用户名: 密码: 验证码:
改性ZSM-5分子筛催化剂上择形催化合成2,6-二甲基萘的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,6-二甲基萘(2,6-DMN)是一种合成高性能聚合物的重要原料,由于其工业化制备过程复杂,生产成本高,导致其下游产品价格较高。本论文以沸石分子筛为催化剂,2-甲基萘(2-MN)甲基化一步法合成2,6-DMN以降低其生产成本。
     系统研究了不同改性方法对催化剂反应性能的影响,得到如下结论:
     研究了硅酯液相沉积和水蒸汽处理对HZSM-5的催化性能的影响。发现调变催化剂的孔道对提高2,6-/2,7-DMN比值作用并不显著,最有效的手段是降低催化剂的酸强度。2,6-DMN的异构化主产物是1,6-DMN,而非2,7-DMN。抑制1,6-DMN的生成可以有效提高2,6-DMN的选择性。
     由于KNO3溶液改性对催化剂的孔结构影响较小,同时能够有效的抑制强酸中心。因此,可在KNO3改性分子筛上得到较高2-MN转化率以及2,6-/2,7-DMN比值。然而KNO3的引入导致催化剂活性位利用率降低,稳定性变差。通过水热处理配合酸洗对催化剂扩孔,增强了反应物和产物孔道内的扩散效果,提高了催化剂上活性位的利用率,有效缓解催化剂的失活;再引入钾离子可保持催化剂较高的初始活性,同时催化剂的稳定性以及目的产物的选择性均有明显的提高;2,6-DMN的选择性达到63%,2,6-/2,7-DMN比值约为2.5,2,6-DMN的收率可达12%。磷酸氢铵改性可以提高2,6-DMN的选择性,改善催化剂稳定性,但降低了2,6-/2,7-DMN比值。量化计算结果表明催化剂酸性增强抑制2,6-DMN生成,磷酸盐的引入增强了分子筛的弱酸的酸强度。因此,磷酸盐改性不利于提高2,6-/2,7-DMN比值。
     NH4F改性可使HZSM-5脱铝。随着焙烧温度的升高,脱铝程度逐渐加深,导致骨架铝降低,非骨架铝以及氟铝络合物逐渐增加。在NH4F改性纳米HZSM-5过程中,随着焙烧温度的升高,催化剂的初始活性逐渐降低,但是稳定性得到有效的改善。尤其当焙烧温度为500℃时效果最佳,催化剂上2-MN转化率在反应6小时内始终保持在15%左右。NH4F的引入有效的提高了2,6-DMN的选择性和2,6-/2,7-DMN比值。NH4F改性微米HZSM-5作用效果与改性纳米HZSM-5作用效果基本一致:改性对催化剂有脱铝的作用,可降低催化剂的酸中心的数量和强度,有效抑制2-MN的异构化,提高2,6-DMN的选择性和催化剂的稳定性。但微米HZSM-5上二甲基萘的选择性略高于纳米HZSM-5。NH4F改性后继续添加SrO,2,6-DMN选择性可达65%,而1-MN选择性低于10%,2-MN的转化率在反应6小时中始终保持在10%左右,催化剂的稳定性得到改善。
     改性催化剂反应结果表明,弱酸中心为催化2-MN甲基化反应的催化活性中心;而强酸中心则会增加副反应发生的几率,加速催化剂的失活,通过改性降低强酸中心的强度,可提高目的产物的选择性以及催化剂的稳定性。
2,6-Dimethylnaphthalene(2,6-DMN) is starting material to synthesize high performance polymeric material. Since the process of 2,6-DMN synthesis is very complex, its down-stream product price is very high. Therefore, looking for a efficient synthesis route of 2,6-DMN has become a very important subject. In this dissertation we tried to use HZSM-5 as catalyst to synthesize 2,6-DMN by methylation of 2-methylnaphthalene(2-MN).
     The effects of steam treatment and TEOS modification of HZSM-5 zeolite were examined on the physico-chemical properties, catalytic selectivity and activity in synthesis of 2,6-DMN. Based on the characterization and reaction results, it can be concluded that adjusting acidic property of HZSM-5 catalyst has more desirable impact on shape-selective methylation of 2-MN than optimizing pore channel and pore mouth of the catalyst. Tailoring acidic characteristics is more important than spatial control for distinguishing between 2,6-DMN and 2,7-DMN. Therefore, how to optimize acidic characteristics is a key factor for improving the ratio of 2,6-DMN to 2,7-DMN in methylation of 2-MN with methanol for the synthesis of 2,6-DMN.
     According to the above conclusion, we choose KNO3 to modify HZSM-5 to improve the performance of catalyst in this reaction. XRD patterns showed that the structure of zeolite framework was scarcely damaged after potassium modification. NH3-TPD profiles indicated acidity decreased in the K-modified HZSM-5. The modification also resulted in mild desilication of the HZSM-5 framework. Introduction of suitable amount of potassium can improve selectivity to 2,6-DMN. Stability of zeolite, however, was ruined by introduction of potassium. Recovering acidity method that was used on KZSM-5 proved that suitable number of acidic sites is beneficial for improving selectivity of desired product.
     Hydrothermal treatment followed by HCl leaching improved the stability of catalyst. The increasing of selectivity to the desired product mainly came from the decreasing of acid sites and the slight enlargement of pore channel of HZSM-5. The integrated modified catalyst took the advantages of excellent stability of hydrothermal treatment HZSM-5 and high selectivity over potassium modified HZSM-5 at high conversion of 2-MN. The selectivity and yield of 2,6-DMN can reached about 65% and 10% respectively. Ratio of 2,6-/2,7-DMN achieved as high as 2.5, conversion of 2-MN can be kept at 19% within 6 hrs of time on stream. This superior catalytic property should be attributed to reasonably adjusting acid properties and pore dimension of catalyst.
     NH4F modification caused dealumination of HZSM-5. Over nano HZSM-5, the best catalytic performance of modified catalyst was obtained at 500℃calcinations temperature. This improvement should be attributed to the removal of strong acid sites. The similar trend was achieved on the micro HZSM-5. Integrated modification on HZSM-5 with NH4F and SrO could optimizes catalytic performance much better than introduction of the two modification methods onto the HZSM-5 alone. Over the modified HZSM-5 catalyst, the selectivity of 2,6-DMN can reach 64% and the conversion of 2-MN can keep at 9% for 6 hrs, and the ratio of 2,6-/2,7-DMN can reach 2.0
引文
[1]Song C S, Harold H S. Opportunities for Developing Specialty Chemicals and Advanced Materials from Coals. Fuel Progress Technol.1993,34(2):157-196.
    [2]邹盛欧.聚萘二甲酸乙二醇酯及其制品[J].石油化工动态,1999,7(4):4850
    [3]张志强,田正华,迟海军等.硫酸亚铁催化合成2,6-萘二甲酸二甲酯的研究[J].化学通报,1999,(7):48-49
    [4]诸爱士,孙军.维生素K3合成工艺研究[J].科技通报,2001,17(3):37-41
    [5]Toshio T, Kazuya I, Takashi I, et al. Enhancement of Conversion and Selectivity by Temperature-swing Unsteady-state Reaction Method in Shape-selective Methylation of Methylnaphthalene with ZSM-5[J]. Cata. Tod.2004,29:3993.
    [6]靳海波,倪静,韩占生,佟泽民.2,6-二烷基萘合成技术的研究进展[J].煤炭转化,2001,1(24):32—35
    [7]McMahon R F, Greene J D, Peterson D A. Process for Preparing 2,6-Naphthalenedicarboxylic Acid [P]. US61145575,2000
    [8]Pridoly D B. Alkylation of Biphenyl under Mild Friedel-Crafts Conditions [J]. Ind. Eng. Chem. Prod. Res. Dev.1969, (8):239-241.
    [9]Matsuda T, Kikuchi E. Synthesis of Symmetrical Alkylaromatics by Use of Shape-Selective Catalysts[J]. Res. Chem. Interm.,1993,19(4):319-332.
    [10]Millini R, Francesco Frigerio, Giuseppe Bellussi, et al. A Priori Selection of Shape-selective Zeolite Catalysts for the Synthesis of 2,6-Dimethylnaphthalene[J]. J. Catal.2003,217:298-309
    [11]Ruthven D M, Kaul B K. Adsorption of Aromatic Hydrocarbons in NaX Zeolite[J]. Ind. Eng. Chem. Res.,1993,32(9):2047~2052.
    [12]日本工业科学技术研究院资源和环境研究所.低成本的二甲基蔡提纯法[J].石油化工,1997,26(8):575
    [13]孙绪江,张军,齐彦伟.分子筛吸附分离2,6-二甲基萘[J].精细石油化工,1999,(5):4-6
    [14]许杰,赵小平,张利新.2,6-二甲基萘制备与分离技术进展[J].石油化工动态,2000,8(6): 37
    [15]白雪峰,吴伟,胡浩权.2,6-二甲基萘的制备方法[J].现代化工,2003,9:10-13
    [16]Sikkenga D L, Monoalkenylation of Alkylbenzenes in a Fixed Catalyst Bed [P]. US4990717,1991
    [17]Hussmann G P, McMazhon P E. Cyclization Catalyst [P]. US 4740647,1988
    [18]Sikkenga D L, Lamb J D, Zaenger I C, et al. Preparation of Dimethylnaphthalene[P]. US 4950825,1990
    [19]Sikkenga D L, Lamb J D, Zaenger I C, et al. Preparation of Dirnethyltetralin [P]. US 5073670,1991
    [20]Sikkenga D L, Zaenger I C, Williams G S. Preparation of Dimethyltetralin in a Distillation Reactor[P]. US 5284987,1994
    [21]Ozawa S, Takagawa M, Dnamasa K. Process for Production of Dimethyltetralin[P]. US 5396008,1995
    [22]Sikkenga D L, Zaenger I C, Lamb J D, et al. Preparation of a Dimethyltetralin by Cyclizing an Orthotolylpentene Phenylhexene Uising an Ultra-stable Crystalline Aluminosilicate Molecular Sieve Y Zeolite[P]. US 5401892,1995
    [23]Sikkenga D L, Zaenger I C, Williams G S. Preparation of Dimethylnaphthalene[P]. US 5012024,1991
    [24]Amelse J A. Selective Dehyrogenation Processes and Catalysts [P]. US 5189234, 1993
    [25]Kyuko Y, Ozawa S, Takagawa M, et al. Process for Production of Dimethylnaphthalene[P]. US 5396007,1995-03-07
    [26]Ozawa S, Takagawa M, Fujimori T. Process for Production of Dimethylnaphthalene [P]. US 5446226,1995
    [27]Takagawa M, Yamagishi K, Yoshihara J, et al, Process for Producing 2,6-Dimethylnaphthalene[P]. US 5068480,1991
    [28]Vahteristo K, Halme E, et al. Manufacturing of 2,6-Dimethylnaphthalene[P]. US 5952534,1999
    [29]Inamasa K, Fushimi N, Takagawa M. Process for Producing 2,6-Dimethylnaphthalene[P]. US5321178,1994
    [30]Vahteristo K, Halme E, Koskimies S, et al. Manufacturing of 2,6-Dimethyinaphthalene[P]. US 59522534,1999
    [31]Bergstroem C. Process for Preparing 2,6-Dimethylnaphthalene[P]. WO 0034212, 2000
    [32]Jakkula J, Niemi V, Vahteristo K, et al. Process of Producing 2,6-Dimethylnaphthalene by Dehydrocyclizing 1-(p-Tolyl)-2-methlbutane and/or 1-(p-Toly)-2-methylbutene using a Reduced Vanadium Catalyst[P]. US 6127589,2000
    [33]Rossi K J, Green L A, Huss J A, et al. Process for Preparing Dimethylnaphthalene[P]. US 5043501,1991
    [34]Del Rossi K J, Green L A, Huss Jr A, et al. Process for Preparing Dimethylnaphthalene [P]. US 5043501,1991
    [35]Chen C Y, Schinski W,O'Rear D, et al. Method of Making Dimethylnaphthalenes [P]. US 5955641,1999
    [36]Barrer R M. Hydrothermal Chemistry of Zeolites. London and New York:Academic press,1982.
    [37]Argauer R J, Landolt G R. Synthesis of Zeolite HZSM-5[P]. US 3702866,1972.
    [38]Kokotailo G T, Lawton S L, Olson D H, et al. Structure of Synthetic Zeolite HZSM-5[J]. Nature,1978,272:437-438.
    [39]Chen N Y, Garwood W E, Dwyer F G. Shape Selective Catalysis in Industrial Applications[C]. Marcel Dekker, Inc.1989.
    [40]Derouane E G, Gabelica Z. A Novel Effect of Shape Selectivity:Molecular Traffic Control in Zeolite HZSM-5[J]. J. Catal.,1980,65 (2):486-489.
    [41]Lago R M, Haag W O, Mikovsky R J, et al. Proceedings of the 7th international zeolite conference, Tokyo, Murakami Y, et al. Eds. Elsevier, Amsterdam,1986, 677.
    [42]Beyer H K. Dealumination Techniques for Zeolites[C]. Molecular Sieves-Science and Technology.2002,3:203-255.
    [43]Barrer R M, Makki M B. Molecular Sieve Sorbents from Clinoptilolite[J]. Canadian J. Chem.,1964,42(6):1481-1487.
    [44]Li Y X, Xue B, He X Y. Synthesis of Ethylbenzene by Alkylation of Benzene with Diethylcarbonate over Parent MCM-22 and Hydrothermally Treated MCM-22[J]. J. Mole. Catal. A:Chemical.2009,301(1-2):106-113.
    [45]曾昭槐,李玉光,莫庭焕等.高温水蒸汽处理HZSM-5沸石的结构变化[J].催化学报.1986,7(1):28-34.
    [46]Datka J, Marschmeyer S, Neubauer T, et al. Physicochemical and Catalytic Properties of HZSM-5 Zeolites Dealuminated by the Treatment with Steam[J].J.phys.Chem.1996,100(34):14451-14456.
    [47]王辉,张汉军,孔德金等.HZSM-5催化剂水蒸汽处理对甲苯选择性歧化性能的影响[J].石油化工.2000,29(6):401-404.
    [48]Triantafillidis C S, Vlessidis A G, Nalbandian L, et al. Effect of the Degree and Type of the Dealumination Method on the Structural, Compositional and Acidic Characteristics of HZSM-5 Zeolites[J]. Microp. Mesop. Mater.,2001, 47(2-3):369-388.
    [49]Das J, Halgeri A B. Selective Synthesis of Para-ethylphenol over Pore Size Tailored Zeolite[J]. Appl.Catal. A:Gen.,2000,194-195:359-363.
    [50]Tominaga K, Maruoka S, Gotoh M, et al. HZSM-5 Modified by Silica CVD for Shape-selective Production of p-xylene:Influence of in Situ and Situ Preparation Conditions of the Zeolite[J]. Micropor. Mesopor. Mater.2009,117: 523-529.
    [51]Zheng S, Heydenrych H R, Jentys A, et al. Influence of Surface Modification on the Acid Site Distribution of HZSM-5[J]. J. Phys. Chem. B.2002,106(37): 9552-9558.
    [52]乐英红,唐颐.化学液相沉积法调变沸石孔径及异构体则性分离[J].化学学报,1996,12(54):591-597.
    [53]乐英红,唐颐,高滋.化学液相沉积法精细调变沸石孔径[J].石油学报,1997,13(1):30-35.
    [54]梁金花,任晓乾,王军.化学液相沉积法改性HZSM-5沸石上甲苯择形歧化[J].南京工业大学学报(自然科学版),2004,33卷增刊:1010-1012.
    [55]靳会杰,姚智辉,周海清等.MgO改性的HZSM-5酸性和催化作用[J].化学研究.200011(2):45-47
    [56]曾海生,崔惠玲,单学蕾等.Al,Bi及P改性β分子筛的表面酸性及对烷基转移反应的影响[J].离子交换与吸附.1999,15(4):359-363
    [57]Song Y Q, Li H B, Guo Z J, et al. Effect of Variations in Acid Properties of HZSM-5 on the Coking Behavior and Reaction Stability in Butene Aromatization[J]. Appl. Catal. A:Gen.292 (2005):162-170
    [58]Fraenkel D, Cherniavsky M, Ittah B. Shape-selective Alkylation of Naphthalene and Methylnaphthalene with Methanol over HZSM-5 Zeolite Catalysts[J]. J. Catal.,1986,101:273-83
    [59]Kormatsu I, Araki I, Namha S. Selective Formulation of 2,6-Dimethylnaphthalene from 2-Methylnaphthalene on HZSM-5 and Metallosilicates with MFI Structure [J] Stud Surf Sci Catal.1994.84:1821-1828
    [60]Pu S B, Tornovuki I. Synthesis of 2,6-dimethylanphthalene by Methylation of Methylnaphthalene on Various Medium and Large-pore Zeolite Catalysts. [J].Appl Catal A:General.1996,146:305-316.
    [61]Tomoyuki I, Pu S B, Junichiro K. Selective Neutralization of Acid Sites on the External Surface of HZSM-5 Crystallites by a Mechanochemical Method for Methylationof Methylnaphthalene [J]. Appl. Catal. A:General,1996,146:285-296
    [62]李淑勋.袁兴东.元玉台等.β分子筛催化剂催化合成2,6-二甲基萘[J].石油化工.2002,31(10):811-814
    [63]Takeshi M, Katsunoro Y, Yaashuhiro M, et al. [J].Chem Lett.1990.19 (7):1085-1088.
    [64]沈剑平.姜延顺.马骏等.层柱材料在β-甲基带歧化反应中的催化行为[J].高等学校化学学报.1993,14(6):845-848.
    [65]栗同林.刘希尧.王祥生.β沸石对甲基萘歧化反应的择形性[J].催化学报.1997,18(3):221-224.
    [66]Loktev A S, Chekriy P S. Alkylation of Binuclear Aromatics with Zeolite Catalysts [J].Stud. Surf. Sci. Catal.,1994,84:1845-1851
    [67]Park J N. Methylation of Naphthalene with Methanol over β, Mordenite, ZSM-12 and MCM-22 Zeolite Catalysts[J]. Bull. Korean Chem. Soc.,2002,23(7): 1001-1006
    [68]Weitkamp J, Neuber M, Wilhelm D. Preparation of 2,6-Dialkylnaphthalenes[P]. US 4795847,1989
    [69]Weitkamp J, Neuber M. Shape Selective Reactions of Alkylnaphthalenes in Zeolite Catalysts[J]. Stud. Surf. Sci. Catal.,1991,60:291301
    [70]Lillwitz L, Song C S, Shen J P. Selective Methylation Catalyst, Method of Catalyst Manufacture and Methylation Process[P]. WO 02060581 2002.
    [71]Jin L J, Fang Y M, Hu H Q. Selective Synthesis of 2,6-Dimethylnaphthalene by Methylation of 2-Methylnaphthalene with Methanol on Zr/(Al)HZSM-5[J]. Catal. Comm.2006,7:255-259
    [72]Jin L J, Zhou X J, Hu H Q, Ma B. Synthesis of 2,6-Dimethylnaphthalene by Methylation of 2-Methylnaphthalene on Mesoporous ZSM-5 by Desilication. Catal. Comm[J].,2008,10:336.
    [73]Komatsu T, Araki Y, Namba S, et al. Selective Formation of 2,6-Dimethylnaphthalene from 2-Methylnaphthalene on ZSM-5 and Metallosilicates with MFI Structure [J]. Stud. Surf. Sci. Catal.1994,84: 1821-1827
    [74]Tsutsui, Toshio, Kubota. Process for Producing Dimetylnaphthalene and Alkylnaphthalene with Methallosilicate Catalyst [P]. US 6414208,2002
    [75]Zhao L, Wang H B, Liu M, et al. Shape-selectivemethylation of 2-Methylnaphthalene with Methanol over Hydrothermal Treated HZSM-5 Zeolite Catalysts. [J] Chem. Eng. Sci.,2008,63:5298-5303
    [76]徐海升,宋成盈,赵建宏等.2-甲基萘和甲醇在MFI沸石催化剂上甲基化反应的研究[J].石油学报(石油加工),1999,15(1):52-56
    [77]Song C S, Ma X L, Schobert H[M], in Song C, Garces J M, Sugi Y, Shape-Selective Catalysis, ACS press,
    [78]杨全红.氮的低温(77 K)吸附等温线在吸附法表征纳米碳管中空管内径分布[J].科学通报,2001,46(7):600-603.
    [79]Lee G J, Burdett K A, Maj J J, et al. Process for the Preparation of Para-polyphenyldicarboxylic Acid[P].US 4996353.1991
    [80]Leonowicz M E, Lawton J A. MCM-22:A Molecular Sieve with Two Independent Multidimensional Channel Systems [J].Science.1994,264:1910-1913.
    [81]Corma A, Corell C, Pariente J, Adsorptionand Catalytic Properties of MCM-22: The Influence of Zeolite Structure[J]. Zeolites,1996,6(1):7-14.
    [82]李英霞,陈标华,孟伟娟等.MCM-22沸石的孔结构和酸分布特性对苯与丙烯烷基化反应产物分布的影响[J].催化学报.2003,24(7):494-498.
    [83]徐有华.SAPO-11分子筛结构及晶内活性中心研究[J].精细石油化工进展.2005,3(6):47-49
    [84]Chen N Y, Thomas F D, Morris S. Molecular Transport and Reaction in Zeolite[M]. New York:VCH Wiley.1994.
    [85]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.121.
    [86]Song C S, Ma X L, Schmitz A D, et al. Shape-selective Isopropylation of Naphthalene over Mordenite Catalysts:Computational Analysis Using MOPAC[J]. Appl. Catal. A:Gen.,1999,182:175-181.
    [87]Millini R, Frigerio F, Bellussi G, et al. Apriori Selection of Shape-selective Zeolite Catalysts for the Synthesis of 2,6-Dimethylnaphthalene[J]. J. Catal. 2003,217:298-309
    [88]Fang Y, Hu H, Shape-selectivity in 2,6-Dimethylnaphthalene Synthesis over HZSM-5:Computational Analysis Using Density Functional Theory[J]. Catal. Comm.2006,7:264-267
    [89]Antonio D L, Canizares P., Durhn A., et al. Dealumination of HZSM-5 Zeolites: Effect of steaming on acidity and aromatization activity[J]. Appl. Catal. A: Gen.1997,154:221-240
    [90]白雪峰,张迎光,张洪林.化学液相沉积改性Hβ分子筛催化剂催化甲基萘与甲醇烷基化反应[J].石油化工.2005,7(34):664.
    [91]LeVa Mao R, Ragaini V, Leofanti G, et al. Xylene Isomer Diffusivity and Shape Selectivity in ZSM-5 Zeolites[J]. J. Catal.1983,81(2):41-428.
    [92]Wu P D, Debebe A, Ma Y H. Adsorption and Diffusion of C-6 and C-8 Hydrocarbons in Silicalite[J]. Zeolites,1983,3 (2):118-122.
    [93]Tops(?)e N Y, Pedersen K, Derouane E G. Infrared and Temprature-programmed Desoprtion Stduy of the Acidic Properties of HZSM-5 Type Zeolites[J]. J. Catal. 1981,70 (1):41-52.
    [94]Niwa M, Katada N, Saws M, et al. Temperature-Programmed Desorption of Ammonia with Readsorption Based on the Derived Theoretical Equation[J]. J. Phys. Chem. 1995,99 (21):8812-8816.
    [95]吕仁庆,王秋英,项寿鹤.碱性水蒸汽处理对HZSM-5沸石酸性质及孔结构的影响[J].催化学报,2002,23(5):421-424.
    [96]Li D, Li F, Ren J, et al. Rare Earth-modified Bifunctional Ni/HY Catalysts [J]. Appl Catal A,2003(1-2):15-24.
    [97]Yin C, Liu C. Hydrodesulfurization of Cracked Naphtha over Zeolite-supported Ni-Mo-S Catalysts[J]. Appl. Catal. A,2004(1-2):177-184.
    [98]Kim J H, Ishida A, Okajima M, et al. Modification of HZSM-5 by CVD of Various Silicon Compounds and Generation of Para-Selectivity [J]. J. Catal.1996,161 (2):387-392.
    [99]Shaikh R A, Hegde S G, Behlekar A A, et al. Enhancement of acidity and Paraselectivity by the Silynation in Pentasil Zeolites[J]. Catal. Tod.1999, 49:201-209.
    [100]赵环宇,柳云骐,刘平等.液相沉积硅改性ZSM-5条件对催化甲苯歧化反应的影响[J].中国石油大学学报(自然科学版)2006,30,(6):117-120.
    [101]Lucas A, Canizares P, Duran A, et al. Dealumination of HZSM-5 Zeolites:Effect of Steaming on Acidity and Aromatization Activity[J]. Appli Catal A,1997, 154(1-2):221-240.
    [102]李宣文,刘兴云,余励勤.催化研究中的原位技术[M].北京:北京大学出版社,1993:33.
    [103]Li Y X, Xue B, He X Y. Synthesis of Ethylbenzene by Alkylation of Benzene with Diethyl Carbonate over Parent MCM-22 and Hydrothermally Treated MCM-22[J]. J. Mol. Catal. A 2009,301:106-113
    [104]Zhang W, Han X, Liu X, et al. Characterization of the Acid sites in Dealuminated Nanosized HZSM-5 Zeolite with the Probe Molecule Trimethylphosphine[J]. J. Mol. Catal. A,2003,194(1-2):107-113.
    [105]Huang J, Jiang Y J, Marthala V. R., et al. Effect of Pore Size and Acidity on the Coke Formation During Ethylbenzene Conversion on Zeolite Catalysts[J]. J. Catal.2009,263:277-283.
    [106]Song C S, Selective Conversion of Polycyclic Hydrocarbons to Specialty Chemicals over Zeolite Catalysts[J]. Cattech 2002,6:64.
    [107]Song C S, Graces JM, Sugi Y (Eds.), Shape-Selective Cata, Am. Chem. Soc. Washington, DC,1999:248.
    [108]Song C S, Ma X L, Schmitz A D, et al. Shape-selective Isopropylation of Naphthalene over Mordenite Catalysts:Computational Analysis Using MOPAC. [J] Appl. Catal. A:Gen.1999,182:175.
    [109]Ashton A, Batmanian G. S, Dwyer J, et al. The Catalytic Properties of Modified Pentasil Zeolites[J]. J. Mol Catal.1986,34:73-83
    [110]Babu G P, Santra M, Shiralkar V P, et al. Catalytic Transformation of Aromatics over HZSM-5 Zeolites[J]. J. Catal.1986,100:458-465
    [111]John N, John C, Joseph C. Combined Catalytic and Infrared Study of the Modification of HZSM-5 with Selected Poisons to Give High Selectivity P-xylene[J]. J. Catal.1984,87:77-85.
    [112]Kaeding W W, Chu C, Young L B, et al. Selective Alkylation of Toluene with Methanol to Produce Para-Xylene[J]. J. Catal.1981,67:159-174.
    [113]Rollmann, Louis D. HZSM-5 Containing Aluminum-free Shells on Its Surface[P]. US 4203869 1980.
    [114]Haag Werner 0, Olson David H, Selective Disproportionation of Toluene [P]. U.S. 4097543.1978
    [115]Rumplmayr G, Lercher J. A. Modification of HZSM-5 with Trimethylphosphine[J]. Zeolites.1990,10:283-287
    [116]Brzozowski R. Isomerization of Diisopropylnaphthalenes on Wide-pore Zeolites[J]. J. Catal.,2005,232:366-377
    [117]Zhao G L, Teng J W, Xie Z K, et al. Effect of Phosphorus on HZSM-5 Catalyst for C4-olefin Cracking Reactions to Produce Propylene[J]. J. Catal.,2007,248: 29-37
    [118]Xu Y, Liu W, Wong S, et al. Dehydrogenation and Aromatization of Methane in the Absence of Oxygen on Mo/HZSM-5 Catalysts Before and After NH4OH Extraction [J]. Catal. Lett.1996,40:207
    [119]Vinek H, Rumplmay G, Lercher J. A. Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites [J]. J. Catal.,1989,115:291-300.
    [120]Mao R L V, Xiao S Y, Ramsaran A, Yao J H. Selective Removal of Silicon from Zeolite Frameworks using Sodium Carbonate[J]. J. Mater. Chem.,1994,4(4): 605-610.
    [121]Groen J C, Moulijn J A, Perez-Ramirez J. Alkaline Posttreatment of MFI Zeolites. From Accelerated Screening to Scale-up[J]. Ind. Eng. Chem. Res.2007,46: 4193-4201
    [122]Johan C. Groen, Jacob A. Moulijna and Javier Perez-Ramirez. Desilication:On the Controlled Generation of Mesoporosity in MFI Zeolites[J]. J. Mater. Chem. 2006,16:2121-2131.
    [123]Bj(?)rgen M, Joensen F, Holm M S, et al. Methanol to Gasoline over Zeolite HZSM-5: Improved Catalyst Performance by Treatment with NaOH[J]. Appl. Catal. A: General 2008,345:43-50
    [124]Vinek H, Rumplmayr G, Lercher J A. Catalytic Properties of Postsynthesis Phosphorus-Modified HZSM5 Zeolites[J]. J. Catal.1989,115:291-300.
    [125]沸石分子筛[M].陈连璋.大连,大连理工大学出版社[M],1990年
    [126]Lawrenced L, Song C S, Shen J P, et al. Selective methylation catalyst, method of catalyst manufacture and methylation process[P]. WO 02060581,2002.
    [127]Jin L J, Fang Y M, Hu H Q. Selective Synthesis of 2,6-Dimethylnaphthalene by Methylation of 2-Methylnaphthalene with Methanol on Zr/(Al) HZSM-5 [J]. Catal. Comm.2006 7:255-259.
    [128]Jin L J, Hu H Q, Wang X Y, et al. Methylation of 2-Methylnaphthalene with Methanol to 2,6-Dimethylnaphthalene over ZSM-5 Modified by Zr and Si [J]. Ind. Eng. Chem. Res.2006,45:3531
    [129]Komatsu T, Kim J H. Structural Studies on the Radical Cations of Benzene, Naphthalene, Biphenylene, and Anthracene Fully Annelated with Bicyclo[2.2.2]octene Frameworks[J]. J. Am. Chem. Soc.2000,122:10007.
    [130]Weiz P B. Molecular Shape Selective Catalysis[J]. Pure Appl. Chem.,1980, 52:2091
    [131]Grimsby M R. Production of Titanium Tetrachloride[P]. US 4046853,1977
    [132]Viswanadham N, Kamble R, Singh M, et al. Catalytic properties of nano-sized ZSM-5 aggregates[J]. Catal. Today,2009,141(1-2):182-186
    [133]Zhang W P, Han X W, Liu X, et al. The Stability of Nanosized HZSM-5 Zeolite: a High-resolution Solid-state NMR Study[J]. Micropor. Mesopor. Mater.2001, 50 (1):13-23.
    [134]Bhattacharya D, Sivasanker S. A Comparison of Aromatization Activities of the Medium Pore Zeolites, ZSM-5, ZSM-22, and Eu-1 [J]. J. Catal.1995,153:353.
    [135]Fischer L, Harle V, Kasztelan S. Identification of Fluorine Sites at the Surface of Fluorinated γ-alumina by Two-dimensional MAS NMR[J]. Solid state nuclear magnetic resonance,2000(16):85-91.
    [136]Sanchez N A, Saniger J M, Caillerie J B, et al. Dealumination and Surface Fluorination of HZSM-5 by Molecular Fluorine[J]. Microp.Mesop.Mater.2001, 50:41-52.
    [137]Sanchez N A, Saniger J M, Caillerie J B, et al. Reaction of HY Zeolite with Molecular Fluorine[J]. J. Catal.,2001,201:80-88.
    [138]Mao R L, Le T S, Fairbairn M, et al. HZSM-5 Zeolite with Enhanced Acidic Properties[J]. Appl. Catal. A:Gen.,1999,185:41-52.
    [139]Kollmer F, Hausmann H, HOlderich W. (NH4)2SiF6-modified HZSM-5 as Catalysts for Direct Hydrlxylation of Benzene with N2O 1. Influence of the Treatment Method [J]. J. Catal.,2004,227:398-407.
    [140]王亚男.大连理工大学博士论文[D],大连:大连理工大学,2006.
    [141]Rhee K H, Rao V U, Stencel J M, et al. Supported Transition Metal Compounds. Infrared Studies on the Acidity of Co/HZSM-5 and Fe/HZSM-5 Catalysts[J]. Zeolites,1983,3:337-343.
    [142]Inui T. Structure Reactivity Relationships in Rethanol to Olefin Conversion on Various Microporous Crystalline Catalvsts[J], Stud. Surf. Sci. Catal,1991, 67:233
    [143]须芯华,朱建华,徐卓,镁,硅,锑改性HZ SM-5沸石的性能研究[J].石油学报(石油加工)1988,4:66-71
    [144]袁冰,董伟峰,李宗石,乔卫红,王桂茹,程侣柏,改性HUSY沸石上β-甲基萘异丙基化反应性能研究[J]。大连理工大学学报,2006,46(6):797-802
    [145]Ward. J W. The Nature of Active sites on Zeolites:Ⅲ. The Alkali and Alkaline Earth Ion-exchanged Forms[J].J. Catal.,1968,10(1):34-46.
    [146]Ward. J W. Spectroscopic Study of the Surface of Zeolite Y. Ⅱ. Infrared Spectra of Structral Hydroxyl Groups and Adsorbed Water on Alkali, Alkaline Earth, and Rare Earth Ion-exchanged Zeolite[J].J. Phys. Chem.,1968,72(12):4211-4223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700