纳米石墨烯化学功能化的理论模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯化学功能化已经成为改善石墨烯性能的一种重要的方法。在已有的共价功能化方法中,1,3.偶极环加成反应是制备杂原子石墨烯中最便捷、最成功的合成方法。制备所得的功能化石墨烯可以观察到明显的电子结构变化、反应活性变化等,实现了性质可控。然而石墨烯化学功能化的理论模拟研究工作还远滞后于实验的发展,现有理论研究中存在的主要问题是:(1)只局限于简单的结合能计算,不涉及机理研究,其反应机理尚不清楚;(2)仅研究了2种1,3.偶极体,其他常见偶极体的研究在理论上均未知,实验报道亦较少;(3)系统的反应活性研究工作鲜有报道。本文针对上述问题,利用密度泛函方法及完全基组方法系统考察了石墨烯化学功能化的机理,反应活性的影响因素和规律。具体研究工作如下:
     1、用密度泛函方法研究了叠氮三甲基硅烷对石墨烯的1,3.偶极环加成功能化的机理,考察了在完整石墨烯平面的反应活性差异和影响活性的因素。计算结果显示该反应是一个两步反应过程,第一步是化学吸附过程,即1,3一偶极体叠氮三甲基硅烷化学键合在纳米石墨烯表面,并在纳米石墨烯表面形成五元杂环;第二步是热分解过程,即在外界能量的作用下,第一步形成的五元环会发生分解,最终生成氮气和氮杂环化合物。其中,第二步过程决定了反应的速率。首先,我们比较了两种可能的反应路线[3+2]加成和[3+4]加成,结果证明[3+2]反应路线明显优于[3+4]反应路线。前者是一个对称协同反应,但是后者是一个不对称的协同反应,该结论可通过前线分子轨道理论分析得出;其次,我们详细讨论了纳米石墨烯的反应活性,得出主要影响其反应活性的是反应位点电子云密度的大小,其次是轨道能量因素。因此,纳米石墨烯边界部分的反应活性远比其中间位点的反应活性大得多。
     2、用密度泛函方法研究了9种1,3.偶极体对石墨烯的化学功能化机理,并对反应活性、电子结构和物质本性导致的差异进行了系统分析和总结。在本文中,我们首先采用密度泛函理论系统地考察了9种1,3.偶极体(重氮化物diazonium betaines,腈叶立德nitrilium betaines和甲亚胺叶立德azomethine betaine)与纳米石墨烯的环加成反应。计算结果显示,绝大多数所考察的1,3.偶极环加成反应都具有较负的吉布斯自由能△G,能在温和条件下自发进行。1,3-偶极体本身的性质对1,3-偶极环加成反应活性的影响最为重要。如按其价电子划分,18价电子甲亚胺叶立德的活性要比其他两个16价电子的甲亚胺叶立德的活性大得多。按其端基原子划分,上述1,3-偶极体的反应活性顺序为是:氧化物<亚胺<叶立德。我们还发现在本体系中,影响反应活化能的变形能实际上取决于1,3.偶极体的形变程度或其两共振键初始键能的大小。此外,和以前报导的其他1,3.偶极环加成反应不一样的是,本体系中的活化能和反应热呈现很好的线形关系,符合哈蒙德假说。
     3、用密度泛函方法研究了Stone-Wales缺陷石墨烯1,3.偶极环加成反应的机理,计算显示该反应路径仍然是[3+2]加成方式。缺陷存在时,纳米石墨烯的中间缺陷位点的活性显著增加,最活跃的位点是七元环与七元环的交线上。与完整石墨烯平面的1,3-偶极环加成反应比较得出,缺陷的存在也同时增加了边界位点的反应活性,中间位点和边界位点的活性差距远小于完整石墨烯平面边界位点和中间位点的活性差距,并会有一定的重叠。这说明当石墨烯表面存在缺陷时,边界位点和缺陷位点参与1,3-偶极环加成的地位同等重要,会同时参与功能化,与对实验结果负载比的推测是一致的。本体系中,活性差异很好地遵循FMO控制,其次通过变形能作用分析,能很好地解释边界位点和缺陷位点的活性差异。
The cheimical functionalization of graphene has become an important method to improve the properties of graphene. Among the1,3-dipolar cycloaddition reaction is the most successful which provides the most convenient synthesis methods to prepare the atoms doping graphene. The functionalized graphene has been observed significant changes in electrons structure, reactivity and tunable energy band, which realizes the control of graphene properties. However, the theoretical simulation research of the chemical functionalization of graphene is still far behind the development of experiments. The main problems exist in the current theoretical researches are:(1) there are only simple binding energy calculations which do not involve the reaction mechanism. So far the reaction mechanism is unclear yet;(2) only two kinds of1,3-dipoles has been studied, but the other common1,3-dipoles are theoretically unknown and also less involved in the experimental reports;(3) systematic reactivity studies are rarely reported.
     Aiming at these problems, in this paper, we have performed systematic theoretical study into reaction mechanism for the chemical functionalization of graphene and the reactivity study using the density functional method and complete base set of methods. Specific researches are as follows:
     1. The mechanism of1,3-dipole cycloaddition reaction of azidotrimethylsilane (ATS) onto nanographene(NG) was thoroughly investigated at the B3LYP/6-31G(d,p) level. Calculations reveal that the reaction occurs via a two-step reaction mechanism. The first is the chemical adsorption step, and the second is the decomposition of the thus-formed nitride upon thermal activation, then giving rise to an N-bridged product ultimately. The latter is the rate-determining step. Two possible pathways were compared first, evidencing that the [3+2] channel is favorable over the [3+4] channel. The former is a symmetric synchronous process, but the latter follows an asymmetric concerted way, which can be rationalized by means of FMO theory. The reactivity of NG was then discussed in detail, revealing that it is the electron density at the functionalization site which dominates the reactivity rather than the energetic effect. As a result the edge area is calculated to be much more reactive than the centre.
     2. We firstly present a systematic investigation into the reactions of nine1,3-dipoles(diazonium, nitrilium and azomethine) with nanographene(NG) model using the density functional theory(DFT). The calulations shows that the nine1,3-dipole cycloaddtions(DC) studied are almost of largely negative Gibbs free energies(ΔG) values which are spontaneous at the mild conditions. The dipole nature is of the most important influence on reactivity of1,3-DC. The18-valence-electron azomethine ylides shows far more active than the other two16-valence-electron types to NG The order of the reactivity for these dipoles is:oxide     3. The mechanism of1,3-dipole cycloaddition reaction of azidotrimethylsilane (ATS) onto Stone-Wales nanographene(NG) surface was thoroughly investigated at the B3LYP/6-31G(d,p) level. Calculations reveal that same as the addition to perfect nanographene surface, the [3+2] channel is still the preferential pathway. When the defect exists, the reactivity of the centre defect site increases significantly. The most reactive defect site is on located on the intersection of two seven membered rings. In contrast to the addition results to the perfect graphene, the existing of the defect also improves the reactivity of the boundary sites of nanographene. The difference between the reactivity of the centre and the edge of nanographene is much smaller and there is some overlap. This suggests that when there is the defect on the surface of nanographene, both the roles of the boundary sites and the centre site are equally important in the chemical functionalization by1,3-DC. Both would participate in the reaction. This conclusion is just consistent with the speculation of the functionalization ratio toward the experiment results. In the present system, the reactivity follows the control of FMO well. Moreover, the difference between the reactivity of the defect site and the edge site can be fully explained by the distortion energy.
引文
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A, Electric field effect in atomically thin carbon films [J]. Science,2004,306: 666-669.
    [2]Geim A K, Novoselov A K, The rise of graphene [J]. Nat. Mater.,2007,6:183-191.
    [3]Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials:past, present and future [J]. Prog. Mater. Sci..,2011,56:1178-1271.
    [4]Wan X J, Huang Y, Chen Y S, Focusing on Energy and Optoelectronic Applications:A Journey for Graphene and Graphene Oxide at Large Scale [J]. Accounts of chemical research, 2012,45:598-607.
    [5]Huang L P, Wu B, Yu G, Liu Y Q, Graphene:learning from carbon nanotubes [J], J. Mater. Chem.,2011,21:919-929.
    [6]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A, Graphene:The new two-dimensional nanomaterial [J]. Angew. Chem., Int. Ed.,2009,48:7752-7777.
    [7]Wei D, Liu Y, Controllable Synthesis of Graphene and Its Applications [J]. Adv. Mater.,2010, 2:3225-3241.
    [8]Lee C, Wei X, Kysar J W, Hone J, Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321:385-388.
    [9]Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N, Superior thermal conductivity of single-layer graphene [J]. Nano Lett.,2008,8:902-907.
    [10]Park S, Ruoff R S, Chemical methods for the production of graphenes [J]. Nat. Nanotechnol., 2009,4:217-224.
    [11]Zhang Y, Tan Y-W, Stormer H L, Kim P, Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438:201-204.
    [12]Latil S, Henrard L, Charge Carriers in Few-Layer Graphene Films [J]. Phys. Rev. Lett.,2006, 97:036803.
    [13]Rollings E, Gweon G-H, Zhou S Y, Mun B S, McChesney J L, Hussain B S, Fedorov A V, First P N, de Heer W A, Lanzara A, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate [J]. J. Phys. Chem. Solids.,2006,67:2172-2177.
    [14]Sutter P W, Flege J-I, Sutter E A, Epitaxial graphene on ruthenium [J]. Nat. Mater.,2008,7: 406-411.
    [15]Ni Z H, Chen W, Fan X F, Kuo J L, Yu T, Wee A T S, Shen Z X, Raman spectroscopy of epitaxial graphene on a SiC substrate [J]. Phys. Rev. B:Condens. Matter Matcr. Phys.,2008, 77:115416/1-115416/6.
    [16]Wang X, You H, Liu F, Li M, Wan L, Li S Q, Li Q, Xu Y, Tian R, Yu Z Y, Xiang D, Cheng J, Large-scale synthesis of few-layered graphene using CVD [J]. Chem. Vapor. Depos.,2009, 15:53-56.
    [17]Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K.Colombo L, Ruoff R S, Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science,2009,324:1312-1314.
    [18]Di C-A, Wei D C, Yu G, Liu Y Q, Guo Y L, Zhu D B, Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J]. Adv. Mater.,2008,20: 3289-3293.
    [19]Compton O C, Nguyen S T, Graphene Oxide, Highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials [J]. Small,2010,6:711-723.
    [20]Loh K P, Bao Q L, Ang P K, Yang J X, The chemistry of graphene [J]. J. Mater. Chem., 2010,20:2277-2289.
    [21]Yang D X, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung, Field D A, Ventrice Jr. C A, Ruoff R S, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy [J]. Carbon, 2009,47:145-152.
    [22]Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L-J. Doping single-layer graphene with aromatic molecules [J]. Small,2009,5:1422-1426.
    [23]Edwards R S, Coleman K S, Graphene synthesis:relationship to applications [J]. Nanoscale, 2013,5:38-51.
    [24]Inagaki M, In New Carbons-control of structure and functions, Elsevier Science, Oxford, 2000, pp:30-57.
    [25]Zhang X M, Zeng Q D, Wang C, On-surface single molecule synthesis chemistry:a promising bottom-up approach towards functional [J]. Nanoscale,2013,5:8269-8287.
    [26]Stankovich S, Dikin D A, Pine R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S B T, and Ruoff R S, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45:1558-1565.
    [27]Boukhvalov D W, Katsnelson M I, Chemical functionalization of graphene with defects [J]. Nano Lett.,2008,8:4373-4379.
    [28]Ang P K, Wang S, Bao Q L, Thong J T L, Loh K P, High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor [J]. ACS Nano,2009,3:3587-3594.
    [29]Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang X, McGovern I T, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions [J]. J. Am. Chem. Soc.,2009,131:3611-3620.
    [30]Jin Z, Lomeda J R, Price B K, Lu W, Zhu Y, Tour J M, Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets [J]. Chem. Mater.,2009,21: 3045-3047.
    [31]Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite [J]. Adv. Funct. Mater.,2008,18:1518-1525.
    [32]Lu J, Yang J X, Wang J Z, Lim A L, Wang S, Loh K P, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids [J]. ACS Nano,2009,3:2367-2375.
    [33]Su C Y, Lu A Y, Xu Y P, Chen F R, Khlobystov A N, Li L J, High-quality thin graphene films from fast electrochemical exfoliation [J]. ACS Nano,2011,5:2332-2339.
    [34]Shao Y Y, Wang J, Engelhard M, Wang C M, Lin Y H, Facile and controllable electrochemical reduction of graphene oxide and its applications [J]. J. Mater. Chem.,2010, 20:743-748.
    [35]G. Wang, B. Wang, J. Park, Y. Wang, B. Sun and J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation [J]. Carbon,2009,47:3242-3246.
    [36]Englert J M, Rohrl J, Schmidt C D, Graupner R, Hundhausen M, Hauke F, Hirsch A, Soluble graphene:generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile [J]. Adv. Mater.,2009,21:4265-4269.
    [37]Brownson D A C, Metters J P, Kampouris D K, Banks C E, Graphene electrochemistry: surfactants inherent to graphene can dramatically effect electrochemical processes [J]. Electroanalysis,2011,23:894-899.
    [38]Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F-A, Dong S J, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films [J]. Chem. Eur. J,2009,15:6116-6120.
    [39]Guo H L, Wang X F, Qian Q Y, Wang F B, and Xia X H, A green approach to the synthesis of graphene nanosheets [J]. ACS Nano,2009,3:2653-2659.
    [40]Wang J Z, Manga K K, Bao Q L, Loh K P, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte [J]. J. Am. Chem. Soc.,2011,133:8888-8891.
    [41]Huang H, Xia Y, Tao X Y, Du J, Fang J W, Gan Y P, Zhang W K, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism [J]. J. Mater. Chem.,2012,22: 10452-10456.
    [42]Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S, Graphene-based liquid crystal device [J]. Nano Lett.,2008,8:1704-1708.
    [43]Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun'ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N, High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat. Nanotechnol.,2008,3:563-568.
    [44]Hernandez Y, Lotya M, Rickard D, Bergin S D, Coleman J N, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery [J]. Langmuir,2009,26:3208-3213.
    [45]Khan U, O'Neill A, Lotya M, De S, Coleman J N, High-concentration solvent exfoliation of graphene [J]. Small,2010,6:864-871.
    [46]O'Neill A, Khan U, Nirmalraj P N, Boland J, Coleman J N, Graphene dispersion and exfoliation in low boiling point solvents [J]. J. Phys. Chem. C,2011,115:5422-5428.
    [47]Lotya M, King P J, Khan U, De S, Coleman J N, High-concentration, surfactant-stabilized graphene dispersions [J]. ACS Nano,2010,4:3155-3162.
    [48]Ronan J S, Mustafa L, Jonathan N C, The importance of repulsive potential barriers for the dispersion of graphene using surfactants [J]. New J. Phys.,2010,12:125008.
    [49]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G, Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol.,2008,3:101-105.
    [50]Patil A J, Vickery J L, Scott T B, Mann S, Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA [J]. Adv. Mater.,2009,21: 3159-3164.
    [51]Zhou X S, Wu T B, Ding K L, Hu B J, Hou M Q, Han B X, Dispersion of graphene sheets in ionic liquid [bmim][PF6'] stabilized by an ionic liquid polymer [J]. Chem. Commun.,2010, 46:386-388.
    [52]Zhou X F, Liu Z P, A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets [J]. Chem. Commun.,2010,46:2611-2613.
    [53]Guo Y J, Guo S J, Ren J T, Zhai Y M, Dong S J, Wang E, Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance [J]. ACS Nano,2010,4: 4001-4010.
    [54]Zhu C Z, Guo S J, Fang Y X, Dong S J, Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets [J]. ACS Nano,2010,4:2429-2437.
    [55]Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L, Zhang F B, Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation [J]. Adv. Mater.,2008,20:4490-4493.
    [56]Li H L, Pang S P, Feng X L, Mullen K, Bubeck C, Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation [J]. Chem. Commun.,2010,46: 6243-6245.
    [57]Salas E C, Sun Z Z, LOttge A, Tour J M, Reduction of graphene oxide via bacterial respiration [J]. ACS Nano,2010,4:4852-4856.
    [58]Chen Y, Zhang X, Yu P, Ma Y W, Stable dispersions of graphene and highly conducting graphene films:a new approach to creating colloids of graphene monolayers [J]. Chem. Commun.,2009,4527-4529.
    [59]Che J F, Shen L Y, Xiao Y H, J. Mater. Chem., A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion [J]. J. Mater. Chem., 2010,20:1722-1727.
    [60]Park S, An J, Jung I, Piner R D, An S J, Li X S, Velamakanni A, Ruoff R S, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents [J]. Nano Lett.,2009,9:1593-1597.
    [61]Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition [J]. Nanotechnology,2008,19:305604.
    [62]Dervishi E, Li Z R, Watanabe F, Biswas A, Xu Y, Biris A R, Saini V, Biris A S, Large-scale graphene production by RF-cCVD method [J]. Chem. Commun.,2009,4061-4063.
    [63]Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J]. Nano Lett., 2009,9:30-35.
    [64]Srivastava A, Galande C, Ci L J, Song L, Rai C, Jariwala D, Kelly K F, Ajayan P M., Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films [J]. Chem.Mater.,2010,22:3457-3461.
    [65]Nandamuri G, Roumimov S, and Solanki R, Chemical vapor deposition of graphene films [J]. Nanotechnology,2010,21:145604.
    [66]Vang R V, Honkala K, S. Dhal S, Vestergaard E K, Schadt J, Laegsgaard E, Clausen B S, Norskov J K, Besenbacher F, Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking [J]. Nat. Mater.,2005,4:160-162.
    [67]Nemes-Incze P, Osvatha Z, Kamarasb K, Biro L P, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy [J]. Carbon,2008,46:1435-1442.
    [68]Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C, Raman scattering from high-frequency phonons in supported n-graphene layer films [J]. Nano. Lett.,2006,6: 2667-2673.
    [69]Kudin K N, Scuseria G E, Yakobson B I, Oxygen-driven unzipping graphite materials [J]. Phys. Rev. B,2001,64:235406.
    [70]Eda G, Chhowalla M, Graphene-based composite thin films for electronics [J]. Nano. Lett., 2009,9:814-818.
    [71]Novoselov K, Graphene:Mind the gap [J]. Nat. Mater.,2007,6:720-721.
    [72]Du X, Skachko I, Barker A, Andrei E Y, Approaching ballistic transport in suspended graphene [J]. Nat. Nanotechnol.,2008,3:491-495.
    [73]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A, Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438:197-200.
    [74]Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K, Room-temperature quantum hall effect in graphene [J]. Science,2007,315:1379-1379.
    [75]Du X, Skachko I, Duerr F, Luican A, Andrei E Y, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J]. Nature,2009,462:192-195.
    [76]Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K, Fine structure constant defines visual transparency of graphene [J]. Science,2008, 320:1308-1308.
    [77]Gusynin V P, Sharapov S G, Carbotte J P, Unusual microwave response of dirac quasiparticles in graphene [J]. Phys. Rev. Lett.,2006,96:256802.
    [78]Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, and Heinz T F, Measurement of the Optical Conductivity of Graphene [J]. Phys. Rev. Lett.,2008,101:196405.
    [79]Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G, Measurement of ultrafast carrier dynamics in epitaxial graphene [J]. Appl. Phys. Lett.,2008,92:042116.
    [80]Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R, Gate-variable optical transitions in graphene [J]. Science,2008,320:206-209.
    [81]Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, N. Mingo, Ruoff R S, Shi L, Two-Dimensional Phonon Transport in Supported Graphene [J]. Science,2010,328:213-216.
    [82]Gao Y W, Hao P, Mechanical properties of monolayer graphene under tensile and compressive loading [J]. Physica E,2009,41:1561-1566.
    [83]Hod O, Scuseria G E, Electromechanical properties of suspended graphene nanoribbons [J]. Nano Lett.,2009,9:2619-2622.
    [84]Frank O, Tsoukleri G, Parthenios J, Papagelis K, Riaz I, Jalil R, Novoselov K S, Galiotis C, Compression behavior of single-layer graphenes [J]. ACS Nano,2010,4:3131-3138.
    [85]Schniepp H C, Kudin K N, Li J L, Prud'homme R K, Car R, Saville D A, Aksay I A, Bending properties of single functionalized graphene sheets probed by atomic force microscopy [J]. ACS Nano,2008,2:2577-2584.
    [86]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S, Graphene-based composite materials [J]. Nature,2006,442: 282-286.
    [87]Kim J, Cote L J, Kim F, Huang J, Visualizing graphene based sheets bu fluorescence quenching microscopy [J]. J. Am. Chem. Soc,2009,132:260-267.
    [88]Sreeprasad T S, Maliyekkal M S, Deepti K, Chaudhari K, Xavier P L, Pradeep T, Transparent, luminescent, antibacterial and patternable film forming composites of graphene oxide/reduced graphene oxide [J]. ACS Appl. Mater. Interfaces,2011,3:2643-2654.
    [89]Han T H, Lee W J, Lee D H, Kim J E, Choi E-Y, Kim S O, Peptide/graphene hybrid assembly into core/shell nanowires [J]. Adv. Mater.,2010,22:2060-2064.
    [90]Liang J Y. Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y, Chen Y S, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites [J]. Adv. Funct. Mater.,2009,19:2297-2302.
    [91]Liu J Q, Yang W R, Zareie H M, Gooding J J, Davis T P, pH-Detachable polymer brushes formed using titanium-diol coordination chemistry and living radical polymerization (RAFT) [J]. Macromolecules,2009,42:2931-2939.
    [92]Sutter P, Sadowski J T, Sutter E A, Chemistry under cover:tuning netal-graphene Interaction by reactive intercalation [J]. J. Am. Chem. Soc.,2010,130:8175-8179.
    [93]Liu J Q, Tao L, Yang W R, Li D, Boyer C, Wuhrer R, Braet F, Davis, T P, Synthesis, Characterization, and Multilayer Assembly of pH Sensitive Graphene-Polymer Nanocomposites [J]. Langmuir,2010,26:10068-10075.
    [94]Liu J Q, Yang W R, Tao L, Li D, Boyer C, Davis, T P, Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.,2010,48:425-433.
    [95]Czerw R, Terrones M, Charlier J C, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan P M, Blau W, Ruhle M, Carroll D L, Identification of electron donor states in n-doped carbon nanotubes [J]. Nano. Lett.,2001,1:457-460.
    [96]Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M, New metallic allotropes of planar and tubular carbon [J]. Phys. Rev. Lett.,2000,84:1716-1719.
    [97]Deifallah M, McMillan P F, Cora F, Electronic and structural properties of two-dimensional carbon nitride graphenes [J]. J. Phys. Chem. C,2008,112:5447-5453.
    [98]Martins T B, Miwa R H, da Silva A J R, Fazzio A, Electronic and transport properties of boron-doped graphene nanoribbons [J]. Phys. Rev. Lett.,2007,98:196803.
    [99]Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G, Synthesis of b-doped graphene by chemical vapor deposition and its electrical properties [J]. Nano Lett.,2009,9: 1752-1758.
    [100]Gierz I, Riedl C, Starke U, Ast C R, Kern K, Atomic hole doping of graphene [J]. Nano Lett.,2008,8:4603-4607.
    [101]Li H, Cheng F, Duft A M, Adronov A, Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling [J]. J. Am. Chem. Soc.,2005,127: 14518-14524.
    [102]Sun S T, Cao Y W, Feng J C, Wu P Y, Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets [J]. J. Mater. Chem.,2010,20:5605-5607.
    [103]Castelafn M, Martinez G, Merino P, Martin-Gago J A, Segura J L, Ellis G, Salavagione H J, Graphene functionalisation with a conjugated poly(fluorene) by click coupling:striking electronic properties in solution [J]. Chemistry,2012,18:4965-4973.
    [104]Jin Z, McNicholas P T, Shih C-J, Wang Q H, Paulus G L C, Hilmer A J H, Shimizu S, Strano M S, Click chemistry on solution-dispersed graphene and monolayer CVD graphene [J]. Chem. Mater.,2011,23:3362-3370.
    [105]Gao C, He H K, Zhou L, Zheng X, Zhang Y. Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry [J]. Chem. Mater.,2009,21: 360-370.
    [106]Xu X J, Luo Q Y, Lv W, Dong Y Q, Lin Y, Yang Q H, Shen A G, Pang D W, Hu J M, Qin J G, Li Z, Functionalization of graphene sheets by polyacetylene:convenient synthesis and enhanced Emission emission [J]. Macromol. Chem. Phys.,2011,212:768-773.
    [107]Strom T A, Dillon E P, Hamilton C E, Barron A R, Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene [J]. Chem. Commun.,2010,46: 4097-4099.
    [108]He H, Gao C, General approach to individually dispersed, highly soluable and conductive graphene nanosheet functional ized by nitrene chemistry [J]. Chem. Mater.,2010,22: 5054-5064.
    [109]Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S, Functionalization of graphene:covalent and non-covalent approaches, derivatives and applications [J]. Chem. Rev.,2012,112:6156-6214.
    [110]B. Zhang, G. Liu, Y. Chen, L. J. Zeng, C. X. Zhu, K. G. Neoh, C. Wang, E. T. Kang, Chem. Eur. J.,2011,17,13646-13652.
    [111]Vadukumpully S, Gupta J, Zhang Y P, Xu G Q, Valiyaveettil S, Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility [J]. Nanoscale,2011,3:303-308.
    [112]Quintana M, Montellano A, Castillo A E D, Van Tendeloo G, Bittencour C, Prato M, Selective organic functionalization of graphene bulk or graphene edges [J]. Chem. Commun.,2011,47:9330-9332.
    [113]Choi J, Kim K-J, Kim B, Lee H, Kim S, Covalent functionalization of epitaxial graphene by azidotrimethylsilane [J]. J. Phys. Chem. C,2009,113:9433-9435.
    [114]Sun Z Z, James D K, Tour J M, Graphene chemistry:synthesis and manipulation [J]. J. Phys. Chem. Lett.,2011,2:2425-2432.
    [115]Suggs K, Reuven D, Wang X Q, Electronic properties of cycloaddition-functionalized graphene [J]. J. Phys. Chem. C,2011,115:3313-3317.
    [116]Huisgen R,1,3-dipolar cycloadditions. Past and Future, Angew. Chew. Int. Ed. Engl.,1963, 10,565-598.
    [117]Tagmatarchis N, Prato M, Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions [J]. J. Mater. Chem.,2004,14:437-439.
    [118]Paiva M C, Simon F, Novais R M, Ferreira T, Proenca M F, Xu W, Besenbacher F, Controlled functionalization of carbon nanotubes by a solvent-free multicomponent approach [J]. Acs Nano,2010,4:7379-7386.
    [119]Tagmatarchis N, Prato M, The addition of azomethine ylides to [60]fuIlerene leading to fulleropyrrolidines [J]. Synlett,2003,6:768-779.
    [120]Lan Y, Zou L F, Cao Y, Houk K N, Computational methods yo calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles [J]. J. Phys. Chem. A, 2011,115:13906-13920.
    [121]Rahm M, Brinck T, Novel 1,3-dipolar cycloadditions of dinitraminic acid:Implications for the chemical stability of ammonium dinitramide [J]. J. Phys. Chem. A,2008,112: 2456-2463.
    [122]Ess D H, Distortion, interaction, and conceptual DFT perspectives of MO4-/Alkene (M=Os, Re, Tc, Mn) cycloadditions [J]. J. Org. Chem.,2009,74:1498-1508.
    [123]Lin T T, Zhang W D, Huang J C, He C B, A DFT study of the amination of fullerenes and carbon nanotubes:reactivity and curvature [J]. J. Phys. Chem. B,2005,109:13755-13760.
    [124]Quintana M, Spyrou K, Grzelczak M, Browne W R, Rudolf P, Prato M, Functionalization of graphene via 1,3-dipolar cycloaddition [J]. Acs Nano,2010,4:3527-3533.
    [125]Wu X M, Cao H Q, Li B J, Yin G, The synthesis and fluorescence quenching properties of well soluble hybrid graphene material covalently functionalized with indolizine [J]. Nanotechnology,2011,22:075202 (1-8).
    [126]Georgakilas V, Bourlinos A B, Zboril R, Steriotis Y A, Dallas P, Stubos A K, Trapalis C, Organic functionalisation of graphenes [J]. Chem. Comm.,2010,46:1766-1768.
    [127]Vadukumpully S, Gupta J, Zhang Y, Xu G Q, Valiyaveettil S. Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility [J]. Nanoscale,2011,3:303-8.
    [128]Kohn W, Becke A D, Parr R. G, Density Functional Theory of Electronic Structure [J]. J. Phys. Chem.,1996,100:12974-12980.
    [129]Thomas L H, The calculationo fatomic fields [J]. Math. Proc. Cambridge Philos. Soc.,1927, 23:542-548.
    [130]Fermi E, Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente [J]. Z. Phys.,1928, 48:73-79.
    [131]Kohn W, Sham L J, Self-consistent equations including exchange and correlation effects [J]. Phys. Rev.,1965,140:A1133-1138.
    [132]Becker A.D, Density functional exehange-energy approximation with correet asymptotie behavior [J]. Phys. Rev.,1988,38:3098-3100.
    [133]Lee C, Yang W, Parr R G, Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37:785-789.
    [134](a) Denis P A, Lribarne F, The 1,3 dipolar cycloaddition of azomethine ylides to graphene, single wall carbon nanotubes, and C60 [J]. Int. J. Quantum Chem.,2010,110:1764-1771. (b) Denis P A, Lribarne F, Cooperative behavior in functionalized graphene:Explaining the occurrence of 1,3 cycloaddition of azomethine ylides onto grapheme, Chem. Phys. Lett., 2012,550:111-117.
    [135]Cao Y, Houk K N, Computational assessment of 1,3-dipolar cycloadditions to graphene [J]. J. Mater. Chem.,2011,21:1503-1513.
    [136]Denis P A, Chemical Reactivity of Lithium Doped Monolayer and Bilayer Graphene [J]. J. Phys. Chem. C,2011,115:13392-13398.
    [137]Li B, Cao X H, Ong H G, Cheah J W, Zhou X Z, Yin Z Y, Li H, Wang J L, Boey F, Huang W, Zhang H, All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes [J]. Adv. Mater.,2010,22: 3058-3061.
    [138]Wang X, Zhi L J, Mullen K, Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Lett.,2008,8:323-327.
    [139]Bekyarova E, Itkis M E, Ramesh P, Berger C, Sprinkle M, de Heer W A, Haddon R C, Chemical nodification of epitaxial graphene:spontaneous grafting of aryl groups [J]. J. Am. Chem. Soc,2009,131:1336-1337.
    [140]Yan X, Cui X, Li B S, Li L S, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics [J]. Nano Lett.,2010,10:1869-1873.
    [141]Zhong X, Jin J, Li S W, Niu Z Y, Hu W Q, Li R, Ma J T, Aryne cycloaddition:highly efficient chemical modification of graphene [J]. Chem. Comm.,2010,46:7340-7342.
    [142]Bayazit M K, Coleman K. S, Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides [J]. J. Am. Chem. Soc.,2009,131: 10670-10676.
    [143]Campidelli S, Ballesteros B, Filoramo A, Diaz D D, de la Torre G, Torres T, Rahman G M A, Ehli C, Kiessling D, Werner F, Sgobba V, Guldi D M, Cioffi C, Prato M, Bourgoin J P, Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via "click chemistry" [J]. J. Am. Chem. Soc.,2008,130:11503-11509.
    [144]Zhang X Y, Hou L L, Cnossen A, Coleman A C, Ivashenko O, Rudolf P, van Wees B J, Browne W R, Feringa B L, One-pot functionalization of fraphene with porphyrin through cycloaddition reactions [J]. Chem. Eur. J.,2011,17:8957-8964.
    [145]Liu L H, Lerner M M, Yan M D, Derivitization of pristine graphene with well-defined chemical functionalities [J]. Nano Lett.,2010,10:3754-3756.
    [146]Lomeda J R, Doyle C D, Kosynkin D V, Hwang W F, Tour J M, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets [J]. J. Am. Chem. Soc,2008,130:16201-16206.
    [147]Steenackers M, Gigler A M, Zhang N, Deubel F, Seifert M, Hess L H, Lim C H Y X, Loh K P, Garrido J A, Jordan R, Stutzmann M, Sharp I D, Polymer brushes on graphene [J]. J. Am. Chem. Soc.,2011,133:10490-10498.
    [148]Sarkar S, Bekyarova E, Niyogi S, Haddon R C, Diels-Alder chemistry of graphite and graphene:graphene as diene and dienophile [J]. J. Am. Chem. Soc.,2011,133:3324-3327.
    [149](a) Jiang D E, Sumpter B G, Dai S, How do aryl groups attach to a graphene sheet? [J]. J. Phys. Chem. B,2006,110:23628-23632. (b) Wang X Q, Jiang D E, Dai S, Surface modification of ordered mesoporous carbons via 1,3-dipolar cycloaddition of azomethine ylides [J]. Chem. Mater.,2008,20:4800-4802.
    [150]Jiang D E, Sumpter B G, Dai S, Unique chemical reactivity of a graphene nanoribbon's zigzag edge [J]. J. Chem. Phys.,2007,126:134701-134707.
    [151]Becke A D, Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5653.
    [152]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, J. A. Montgomery J A, Jr., Vreven T, Kudin K N, J. C. Burant, et al. Gaussian 03; Revision C.02 ed.; Gaussian, Inc., Wallingford, CT,2004.
    [153]Wang H M, Wang Y, Han K L, Peng X J, A DFT study of Diels-Alder reactions of o-quinone methides and various substituted ethenes:selectivity and reaction mechanism [J]. J. Org. Chem.,2005,70:4910-4917.
    [154]Woodward R B, Hoffmann R, The conservation of orbital symmetry [J]. Angew. Chem. Int. Ed.,1969,8,781-853.
    [155]Liao H Y, Su M D, Chung W S, Chu S Y, Density functional study of the relative reactivity in the concerted 1,3-dipolar cycloaddition of nitrile ylide to disubstituted ethylenes, Int. J. Quantum Chem.,2001,83:318-323.
    [156]Froudakis E, Hydrogen interaction with single-walled carbon nanotubes:a combined quantum-mechanics/molecular-mechanics study [J]. Nano Lett.,2001,1:179-182.
    [157]Castelain M, Salavagione H, Segura J L, "Click"-functionalization of [60]fullerene and graphene with an unsymmetrically functionalized diketopyrrolopyrrole (DPP) derivative [J]. Org. Lett.,2012,14:2798-2801.
    [158]Hou S F, Su S J, Kasner M L, Shah P, Patel K, Madarang C J, Formation of highly stable dispersions of silane-functionalized reduced graphene oxide [J]. Chem. Phys. Lett.,2010, 501:68-74.
    [159]Hou S F, Kasner M L, Su S J, Patel K, Cuellari R, Highly sensitive and selective dopamine biosensor fabricated with silanized graphene [J]. J. Phys. Chem. C,2010,114: 14915-14921.
    [160]Ritter K A, Lyding W, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons [J]. Nat. Mater.,2009,8:235-242.
    [161]Zhang H, Bekyarova E, Huang J W, Zhao Z, W. Bao Z, Wang F L, Haddon R C, Lau C N, Aryl functionalization as a route to band gap engineering in single layer graphene devices [J]. Nano Lett.,2011,11:4047-4051.
    [162]Liu H T, Liu Y Q, Zhu D B, Chemical doping of graphene [J]. J. Mater. Chem.,2011,21: 3335-3345.
    [163]Zhang B, Chen Y, Liu G, Xu L Q, Chen J N, Zhu C X, Neoh K G, Kang E T, Push-Pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory [J]. J. Polym. Sci., Part A:Polym. Chem.,2012,50:378-387.
    [164]Vullo V, Danks T N, Wagner G, Cycloaddition of benzonitrile oxide to acetonitrile, propyne and propene-a theoretical study of the reaction mechanism and regioselectivity [J]. Chem. Eur. J.,2004,9:2046-2052.
    [165]Yuan Y L, Chen P Y, Ren X Y, Wang H M, A theoretical investigation into the 1,3-dipolar cycloaddition of azidotrimethylsilane onto nanographene [J]. Chemphyschem,2012,13: 741-750.
    [166]Su M D, Liao H Y, Chung W S, Chu S Y, Cycloadditions of 16-electron 1,3-dipoles with ethylene. a density functional and CCSD(T) study [J]. J. Org. Chem.,1999,64:6710-6716.
    [167]Lu X, Xu X, Wang N Q, Zhang Q E,A DFT study of the 1,3-dipolar cycloadditions on the C(100)-2x1 surface [J]. J. Org. Chem.,2002,67:515-520.
    [168]Lu X, Tian F, Xu X, Wang N Q, Zhang Q E, A theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes [J]. J. Am. Chem. Soc.,2003,125:10459-10464.
    [169]Ess D H, Houk K N, Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity [J]. J. Am. Chem. Soc.,2007,129:10646-10647.
    [170]Ess D H, Houk K N, Theory of 1,3-dipolar cycloadditions:distortion/interaction and frontier molecular orbital models [J]. J. Am. Chem. Soc.,2008,130:10187-10198.
    [171]Montgomery J A, Frisch M J, Ochterski J W, Petersson G A, A complete basis set model chemistry. VII. Use of the minimum population localization method [J]. J. Chem. Phys., 2000,112:6532-6542.
    [172]Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Boh-mann J A, Morales C M, F. Weinhold,2004, NBO version 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA.
    [173]Gaussian 09, Revision A.I, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, et al. Gaussian, Inc., Wallingford CT,2009.
    [174]Lu T, Chen F W, Multiwfn:a multifunctional wavefunction analyzer [J]. J. Comp. Chem., 2012,33:580-592.
    [175]Hammond G S, A correlation of reaction rates,'hammond postulate'[J]. J. Am. Chem. Soc., 1954,77:334-338.
    [176]Chen H L, Wu S K, Lu Y H, Computational study on reaction mechanisms and kinetics of RNCN (R= H, F, Cl, Br, CH3) radicals with NO [J]. J. Phys. Chem. A,2012,116: 3267-3273.
    [177]Parr R G, Yang W T, Density functional approach to the frontier-electron theory of chemical reactivity [J]. J. Am. Chem. Soc.,1984,106:4049-4050.
    [178]Huisgen R, Kinetics and mechanism of 1,3-dipolar cycloadditions [J]. Angew. Chew. Int. Ed. Engl.,1963,2:633-645.
    [179]Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S, The structure of suspended graphene sheets [J]. Nature,2007,446:60-63.
    [180]Ruoff R, Graphene:Calling all chemists [J]. Nat. Nanotechnol.,2008,3:10-11.
    [181]Son Y W, Cohen M L, Louie S G, Half-metallic graphene nanoribbons [J]. Nature,2006, 444:347-349.
    [182]Wang Z H, Ge Z L, Zheng X X, Chen N, Peng C, Fan C H, Huang Q, Polyvalent DNA-graphene nanosheets "click" conjugates [J]. Nanoscale,2012,4:394-399.
    [183]Pujari B S, Kanhere D G, Density functional investigations of defect-induced mid-gap states in graphene [J]. J. Phys. Chem. C,2009,113:21063-21067.
    [184]Cortijo A, Vozmediano M A H, Electronic properties of curved graphene sheets [J]. Rruophys. Lett.,2007,77:47002.
    [185]Carpiol A, Bonilla L L, de Juan F, Vozmediano M A H, Dislocations in graphene [J]. New J. Phys.,2008,10:053021.
    [186]Wang X R, Tabakman S M, Dai H J, Atomic layer deposition of metal oxides on pristine and functionalized graphene [J]. J. Am. Chem. Soc.,2008,130:8152-8153.
    [187]Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A, Direct imaging of lattice atoms and topological defects in graphene membranes [J]. NANO Lett.,2008,8: 3582-3586.
    [188]G6mez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern, K, Kaiser U, Atomic structure of reduced graphene oxide [J]. Nano Lett.,2010,10: 1144-1148.
    [189]Boukhvalov D W, Katsnelson M I, Tuning the gap in bilayer graphene using chemical functionalization:Density functional calculations [J]. Phys. Rev. B,2008,78: 085413-085418.
    [190]Partovi-Azarl P, Namiranianl A, Stone-Wales defects can cause a metal-semiconductor transition in carbon nanotubes depending on their orientation [J]. J. Chem. Phys. Lett.,1986, 128:501-503.
    [191]Zurek E, Pickard C J, Autschbach J, Density functional study of the 13C NMR chemical shifts in single walled carbon nanotubes with Stone-Wales defects [J]. J. Phys. Chem. C, 2008,112,11744-11750.
    [192]Denis P A. Density functional investigation of thioepoxidated and thiolated graphene [J]. J. Phys. Chem. C,2009,113:5612-5619.
    [193]Ghaderi N, Peressi M, First principle study of hydroxyl functional groups on pristine, defected graphene and graphene epoxide [J]. J. Phys. Chem. C,2010,114:21625-21630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700