climate to late Cenozoic uplift in south-east Asia and the American southwest: Numerical experiments. J. Geophys. Res., 94, 18393-18407.
    Kutzbach, J. E., R. G., Gallimore, 1989: Pangean climates: Megamonsoons of the megacontinent. J. Geophys. Res., 94 (D3), 3341-3357.
    Kutzbach, J. E., W. L., Prell, W. F., Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan plateau. The Journal of Geology, 101, 177-190.
    Li, J. P., Q. C., Zeng, 2002: A unified monsoon index. Geophys. Res. Letts., 29, 115.
    Li, J. P., Q. C, Zeng, 2003: A new monssoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299-302.
    
    Mitchell, J. F. B., N. S., Grahame, K. H., Needham, 1988: Climate simulation for 9 000 years before present: Seasonal variations and the effects of Laurentide ice sheet. J. Geophys. Res., 93, 8283-8303.
    Oort, A. H., J. J., Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate., 9, 2751-2767.
    Quan, X. W., H. F., Diaz, M. P., Hoerling, 2004: Change in the tropical Hadley cell since 1950, in the Hadley Circulation : Past, Present, and Future, edited by H. F. Diaz and R. S. Bradley, Cambridge Univ. Press, New York.
    Otto-bliesner, B. L., G. R., Upchurch Jr, 1997: Vegetation induced warming of high-latitude regions during the Late Cretaceous period. Nature, 385, 804-807.
    Rahmstorf, S., 1994: Rapid climate transitions in a coupled ocean-atmosphere model. Nature, 372, 82-85.
    Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 145-149.
    Ramstein, G., F., Fluteau, J., Besse, et al., 1997: Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788-795.
    Hall, A., A., Clement, D. W. J., Thompson, A., Broccoli, C, Jackson, 2005: The Importance of Atmospheric Dynamics in the Northern Hemisphere Wintertime Climate Response to Changes in the Earth's orbit. J. Clim., 18, 1315-1325.
    Hourdin, F., Talagrand, O., Sadourny, R., Courtin, R., Gautier, D., McKay, C.P., 1995, Numerical simulation of the general circulation of the Titan. Icarus, 117, 358-374.
    Kutzbach, J. E., R J., Guetter, 1986: The influence of Changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726-1759.
    Kutzbach, J. E., B. L., Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.R in a low-resolution general circulation model. J. Atmos. Sci., 39, 1177-1188.
    Oort, A. H., J. J., Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate., 9, 2751-2767.
    Quan, X. W., H. F., Diaz, M. P., Hoerling, 2004: Change in the tropical Hadley cell since 1950, in the Hadley Circulation : Past, Present, and Future, edited by H. F. Diaz and R. S. Bradley, Cambridge Univ. Press, New York.
    Tuenter, E., S. L., Weber, F. J., Hilgen, L. J., Lourens, 2003: The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Global and Planetary Change, 36, 219-235.
    李建平,曾庆存,2000:风场标准化季节变率的显著性及其表征季风的合理性。中国科学(D 辑),30,331-336。
    李建平,曾庆存,2005:一个新的季风指数及其年际变化和与雨量的关系。气候与环境研究,10,351-365。
    Barron,E.J.,P.J.,Fawcett,D.,Pollard,et al.,1993:Model simulations of Cretaceous climates:the role of geography and carbon dioxide.Philos.Trans.R.Soc.London B,341,307-316.
    Barton,E.J.,P.J.,Fawcett,W.H.,Peterson,et al.,1995:A 'simulation' of mid-Cretaceous climate.Paleoceanography,10,953-962.
    Bush,A.B.G.,S.G.H.,Philander,1997:The late Cretaceous:Simulation with a coupled atmosphere-ocean general circulation model.Paleoceanography,12,495-516.
    Cane,M.A.,P.,Molnar,2001:closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago.Nature,411,157-162.
    Hall,A.,A.,Clement,D.W.J.,Thompson,A.,Broccoli,C.,Jackson,2005:The Importance of Atmospheric Dynamics in the Northern Hemisphere Wintertime Climate Response to Changes in the Earth's orbit.J.Clim.,18,1315-1325.
    Hourdin,F.,Talagrand,O.,Sadourny,R.,Courtin,R.,Gautier,D.,McKay,C.P.,1995.Numerical simulation of the general circulation of the Titan.Icarus,117,358-374.
    Kutzbach,J.E.,B.L.,Otto-Bliesner,1982:The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P.in a low-resolution general circulation model.J.Atmos.Sci.,39,1177-1188.
    Knutti,R.,J.,Fluckiger,T.E,Stocker,et al.,2004:Strong hemispheric coupling of glacial climate through fresh water discharge and ocean circulation.Nature,430,851-856.
    Kutzbach,J.E.,F.A.,Street-perrott,1985:Milankovitch forcing of fluctuations in the level of tropical lakes from 18-0 kyr BP.Nature,317,130-134.
    Kutzbach,J.E.,G.,Bonan,J.,Foley,et al.,1996:Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the Early to Middle Holocene.Nature,384,623-626.
    Kutzbach,J.E.,P.J.,Guetter,1986:The influence of Changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726-1759.
    Kutzbach, J. E., P. J., Guetter, W. F., Ruddiman, et al., 1989: The sensitivity of climate to late Cenozoic uplift in south-east Asia and the American southwest: Numerical experiments. J. Geophys. Res., 94, 18393-18407.
    Kutzbach, J. E., R. G., Gallimore, 1989: Pangean climates: Megamonsoons of the megacontinent. J. Geophys. Res., 94 (D3), 3341-3357.
    Kutzbach, J. E., W. L., Prell, W. F., Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan plateau. The Journal of Geology, 101, 177-190.
    Li, J. P., Q. C., Zeng, 2002: A unified monsoon index. Geophys. Res. Letts., 29, 115.
    Li, J. P., Q. C., Zeng, 2003: A new monssoon index and the geographical distribution of the global monsoons. Advances in Atmospheric Sciences, 20, 299-302.
    
    Mitchell, J. F. B., N. S., Grahame, K. H., Needham, 1988: Climate simulation for 9 000 years before present: Seasonal variations and the effects of Laurentide ice sheet. Journal of Geophysical Research, 93, 8283-8303.
    Oort, A. H., J. J., Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate., 9, 2751-2767.
    Otto-bliesner, B. L., G. R., Upchurch Jr, 1997: Vegetation induced warming of high-latitude regions during the Late Cretaceous period. Nature, 385, 804-807.
    Quan, X. W., H. R, Diaz, M. P., Hoerling, 2004: Change in the tropical Hadley cell since 1950, in the Hadley Circulation : Past, Present, and Future, edited by H. F. Diaz and R. S. Bradley, Cambridge Univ. Press, New York.
    Rahmstorf, S., 1994: Rapid climate transitions in a coupled ocean-atmosphere model. Nature, 372, 82-85.
    Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 145-149.
    Ramstein, G., F., Fluteau, J., Besse, et al., 1997: Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788-795.
    Tuenter, E., S. L., Weber, F. J., Hilgen, L. J., Lourens, 2003: The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Global and Planetary Change, 36,219-235.
    Weaver, A. J., M., Eby, A. R, Fanning, et al., 1998: Simulated influence of carbon dioxide, orbital forcing, and ice sheets on the climate of the last glacial maximum. Nature, 394, 847-853.
    Barnes, J. R., Pollack, J.B., Haberle, R.M., Leovy, B., Zurek, R.W., Lee, H., Schaeffer, J., 1993. Mars atmospheric dynamics as simulated by the NASA Ames general circulation model. 2. Transient baroclinic eddies. J. Geophys. Res. 98(E2), 5125-3148.
    Barnes, J.R., Haberle, R.M., Pollack, J.B., Lee, H., Schaeffer, J., 1996. Mars atmospheric dynamics as simulated by the NASA Ames general circulation model 3. Winter quasi-stationary. J. Geophys. Res. 101, 12753-12776.
    Basu, S., Richardson, M.I., Wilson, R.J., 2004. Simulation of the martian dust cycle with the GFDL Mars GCM, J. Geophys. Res. 109, E11906, 10.1029/2004JE002243.
    Basu, S., Wilson, J., Richardson, M., Ingersoll, A., 2006. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res. 111, E09004, 10.1029/2005JE002660.
    Bezard, B., Coustenis, A., McKay, C.P., 1995. Titan's stratospheric temperature asymmetry: a radiative origin? Icarus 113, 267-276.
    Bird, M.K., Allison, M., Asmar, S.W., Atkinson, D.H., Avruch, I.M., Dutta-Roy, R., Dzierma, Y., Edenhofer, P., Folkner, W.M., Gurvits, L.I., Johnston, D.V., Plettemeier, D., Pogrebenko, S.V., Preston, R.A., Tyler, G.L., 2005. The vertical profile of winds on Titan. Nature 438, 800-802, 10.1038/nature04060.
    Collins, W.D., Hack, J.J., Boville, B.A., Rasch, P.J., Williamson, D.L., Kiehl, J.T., Briegled, B., Mccaa. J.R., Bitz, C, Lin, S-J., Rood, R.B., Zhang, M.H., Dai. Y.J., 2003. Description of the NCAR Community Atmosphere Model (CAM2). Boulder, Colorado, http:// www.ccsm.ucar.edu/models/atm-cam/docs/cam2.0/description/index.html.
    Coustenis, A., Bezard, B., 1995. Titan's atmosphere from Voyager infrared observations, IV: latitudinal variations of temperature and composition. Icarus 115, 126-140.
    
    Coustenis, A., Achterberg, R., Conrath, B., Jennings, D., Marten, A., Gautier, D., Bjoraker, G., Nixon, C, Romani, P., Carlson, R., Flasar, M., Samuelson, R. E., Teanby, N., Irwin, P., Bezard, B., Orton, G., Kunde, V, Abbas, M., Courtin, R., Fouchet, Th., Hubert, A., Lellouch, E., Mondellini, J., Taylor, F. W., Vinatier, S., 2007. The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189, 35-62.
    Del Genio, A.D., Zhou, W., 1996. Simulations of superrotation on slowly rotating planets: Sensitivity to rotation and initial condition. Icarus 120, 332-343.
    Del Genio, A.D., Zhou, W., EICHLER, T.P., 1993. Equatorial superrotation in a slowly rotating GCM: Implications for Titan and Venus. Icarus 101, 1-17.
    Dowling, T.E., Bradley, M.E., Colon, E., Kramer, J., LeBeau, R.L., Lee, G.C.H., Mattox, T.I., Morales-Juberias, R., Palotai, C.J., Parimi, V.K., Showman, A.P., 2006. The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus 182, 259-273.
    Dowling, T.E., Fischer, A.S., Gierasch, P.J., Harrington, J., LeBeau., R.P., Santori, C.M., 1998. The explicit planetary isentropic-coordinate (EPIC) atmospheric model. Icarus 132,221-238.
    Flasar, F.M., Conrath, B.J., 1990. Titan's stratospheric temperatures: a case for dynamical inertia? Icarus 85, 346-354.
    Forget, F., Hourdin, F., Fournier, R., Hourdin, C, and Talagrand, O., 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104,24155-24176.
    Grieger, B., Segschneider, J., Keller, H.U., Rodin, A.V., Lunkeit, F., Kirk, E., Fraedrich, K., 2004. Simulating Titan's tropospheric circulation with the Portable University Model of the Atmosphere. Adv. Space Res. 34, 1650-1654.
    Haberle, R.A., Murphy, J.R., Schaeffer, J., 2003. Orbital change experiments with a Mars general circulation model. Icarus 161,66-89.
    Haberle, R.M., Joshi, M.M., Murphy, J.R., Barnes, J.R., Schofield, J.T., Wilson, G., Lopez-Valverde, M., Hollingsworth, J.L., Bridger, A.F.C., Schaeffer, J., 1999. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res. 104(E4), 8957-8974.
    Haberle, R.M., Pollack, J.B., Barnes, J.R., Zurek, R.W., Leovy, C.B., Murphy, J.R., Lee, H., Schaeffer, J., 1993. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model. 1. The zonal-mean circulation. J. Geophys. Res. 98(E2), 3093-3123.
    Hartogh, P., Medvedev, A.S., Jarchow, C., 2007. Middle atmosphere polar warmings on Mars: Simulations and study on the validation with sub-millimeter observations, Planet. Space Sci. 55, 1103-1112, 10.1016/j.pss.2006.11.018.
    Hartogh, P., Medvedev, A.S., Kuroda, T., Saito, R., Villanueva, G., Feofilov, A.G., Kutepov, A.A., Berger, U., 2005. Description and climatology of a new general circulation model of the Martian atmosphere. J. Geophys. Res. 110, E11008, doi:10.1029/2005JE002498.
    Held, I.M., Suarez, M.J. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 75, 1825-1830.
    Herrnstein, A., Dowling, T.E., 2007. Effects of topography on the spin-up for a Venus atmospheric model. J. Geophys. Res. 112, E04S11, doi:10.1029/2006JE002804.
    Hollingsworth, J.L., Barnes, J.R., 1996. Forced, stationary planetary waves in Mars' winter atmosphere. J. Atmos. Sci. 53,428-448.
    Hourdin, F., Lebonnois, S., Luz, D., Rannou, P., 2004. Titan's stratospheric composition driven by condensation and dynamics, J. Geophys. Res. 109, E12005, doi:10.1029/2004JE002282.
    Hourdin, F, Talagrand, O., Sadourny, R., Courtin, R., Gautier, D., McKay, C.P., 1995. Numerical simulation of the general circulation of the Titan. Icarus 117, 358-374.
    Kuroda, T., Hashimoto, N., Sakai, D., Takahashi, M., 2005. Simulation of the Martian atmosphere using a CCSR/NIES AGCM, J. Meteor. Soc. Japan 83, 1-19.
    Lavvas, P.P., Coustenis, A., Vardavas, I.M., 2007a. Coupling photochemistry with haze formation in Titan's atmosphere. Part I : Model description. Planet. Space Sci. 56, 27-66.
    Lavvas, P.P. Coustenis, A., Vardavas, I.M., 2007b. Coupling photochemistry with haze formation in Titan's atmosphere. Part II: Results and Validation with Cassini/Huygens data. Planet. Space Sci. 56, 67-99.
    Lebonnois, S., Hourdin, F., Rannou, P., Luz, D., Toublanc, D., 2003. Impact of the seasonal variations of composition on the temperature field of Titan's stratosphere, Icarus 163, 164-174.
    Lee., C., Lewis, S.R., Read, P.L., 2005. A numerical model of the atmosphere of Venus. Adv. Space Res. 36,2142-2145.
    Lee., C, Lewis, S.R., Read, P.L., 2007. Superrotation in a Venus general circulation model. J. Geophys. Res. 112, E04S11, 10.1029/2006JE002874.
    Leovy, C, Mintz, Y., 1969. The numerical simulation of atmospheric circulation and climate of Mars. J. Geophys. Res. 104(E10), 24177-24194.
    Lewis, S.R., Collins, M., Read, P.L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C, Talagrand, O., Huot, J.O., 1999. A climate database for Mars. J. Geophys. Res. 104(E10), 24177-24194.
    Luz, D., Hourdin, F., Rannou, P., Lebonnois, S., 2003. Latitudinal transport by barotropic waves in Titan's stratosphere. II. Results from a coupled dynamics-microphysics-photochemistry GCM, Icarus 166,343-358.
    Montmessin, F., Forget, F., Rannou, P., Cabane, M., Haberle, R.M., 2004. Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res. 109, E10004, 10.1029/2004JE002284.
    Moudden Y., McConnell, J.C., 2005. A new model for multiscale modeling of the martian atmosphere, GM3. J. Geophys. Res. 110, E04001, 10.1029/2004JE002354.
    Murphy, J.R., Pollack, J.B., Haberle, R.M., Leovy, C.B., Toon, O.B., Schaeffer, J., 1995. Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res. 100(E12), 26357-26376.
    Pollack, J.B., Haberle, R.M., Murphy, J.R., Schaeffer, J., Lee, H., 1993. Simulations of the general circulation of the Martian atmosphere: 2. Seasonal pressure variations. J. Geophys. Res. 98(E2), 3149-3181.
    Pollack, J.B., Haberle, R.M., Schaeffer, J., Lee, H., 1990. Simulations of the general circulation of the Martian atmosphere: 1. Polar processes. J. Geophys. Res. 95(B2), 1447-1473.
    Pollack, J.B., Leovy, C.B., Greiman, P.W., Mintz, Y, 1981. A Martian general-circulation experiment with large topography, J. Atmos. Sci. 38, 3-29.
    Radebaugh, J., Lorenz, R.D., Kirk, R.L., Lunine, J.I., Stofan, E.R., Lopes, R. M.C., Wall, S.D., the Cassini Radar Team, 2007. Mountains on Titan observed by Cassini Radar. Icarus 192, 77-91.
    Randall, D., Curry, J., Battisti, D., Flato, G., Grumbine, R., Hakkinen, S., Martinson, D., Preller, R.,
    Walsh, J., Weatherly, J., 1998. Status of and Outlook for Large-Scale Modeling of Atmosphere-Ice-Ocean Interactions in the Arctic. Bull. Am. Meteorol. Soc. 79, 197-219.
    Rannou, P., Hourdin, F., McKay, C.P., Luz, D., 2004. A coupled dynamics-microphysics model of Titan's atmosphere. Icarus 170, 443-462.
    Rannou, P., Lebonnois, S., Hourdin, F., Luz, D., 2005. Titan atmosphere database. Adv. Space Res. 36,2194-2198.
    Richardson, M. I., Toigo, A.D., Newman, C.E., 2007. PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res. 112, E09001, 10.1029/2006JE002825.
    Rossow, W.B., 1983. A General Circulation Model of a Venus-Like Atmosphere. J. Atmos. Sci. 40, 273-302.
    Schaller, E.L., Brown, M.E., Roe, H.G., 2007. Titan's methane hydrological cycle: detection of seasonal change. European Planetary Science Congress 2007, Vol. 2, EPSC2007-A-00285.
    Takahashi, Y. Q., Fujiwara, H., Fukunishi, H., Odaka, M., Hayashi, Y., Watanabe, S., 2003. Topographically induced north-south asymmetry of the meridional circulation in the Martian atmosphere. J. Geophys. Res. 108(E3), 5018, doi:10.1029/2001JE001638.
    Takahashi, Y. Q., Odaka, M., Hayashi, Y.-Y, 2004. Martian Atmospheric General Circulation Simulation Simulated by GCM: A Comparison with the Observational Data, Bull. Amer. Astron. Society 36, 1157.
    
    Tokano, T., 2007. Dune-forming winds on Titan and the influence of topography, Icarus, in press.
    Tokano, T., Lorenz, R.D., 2006. GCM simulation of balloon trajectories on Titan. Planet. Space Sci. 54,685-694.
    Tokano, T., Neubauer, F.M., Laube, M., McKay, C.P., 1999. Seasonal variation of Titan's atmospheric structure simulated by a general circulation model. Planet. Space Sci. 47, 493-520.
    Williamson, D.L., Olson, J.G., Boville, B.A., 1998. A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev. 126, 1001-1012.
    Wilson, R.J., Hamilton, K., 1996. Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci. 53, 1290-1326.
    Wilson, R.J., Richardson, M.I., Clancy R.T., Rodin A.V., 1997. Simulation of Aerosol and Water Vapor Transport with the GFDL Mars General Circulation Model. Bull. Amer. Astron. Society 29, 966.
    Yamamoto, M., Takahashi, M., 2003. The fully developed super-rotation simulated by a general circulation model of Venus-like atmosphere. J. Atmos. Sci. 60, 561-574.
    Yamamoto, M., Takahashi, M., 2004. Dynamics of Venus' super-rotation: the eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett. 31, L09701, 10.1029/2004GL019518.
    Young, R.E., Pollack, J.B., 1977. A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 34, 1315-1351.
    Zhu, X., Strobel, D.F., 2005. On the maintenance of thermal wind balance and equatorial superrotation in Titan's stratosphere. Icarus 176, 331-350.
    Bird, M.K., Allison, M., Asmar, S.W., Atkinson, D.H., Avruch, I.M., Dutta-Roy, R., Dzierma, Y., Edenhofer, P., Folkner, W.M., Gurvits, L.I., Johnston, D.V., Plettemeier, D., Pogrebenko, S.V., Preston, R.A., Tyler, G.L., 2005. The vertical profile of winds on Titan. Nature 438, 800-802, 10.1038/nature04060.
    Fulchinoni, M., 2007: Results on Titan's atmosphere structure by the Huygens atmospheric structure instrument (HASI). 4~(th) Annual Meeting of AOGS, Jul. 31~Aug. 4, 2007, Bangkok, Thailand (Invited talk).
    Held, I.M., Suarez, M.J. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 75, 1825-1830.
    Williamson, D.L., Olson, J.G., Boville, B.A., 1998. A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev. 126,1001-1012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700