饲料中常见霉菌毒素对小鼠的联合毒性作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验在细胞水平和动物整体水平研究了黄曲霉毒素B1(AFB1)、玉米赤霉烯酮(ZEA)、呕吐毒素(DON)和伏马菌素B1(FB1)四种霉菌毒素对猪肾细胞、大鼠肝细胞和小鼠的联合毒性。
     (1)对猪肾细胞(PK15)的联合毒性
     将AFB1、ZEA、DON和FB1以不同浓度与PK15孵育12,24和48h后,采用MTT法和LDH释放法评价霉菌毒素的细胞毒性。结果表明:AFB1、ZEA、DON与PK15孵育48h后,EC50(50%效应浓度)分别为38.8、121.8和3.6μM,EC30(30%效应浓度)分别为26.9、86.6和1.8μm。且AFB1和ZEA均呈现时间效应和剂量效应关系,随着剂量增加和时间延长,霉菌毒素的细胞毒性增强。FB1浓度高达250μM且孵育48h后,PK15细胞活力仍大于70%。与霉菌毒素孵育24h后,AFB1、ZEA和DON能显著提高细胞LDH的释放,而FB1显著降低细胞LDH的释放。AFB1和DON均能显著提高细胞内活性氧和细胞凋亡率(P<0.05),而ZEA (10,20,40μM)对细胞内活性氧和细胞凋亡没有影响。四种霉菌毒素的细胞毒性大小顺序为DON> AFB1>ZEA>FB1。
     以每种霉菌毒素EC30作为中心点(其中FB1浓度为15μM),设计二元和三元混合,依据剂量和效应进行逐步回归得到拟合方程,根据拟合方程中各系数的含义表明:AFB1和ZEA(暴露48h)、AFB1和DON(暴露12h)、及ZEA和DON(暴露12和48h)对PK15的毒性表现为协同效应;AFB1和FB1联合作用仅表现AFB1的细胞毒性。AFB1、ZEA和DON三者联合作用12或24h后,AFB1与ZEA表现为拮抗效应。
     ZEA能缓解低浓度AFB1(1μM)诱导的细胞膜损伤和氧化损伤,但10μM ZEA与高浓度AFB1(5,10μM)能协同加剧细胞膜损伤和氧化损伤。10μMZEA主要能缓解由AFB1(1μM)诱导的细胞早期凋亡,可能是通过调控bcl-2和caspas-3及P53基因或蛋白的表达。
     (2)对大鼠肝细胞(BRL)的联合毒性
     将AFB1、ZEA、DON和FB1以不同浓度与BRL孵育12,24和48h后,采用MTT法和LDH释放法评价霉菌毒素的细胞毒性。结果表明:AFB1、ZEA、DON与BRL孵育48h后,ECso分别为37.9、100.3和13.3μM,EC30分别为29.2、91.6和3.27μM,160μM FB1基本不影响细胞活力。与霉菌毒素孵育24h后,AFB1、ZEA和DON能显著提高细胞LDH释放率,而FB1不影响细胞LDH的释放。AFB1和DON均能显著提高细胞内活性氧和细胞凋亡率(P<0.05),但ZEA (10,20,40μM对细胞内活性氧和细胞凋亡率没有影响。四种霉菌毒素对BRL的细胞毒性大小顺序为DON> AFB1>ZEA>FB1。
     以每种霉菌毒素EC30为中心点(其中FB1的浓度为15μM),设计二元和三元混合,根据剂量和效应进行逐步回归得到拟合方程,根据拟合方程中各系数的含义表明:AFB1和ZEA(暴露48h),及AFB1和DON(暴露12,24,48h)对BRL的毒性表现为协同效应;AFB1和FB1联合作用仅表现AFB1的毒性。AFB1、ZEA和DON三者联合作用12、24和48h,AFB1与DON表现为协同效应。
     AFB1与DON联合在细胞膜损伤和氧化损伤上表现为加型或协同效应。1μM AFB1与2μM DON联合能协同促进细胞凋亡,可能是通过降低bcl-2、促进bax和caspase-3及P53基因或蛋白的表达而促进细胞凋亡进程。
     (3)对Balb/C小鼠的联合毒性
     104只体重一致的4周龄雌性Balb/C小鼠适应一周后,随机分为13组,每组8只。具体分组如下:蒸馏水组、DMSO组、乙醇组、AFB1(2.5mg/kg.bw)、ZEA (5mg/kg.bw)、DON (5mg/kg.bw)、FB1(8mg/kg.bw)单一处理组及AFB1+ZEA、 AFB1+DON、AFB1+FB1、ZEA+DON、ZEA+FB1和DON+FB1联合处理组。联合组剂量采用单一剂量叠加,连续灌胃14d。
     霉菌毒素对Balb/C小鼠体增重不存在联合作用。FB1能显著提高脾脏重,含有FB1的联合组能减弱由FB1导致的脾脏增重。AFB1和DON能协同提高血清ALT活性和肝脏MDA含量,协同降低肝脏SOD活性,加剧小鼠肝脏细胞损伤和氧化损伤;AFB1与DON还能协同提高caspase-3和P53的表达来促进肝脏细胞凋亡。ZEA和DON不仅能协同提高血清中雌二醇含量,还能协同提高caspase-3基因的表达促进细胞凋亡。与单一处理相比,两两联合使小鼠肝脏HSP70蛋白表达进一步增加,表明联合作用使小鼠应激加剧。两两联合(AFB1、ZEA和DON)影响小鼠脾脏促炎症因子IL-1β、IL-6和TNF-α在]mRNA水平的表达,进而可能影响机体的免疫功能。
     通过上述试验结果可得出以下结论:(1)四种霉菌毒素对猪肾细胞和大鼠肝细胞的毒性趋势一致,大小依次为:DON>AFB1>ZEA>FB1。(2)霉菌毒素对细胞或机体的联合效应十分复杂,对不同的靶细胞或靶器官的效应不一致;AFB1与ZEA的联合作用方式与霉菌毒素的剂量呈依赖关系,ZEA能缓解低剂量AFB1造成的肾细胞毒性,但ZEA与高剂量AFB1呈现协同效应。(3)ZEA和DON两两联合导致小鼠脾脏促炎症因子的表达发生变化,可能影响脾脏的免疫功能。(4)AFB1和DON对大鼠肝细胞或小鼠肝脏损伤都体现为协同效应。
The aim of this study was to investigate the combined effects of aflatoxin B1(AFB1), zearalenone (ZEA), deoxynivalenol (DON) and fumonisin B1(FB1) on the porcine kidney cell, rat liver cell and Balb/C mice.
     (1) The combined effects of the four predominant mycotoxins on procine kidney cell (PK15)
     PK15were incubated with different concentrations of AFB1, ZEA, DON and FB1for12,24and48h, using MTT assay and LDH release assay to evaluate the cytotoxicity of the four mycotoxins. Exposure with mycotoxin for48h, the EC50of AFB1, ZEA and DON was38.8,121.8and3.6μM, and the EC30was26.9,86.6and1.8μM, which were calculated from dose-effect curves. The respones of AFB1, ZEA and DON were in a concentration-and time depended manner, the cytotoxicity was elevated with addition of dose and exposure time. Incubated with250μM FB1, cell viability was above70%, the EC50could not be obtained. With regard to ROS production and cell apoptosis, AFB1and DON significantly induced them in a concentration-dependent manner, but ZEA (10,20,40μM) had no effect on cell apoptosis and ROS production. The cytotoxicity of the four mycotoxins in increasing order:FB1     EC30of individual mycotoxins as the central point (FB1concentration was set to15μM), binary and ternary mixed was designed. Fitting equation was confirmed by stepwise regression based on the dose and effect, which showed synergetic effect after co-exposure of AFB1+ZEA, or AFB1+DON, or ZEA+DON; Co-exposure of AFB1and FB1, the equation just showed the cytotoxicity of AFB1. However, AFB1and ZEA showed antagonism in the ternary mixture.
     ZEA could alleviate low concentrations of AFB1(1μM)-induced membrane damage and oxidative damage, but ZEA with the high concentration of AFB1synergistically exacerbate membrane damage and oxidative damage. ZEA weakened AFB1-induced apoptosis, mainly in the early apoptotic; related to slow down the process of apoptosis by bcl-2, caspase-3gene and p53protein expression.
     (2) The combined effects of the four common mycotoxins on BRL
     BRL were incubated with different concentrations of AFB1, ZEA, DON and FB1for12,24and48h, using MTT assay and LDH release assay to evaluate the cytotoxicity of the four mycotoxins. Exposure with mycotoxin for48h, the EC50of AFB1, ZEA and DON was37.9,100.3and36.5μM, and the EC30was29.2,91.6and3.27μM, which were calculated from dose-effect curves. The respones of AFB1, ZEA and DON were in a concentration-and time depended manner. Incubated with FB1, cell viability was not affected. With regard to ROS production and cell apoptosis, AFB1and DON significantly induced them (P<0.05), but ZEA (10,20,40μM) had no effect on cell apoptosis and ROS production. The cytotoxicity of the four mycotoxins in increasing order:FB1     EC30of individual mycotoxins as the central point (FB1concentration was set to15μM), binary and ternary mixed was designed. Fitting equation was confirmed by stepwise regression based on the dose and effect, which showed synergetic effect after co-exposure of AFB1+ZEA, or AFB1+DON; AFB1and DON showed synergism in the ternary mixture. Co-exposure of AFB1and FB1; the equation just showed cytotoxicity of AFB1.
     AFB1and DON displayed additive or synergistic effects on the cell membrane damage and oxidative stress. Combination of1μM AFB1and2μM DON synergistically reduced bcl-2gene expression levels, and promote box, caspase-3, and p53expression and accelerate the process of apoptosis.
     (3) The combined effects of the four common mycotoxins on Balb/C mice
     One hundred and four4-week-old female Balb/C mice adapted for one week, then were randomly divided into13groups (n=8). Trials were grouped as follows:distilled water group, DMSO group, ethanol group, AFB1(2.5mg/kg.bw), ZEA (5mg/kg.bw), DON (5mg/kg.bw), FB1(8mg/kg.bw), AFB1+ZEA, AFB1+DON, AFB1+FB1, ZEA+DON, ZEA+FB1, and DON+FB1. The dose of combined groups superimposed on the single dose. The mice were administered orally by gavage once daily for14d.
     There was no difference on the body weight of mice in all groups (P<0.05). FB1significantly increased weight of spleen; the combined group containing FB1could weaken the spleen weight gain caused by FB1. AFB1and DON synergistically increased serum ALT activity and MD A content in the liver, collaborative reduced SOD activity and strengthened liver cell damage and oxidative damage; AFB1and DON could promote apoptosis of liver by synergistic improving P53and caspase-3expression. ZEA and DON not only synergistically increased serum estradiol levels, but also synergistically improved caspase-3gene expression promotes apoptosis. Compared to individual treatment, the combined treatments further enhanced the expression of HSP70in the liver, indicating that the joint could exacerbate the stress in mice. Pro-inflammatory cytokines IL-1β, IL-6and TNF-α mRNA expression of spleen in AZ, AD or ZD mainly significantly affected (P<0.05), which may affected immune function.
     In a word,(1) the cytotoxicity of mycotoxins on PK15and BRL was consistent, in increasing order FB1
引文
1.敖志刚,陈代文.2006-2007年中国饲料及饲料原料霉菌毒素污染调查报告.中国畜牧兽医,2008,35(1):152-156.
    2.韩薇.几种霉菌毒素对BHK细胞毒害影响及作用机理的研究[D].安徽大学,2010.
    3.黄广明,李肖红,阳艳林等.2012年上半年饲料中霉菌毒素污染状况的分析.养猪,2012,6:13-15.
    4.黄向华,张祥宏,李月红等.杂色曲霉素和脱氧雪腐镰刀菌烯醇对小鼠致癌作用的研究.中国肿瘤杂志,2004,26(12):705-7082.
    5.吕伟.黄曲霉毒素B1和脱氧雪腐镰刀菌烯醇诱导锦鲤原代肝细胞凋亡机制的初步研究[D].南京农业大学,2010.
    6.孙桂菊,王少康,王加生.伏马菌素B1和黄曲霉毒B1对大鼠的联合毒性.毒理学杂志,2005,19(3):186.
    7.王会艳,孙旭明,张祥宏等.脱氧雪腐镰刀菌烯醇、黄曲霉毒素G1对体外培养人外周血淋巴细胞凋亡影响的研究.卫生研究,1999,28(2):102-104.
    8.王解静,苗朝华,吴裕本.中国饲料原料受霉菌毒素污染的调查报告.西部饲料,2004,9:41-43.
    9.王若军,苗朝华,张振雄等.中国饲料及饲料原料受霉菌毒素污染的调查报告.饲料工业,2003,24(7):53-54
    10.王银秋,张迎梅,赵东芹.重金属镉、铅、锌对鲫鱼和泥鳅的毒性.甘肃科学学报.2003,15(1):35-38.
    11.熊丽林,唐萌,王加生等.微囊藻毒素和黄曲霉毒素及伏马菌素联合毒性.中国公共卫生,2006,22(5):548-549
    12.徐雪梅.葡甘聚糖复合吸附剂对肉鸡饲料中霉菌毒素混合污染的脱毒研究[D].华中农业大学,2008
    13.杨晓飞.四川地区主要饲料霉菌毒素分布规律的研究[D].四川农业大学,2007
    14.杨再福,陈立侨,陈华友.重金属铜、镉对蝌蚪毒性的研究.中国生态农业学报.2003,11(1):102-103.
    15.余增丽,张立实,吴德生.膳食雌激素影响乳腺癌MCF-7细胞增殖和凋亡的机制探讨.营养学报,2005,2:139.
    16. Abid-Essefi S, Baudrimont I, Hassen W, et al. DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by Vitamin E. Toxicology,2003,192(2):237-248.
    17. Abid-Essefi S, Ouanes Z, Hassen W, et al. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicology in Vitro,2004,18(4):467-474.
    18. Amuziea CJ, Flanneryac BM, Ulrichc AM, Pestkaa JJ. Effects of Deoxynivalenol Consumption on Body Weight and Adiposity in the Diet-Induced Obese Mouse Journal of Toxicology and Environmental Health,2011,74 (10):658-667.
    19. Andretta I, Kipper M, Lehnen C R, et al. Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poultry Science,2011,90(9):1934-1940.
    20. Awad W A, Aschenbach J R, Zentek J. Cytotoxicity and metabolic stress induced by deoxynivalenol in the porcine intestinal IPEC-J2 cell line. Journal of Animal Physiology and Animal Nutrition,2012,96 (4):709-716.
    21. Ayed-Boussema, Bouaziz C, Rjiba K, et al. The mycotoxin zearalenone induces apoptosis in human hepatocytes (HepG2) via p53-dependent mitochondrial signalling pathway. Toxicol in Vitro,2008,22:1671-1680.
    22. Bennett JW, Klich M. Mycotoxins. Clinical microbiology reviews,2003,16:497-516.
    23. Biehl ML, Prelusky DB, Koritz GD, et al. Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicology and Applied Pharmacology,1993, 121:152-159.
    24. Binder EM, Tan LM, Chin LJ, et al. Worldwide occurrence of mycotoxins in commodities, animal feed and feed ingredients. Animal Feed Science and Technology, 2007,137:265-282.
    25. Bintvihok A, Thiengnin S, Doi K, Kumagai S. Residues of aflatoxins in the liver, muscle and eggs of domestic fowls. Journal of Veterinary Medical Science,2002, 64:1037-1039.
    26. Bondy G, Mehta R, Caldwell D, et al. Effects of long term exposure to the mycotoxin fumonisin B1 in p53 heterozygous and p53 homozygous transgenic mice. Food and Chemical Toxicology,2012,50(10):3604-3613.
    27. Bouhet S, Oswald IP. The intestine as a possible target for fumonisin toxicity. Molecular nutrition & food research,2007,51(8):925-931.
    28. Bouslimi A, Bouaziz C, Ayed-Boussema I, et al. Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology,2008,251 (1):1-7.
    29. Brackett RE. Strategies for dealing with aflatoxins in peanuts. In:YamTC, TanC, editors. Trends in food product development. Singapore:Singapore Inst. of Food Science and Technology.1989,83-91.
    30. Bruneau JC, Stack E, O'Kennedy R, et al. Aflatoxins B1,B2 and G1 modulate cytokine secretion and cell surface marker expression in J774A.1 murine macrophages. Toxicology in Vitro,2012,26:686-693.
    31. Calvert TW, Aidoo KE, Candlish AGG, et al. Comparison of in vitro cytotoxicity of Fusarium mycotoxins, deoxynivalenol, T-2 toxin and zearalenone on selected human epithelial cell lines. Mycopathologia,2005,159(3):413-419.
    32. CAST (Council for Agricultural Science and Technology). Mycotoxins:risks in plant, animal and human systems. Tech.Rep.139, Task Force, Ames, Iowa, USA,2003.
    33. Chiavaro E, Dall'Asta C, Galverna G, et al. New reversed-phase liquid chrom-atographic method to detect aflatoxins in food and feed with cyclodextrins as fluorescence enhancers added to the eluent. Journal of Chromatography A,2001, 937:31-40.
    34. Choi BK, Jeong SH, Cho JH, et al. Effects of oral deoxynivalenol exposure on immune-related parameters in lymphoid organs and serum of mice vaccinated with porcine parvovirus vaccine. Mycotoxin research,2013:1-8.
    35. Choi KC, Chung WT, Kwon JK, et al. Chemoprevention of a flavonoid fraction from Rhus verniciflua Stokes on aflatoxin B1-induced hepatic damage in mice. Journal of Applied Toxicology,2011,31(2):150-156.
    36. Chuturgoon A, Phulukdaree A, Moodley D. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells-an alternative mechanism of action. Toxicology, 2013.
    37. Cote LM, Buck W, Jeffery E. Lack of hepatic microsomal metabolism of deoxynivalenol and its metabolite, DOM-1. Food and chemical toxicology,1987,25 (4):291-295.
    38. Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology letters,2002,127(1):19-28.
    39. D'mello JPF, Placinta CM, Macdonald AMC. Fusarium mycotoxins:a review of global implications for animal health, welfare and productivity. Animal Feed Science and Technology,1999,80(3):183-205.
    40. Danicke S, Goyarts T, Valenta H, et al. On the effects of increasing deoxynivalenol (DON) concentrations in pig feed on growth performance, utilization of nutrients and metabolism of DON. Journal of Animal and Feed Sciences,2004,13,539-556.
    41. Danicke S, Valenta H, Doll S. On the toxicokinetics and the metabolism of Deoxynivalenol (DON) in the pig. Archives of animal nutrition,2004,58(2):169-180.
    42. Devegowda G, Radu MVL, Nazar A, Swamy HVLM. Mycotoxin picture worldwide: novel solutions for their counteraction. In:Proceedings of Alltech's 14th Annual Symposium, Biotechnology in Feed industry.1998. Nottingham, U.K. Nottingham Univ. Press.
    43. Diener UL, Pettit RE, Cole RJ. Aflatoxins and other mycotoxins in peanuts. In: PatteeHE, YoungCT, editors. Peanut science and technology. Yoakum, Texas: American Peanut Research and Education Society.1982,486-519.
    44. Diesing AK, Nossol C, Panther P, et al. Mycotoxin Deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicology letters,2011,200 (1):8-18.
    45. Dourmad JY, Etienne M, Prunier A, et al. The effect of energy and protein intake of sows on their longevity:a review. Livestock Production Science,1994,40(20): 87-97.
    46. Dragan YP, Bidlack WR, Cohen SM, et al. Implications of apoptosis for toxicity, carcinogenicity, and risk assessment:fumonisin Bi as an example. Toxicological Sciences,2001,61:6-17.
    47. Du P, Hu SL, Cheng YX, et al. Photodynamic therapy leads to death of C6 glioma cells partly through AMPAR. Brain Research,2012,1433:153-159.
    48. Erdelyi M, Weber M, Balogh K, et al. The effect of feeding a diet naturally contaminated with deoxynivalenol on production traits and selected biochemical indicators of broiler chickens. Acta Veterinaria Brno,2011,80(3):287-292.
    49. Eriksen GS, Alexander J. Fusarium Toxins in Cereals-A Risk Assessment.1998, Nordic Council of Ministers, Copenhagen.
    50. Ferrer E, Juan-Garcia A, Font G, et al. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicology in Vitro,2009,23: 1504-1509.
    51. Fink-Gremmels J, Malekinejad H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Animal Feed Science and Technology,2007,137:326-341.
    52. Flannery BM, Wu W, Pestka JJ. Characterization of deoxynivalenol-induced anorexia using mouse bioassay. Food and Chemical Toxicology,2011,49(8):1863-1869.
    53. Forsell JH, Jensen R, Tai JH, et al. Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-acetyldeoxynivalenol in the B6C3F1 mouse. Food and Chemical Toxicology,1987,25:155-162.
    54. Fotakis G, Timbrell JA. In vitro cytotoxicity assays:Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters,2006,160:171-177.
    55. Gareis M, Bauer J, Gedek B. On the metabolism of the mycotoxin deoxynivalenol in the isolated perfused rat liver. Mycotoxin research,1987,3(1):25-32.
    56. Gelderblom W, Marasas W, Jaskiewicz K, et al. Cancer promoting potential of different strains of Fusarium moniliforme in a short-term cancer initiation/promotion assay. Carcinogenesis,1988,9(8):1405-1409.
    57. Girish C, Devegowda G Efficacy of glucomannan-containing yeast product (Mycosorb(?)) and hydrated sodium calcium aluminosilicate in preventing the individual and combined toxicity of aflatoxin and T-2 toxin in commercial broilers. Asian-Australasian Journal of Animal Sciences,2006,19(6):877.
    58. Glenn AE. Mycotoxigenic Fusarium species in animal feed. In:Morgavi, D.P., Riley, R.T. (Eds.), Fusarium and their toxins:Mycology, occurrence, toxicity, control and economic impact.2007, Animal Feed Science and Technology.
    59. Golli-Bennour E, Kpuidhi B, Bouslimi A, et al.Cytotoxicity and genotoxicity induced by aflatoxin B1, ochratoxin A, and their combination in cultured Vero cells. Journal of Biochemical and Molecular Toxicology,2010,24:42-50.
    60. Grenier B, Loureiro-Btrcarense AP, Lucioli J, et al. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Molecular Nutrition & Food Research,2011,55:761-771.
    61. Groopman JD, Cain LG, Kensler TW. Aflatoxin exposure in human populations: measurements and relationship to cancer. Critical Reviews in Toxicology,1988, 19:113-46.
    62. Guengerich FP, Gillam EM, Shimada T. New applications of bacterial systems to problems in toxicology. Critical Reviews in Toxicology.1996,26,551-583.
    63. Gursoy-Yuzugullu O, Yuzugullu H, Yilmaz M, et al. Aflatoxin genotoxicity is associated with a defective DNA damage response bypassing p53 activation. Liver International,2011,31(4):561-571.
    64. Harrison LR, Colvin BM, Greene JT, et al. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. Journal of Veterinary Diagnostic Investigation,1990,2:217-221.
    65. Hassan MMS. Efficacy of some adsorbent materials against deoxynivalenol toxicity in laboratory animals.2011.
    66. He CH, Fan YH, Wang Y, et al. The individual and combined effects of deoxynivalenol and aflatoxin B1 on primary hepatocytes of Cyprinus carpio. International Journal of Molecular Sciences,2010,11(10):3760-3768.
    67. Heussner AH, Dietrich DR, O'Brien E. In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicology in Vitro,2006,20:332-341.
    68. Howard PC, Eppley RM, Stack ME, et al. Fumonisin B1 carcinogenicity in two-year feeding study using F344 Rats and B6C3F1 mice. Environmental Health Perspectives, 2001,109:277-282.
    69. Huff WE, Kubena LF, Harvey RB, et al. Individual and Combined Effects of Aflatoxin and Deoxynivalenol (DON, Vomitoxin) in Broiler Chickens. Poultry Science,1986,65(7):1291-1298
    70. Hyunsoo K, Sung CY, Tae YL, et al. Discriminative cytotoxicity assessment based on various cellular damages.Toxicol Lett,2009,184,13-17.
    71. Kew MC. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver International,2003,23(6):405-409.
    72. Klaric MS, Darabos D, Rozgaj R, et al. Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay:single and combined genotoxic action. Archives of toxicology,2010,84(8):641-650.
    73. Klarid MS, Pepeljnjak S, Domijan AM, et al. Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after individual and combined treatment with fumonisin B1, beauvericin and ochratoxin A. Basic & Clinical Pharmacology & Toxicology,2006,100:157-167.
    74. Klari6 MS, Pepeljnjak S, Rozgaj R. Genotoxicity of fumonisin B1,beauvericin and ochratoxin A in porcine kidney PK15 cells:effects of individual and combined treatment. Croatica Chemica Acta,2008,81:139-146.
    75. Klaric MS, Rumora L, Ljubanovic D, et al. Cytotoxicity and apoptosis induced by fumonisin B1, beauvericin and ochratoxin A in porcine kidney PK15 cells:effects of individual and combined treatment. Archives of toxicology,2008,82(4):247-255.
    76. Knasmuller S, Bresgen N, Kassie F, et al. Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary cultures of rat hepatocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,1997,391(1):39-48.
    77. Konigs M, Lenczyk M, Schwerdt G, et al. Cytotoxicity, metabolism and cellular uptake of the mycotoxin deoxynivalenol in human proximal tubule cells and lung fibroblasts in primary culture. Toxicology,2007,240:48-59.
    78. Kouadio JH, Sebastien DD, Moukha S. Effect of combinations of fusarium mycotoxins on the inhibition of macromolecular synthesis malondialdehyde levels, DNA methylation and fragmentation and viability in Caco-2 cells. Toxicon,2007,49: 306-317.
    79. Kuilman M, Maas R, Fink-Gremels J. Cytochrome P450-mediated metabolism and cytotoxicity of aflatoxin B1 in bovine hepatocytes. Toxicology in vitro,2000,14, 321-327.
    80. Laurent D, Platzer N, Kohler F, et al. Macrorusin and micromonilin:two new mycotoxins isolated from corn infested by Fusarium moniliforme. Microbiologie Aliment Nutrition,1989,7:9-16.
    81. Li FQ, Luo XY, Yoshizawa T. Mycotoxins (trichothecenes, zearalenone and fumonisins) in cereals associated with human red-mold intoxications stored since 1989 and 1991 in China. Natural Toxins,1999,7:93-97.
    82. Li GY, Xie P, Li HY, et al. Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. Environmental Toxicology,2011,26(2): 111-117.
    83. Li Z, Yang ZB, Yang WR, et al. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poultry Science,2012,91(10):2487-2495.
    84. Lioi MB, Santoro A, Barbieri R, et al. Ochratoxin A and zearalenone:a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2004,557(1):19-27.
    85. Liu L, Fu J, Li T, et al. NG, a novel PABA/NO-based oleanolic acid derivative, induces human hepatoma cell apoptosis via a ROS/MAPK-dependent mitochondrial pathway. European Journal of Pharmacology,2012.
    86. Liu Y, Zhang SP, Cai Y. Cytoprotective effects of selenium on cadmium-induced LLC-PK1 cells apoptosis by activating JNK pathway. Toxicology in vitro,2007,21 (4):677-684.
    87. Luongo D, De Luna R, Russo R, et al. Effects of four Fusarium toxins (fumonisin B1, a-zearalenol, nivalenol and Deoxynivalenol) on porcine whole-blood cellular proliferation. Toxicon,2008,52(1):156-162.
    88. Mahmoodi M, Alizadeh AM, Sohanaki H, et al. Impact of Fumonisin B1 on the Production of Inflammatory Cytokines by Gastric and Colon Cell Lines. Iranian Journal of Allergy, Asthma and Immunology,2012,11(2):165-173.
    89. Manafi M, Umakantha B, Mohan K, et al. Synergistic Effects of Two Commonly Contaminating Mycotoxins (Aflatoxin and T-2 Toxin) on Biochemical Parameters and Immune Status of Broiler Chickens. World Applied Sciences Journal,2012,17(3): 364-367.
    90. Marasas WF, Kellerman TS, Gelderblom WC, et al. Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. The Onderstepoort Journal of Veterinary Research,1988,55:197-203.
    91. Marzocco S, Russo R, Bianco G, et al. Pro-apoptotic effects of nivalenol and deoxynivalenol trichothecenes in J774A.1 murine macrophages. Toxicology letters, 2009,189(1):21-26.
    92. Massey TE, Stewart RK, Daniels JM, Liu L. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B 1 carcinogenicity. Proceedings of the Society for Experimental Biology and Medicine,1995,208:213-227.
    93. McKean C, Tang L, Tang M, et al. Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food and Chemical Toxicology,2006; 44,868-876.
    94. Meissonnier GM, Marin DE, Galtier P, et al. Modulation of the immune response by a group of fungal food contaminant, the aflatoxins. Nutrition and immunity,2006: 147-166.
    95. Meki AR, Esmail ED, Hussein AA, et al. Caspase-3 and heat shock protein-70 in rat liver treated with aflatoxin B1:effect of melatonin. Toxicon,2004,43(1),93-100.
    96. Mirocha CJ, Pathre SV, Robison TS. Comparative metabolism of zearalenone and transmission into bovine milk. Food and cosmetics toxicology,1981,19:25-30.
    97. Moon EY, Rhee DK, Pyo S. In vitro suppressive effect of aflatoxin B1 on murine peritoneal macrophage functions. Toxicology,1999,133(2):171-179.
    98. Morgavi DP, Riley RT. An historical overviewof field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. In:Morgavi, D.P., Riley, R.T. (Eds.), Fusarium and their toxins:Mycology, occurrence, toxicity, control and economic impact. Animal Feed Science and Technology.2007.
    99. Mori H, Kawai K, Ohbayashi F, et al. Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer research,1984,44(7):2918-2923.
    100.Nkwe DO, Taylor JE, Siame BA. Fungi, aflatoxins, fumonisin B1 and zearalenone contaminating sorghum-based traditional malt, wort and beer in Botswana. Mycopathologia,2005,160(2):177-186.
    101.Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene,2004,23: 2797-2808.
    102.Olsen M, Pettersson H, Kiessling KH. Reduction of Zearalenone to Zearalenol in Female Rat Liver by 3a-Hydroxysteroid Dehydrogenase. Acta pharmacologica et toxicologica,1981,48(2):157-161.
    103.O'Riordan MJ, Wilkinson MG A survey of the incidence and level of aflatoxin contamination in a range of imported spice preparations on the Irish retail market. Food Chemistry,2008,107:1429-35.
    104.Pereyra M, Alonso V, Sager R, et al. Fungi and selected mycotoxins from pre-and postfermented corn silage. Journal of applied microbiology,2008,104(4):1034-1041.
    105.Pestka J, Smolinski A. Deoxynivalenol:toxicology and potential effects on humans. Journal of Toxicology and Environmental Health,2005,8:39-69.
    106.Pestka J. Deoxynivalenol:toxicity, mechanisms and animal health risks. Animal Feed Science and Technology,2007,137(3):283-298.
    107.Pestka J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives and Contaminants,2008,25(9):1128-1140.
    108.Prelusky D, Gerdes R, Underhill K, et al. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Natural Toxins,1994,2(3): 97-104.
    109.Prelusky DB, Hartin KE, Trenholm HL, et al. Pharmacokinetic fate of C14-labeled deoxynivalenol in swine. Fundamental and Applied Toxicology,1988,10(2):276-286.
    110.Prelusky DB, Savard ME, Trenholm HL. Pilot study on the plasma pharmacokinetics of fumonisin B1 in cows following a single dose by oral gavage or intravenous administration, Natural Toxins,1995,3,389-394.
    111.Pronyk C, Cenkowski S, Abramson D. Superheated steam reduction of deoxyniva-lenol in naturally contaminated wheat kernels. Food Control,2006,17(10):789-796.
    112.Quezada T, Cuellar H, Jaramillo-Juarez F, et al. Effects of aflatoxin B1 on the liver and kidney of broiler chickens during development. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology,2000; 125:265-272.
    113.Raju M, Devegowda G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). British Poultry Science,2000,41(5):640-650.
    114.Ratcliff J. The role of mycotoxins in food and feed safety. Presented at AFMA (Animal Feed Manufacturers Association) on 16th August,2002.
    115.Ribeiro DHB, Ferreira FL, Da Silva VN, et al. Effects of aflatoxin B1 and fumonisin B1 on the viability and induction of apoptosis in rat primary hepatocytes. International journal of molecular sciences,2010,11(4):1944-1955.
    116.Romagnoli B, Menna V, Gruppioni N, Bergamini C. Aflatoxins in spices, aromatic herbs, herb-teas and medicinal plants marketed in Italy. Food Control,2007,18: 697-701.
    117.Ruiz MJ, Festila LE, Fernandez M. Comparison of basal cytotoxicity of seven carbamates in CHO-K1 cells. Toxicological and Environmental Chemistry,2006,88: 345-354.
    118.Ruiz MJ, Franzova P, Juan-Garcia A, Font G Toxicological interactions between the mycotoxins beauvericin, deoxynivalenol and T-2 toxin in CHO-K1 cells in vitro. Toxicon,2011,58:315-326.
    119.Rumora L, Kovacid S, Rozgaj R, et al. Cytotoxic and genotoxic effects of fumonisin Bi in rabbit kidney RK13 cell line. Archives of Toxicology,2002,76:55-61.
    120.Ryu D, Jackson LS, Bullerman LB. Effect of processing on zearalenone. Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy,2002,504:204-216.
    121.Salah-Abbes JB, Abbes S, Abdel-Wahhab MA, et al. Immunotoxicity of zearalenone in Balb/c mice in a high subchronic dosing study counteracted by Raphanus sativus extract. Immunopharmacology and Immunotoxicology,2010,32(4):628-636.
    122.Severino L, Luongo D, Bergamo P, et al. Mycotoxins nivalenol and deoxynivalenol differentially modulate cytokine mRNA expression in Jurkat T cells. Cytokine,2006, 36(1):75-82.
    123.Shen HM, Shi CY, Shen YI, et al. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radical Biology and Medicine,1996,21(2):139-146.
    124.Smith EE, Kubena LF, Braithwaite RB, et al. Toxicological evaluation of aflatoxin and cyclopiazonic acid in broiler chickens. Poultry Science,1992,71:1136-1144.
    125.Smith TK, McMillan EG, Castillo JB. Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. Journal of Animal Science,1997, 75(8):2184-2191.
    126.Soni KB, Lahiri M, Chackradeo P, et al. Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer letters,1997, 115(2):129-133.
    127.Soriano AF, Helfrich B, Chan DC, et al. Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell line. Cancer Research,1999,59:6178-6184.
    128.Stroka J, Anklam E. New strategies for the screening and determination of aflatoxins and the detection of aflatoxin-producing molds in food and feed. Trac-Trends in Analytical Chemistry,2002,21:90-95.
    129.Sugiyama K, Kinoshita M, Kamata Y, et al. Thioredoxin-1 contributes to protection against DON-induced oxidative damage in HepG2 cells. Mycotoxin research,2012, 28(3):163-168.
    130.Sugiyama KI, Kinoshita M, Kamata Y, et al. (-)-Epigallocatechin gallate suppresses the cytotoxicity induced by trichothecene mycotoxins in mouse cultural macrophages. Mycotoxin research,2011,27(4),281-285.
    131.Taranu I, Marin DE, Bouhet S, et al. Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicological Sciences,2005, 84:301-307.
    132.Teti G, Mancuso G, Tomasello F. Cytokine appearance and effects of anti-tumor necrosis factor alpha antibodies in a neonatal rat model of group B streptococcal infection. Infect. Immunity,1993,61:227-235.
    133.Theumer M, Lopez A, Masih D, et al. Immunobiological effects of AFB1 and AFB1-FB1 mixture in experimental subchronic mycotoxicoses in rats. Toxicology, 2003,86:159-170.
    134.Theumer M, Lopez A, Masih D, et al. Immunobiological effects of fumonisin B1 in experimental subchronic mycotoxicoses in rats. Clinical and Diagnostic Laboratory Immunology,2002,9(1):149-155.
    135.Vudathala D, Prelusky D, Ayroud M, et al. Pharmacokinetic fate and pathological effects of 14C-fumonisin B1 in laying hens, Natural Toxins,1994,2:81-88.
    136.Wangikar P, Dwivedi P, Sinha N. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B1. Birth Defects Research Part B-Deyelopmental and Reproductive Toxicology,2004,71:343-35.
    137.Withanage G, Murata H, Koyama T, et al. Agonistic and antagonistic effects of zearalenone, an etrogenic mycotoxin, on SKN, HHUA, and HepG2 human cancer cell lines. Veterinary and Human Toxicology,2001,43:6-10.
    138.Wu W, Liu T, Vesonder RF. Comparative cytotoxicity of Fumonisin BI and moniliformin in chicken primary cell cultures. Mycopathology,1995,132,111-116.
    139.Wyllie T, Morehouse L. Mycotoxicoses, an Encyclopaedic Handbook,1st ed., Marcel Dekker Inc.:New York, NY, USA,1977,1:131-135.
    140.Yang XJ, Lu HY, Li ZY, et al. Cytochrome P450 2A13 mediates aflatoxin B1-induced cytotoxicity and apoptosis in human bronchial epithelial cells. Toxicology,2012, 300(3):138-148.
    141.Yoshizawa T, Cote LM, Swanson SP, et al. Confirmation of DOM-1, a de-epoxidation metabolite of deoxynivalenol, in biological fluids of lactating cows. Agricultural and Biological Chemistry,1986,50(1):227-229.
    142.Yu J, Chen D, Yu B. Protective effects of selenium and vitamin E on rats consuming maize naturally contaminated with mycotoxins. Frontiers of Agriculture in China, 2009,3(1):95-99.
    143.Yumbe-Guevara B, Imoto T, Yoshizawa T. Effects of heating procedures on deoxynivalenol, nivalenol and zearalenone levels in naturally contaminated barley and wheat. Food Additives and Contaminants,2003,20,1132-1140.
    144.Zhai FX, Liu XF, Fan RF, et al. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines. Journal of Cancer Research and Clinical Oncology,2012,138(3):439-449.
    145.Zhao D, Lin F, Wu X, et al. Pseudolaric acid B induces apoptosis via proteasome-mediated Bcl-2 degradation in hormone-refractory prostate cancer DU145 cells. Toxicology in Vitro,2012,26(4):595-602.
    146.Zheng J, Xiao X, Liu J, et al. Growth-promoting effect of environmental endocrine disruptors on human neuroblastoma SK-N-SH cell. Environmental Toxicology and Pharmacology,2007,24:189-193.
    147.Zhou H R, Yan D, Pestka J. Differential cytokine mRNA expression in mice after oral exposure to the trichothecene vomitoxin (Deoxynivalenol):dose response and time course. Toxicology and Applied Pharmacology,1997,144(2):294-305.
    148.Zhu L, Yuan H, Guo C, et al. Zearalenone Induces Apoptosis and Necrosis in Porcine Granulosa Cells via a Caspase-3-and Caspase-9-Dependent Mitochondrial Signaling Pathway. Journal of Cellular Physiology,2012,227:1814-1820.
    149.Zinedine A, Soriano JM, Molto JC, et al. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone:an oestrogenic mycotoxin. Food and Chemical Toxicology,2007,45(1):1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700