稀土掺杂Ti/TiO_2电极制备及其用于油田废水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主要研究稀土掺杂Ti/TiO_2电极的制备及其性能,并以油田废水为目标有机物,对其降解工艺进行了优化。
     本论文对影响稀土掺杂Ti/TiO_2电极性能的主要因素:热处理温度、热处理时间和稀土的掺杂量等内容进行了较详细的研究。通过所制备电极对油田废水处理效果的评价,确定了三种电极的制备工艺,分别为:Ce掺杂Ti/TiO_2电极,热处理温度为450℃,热处理时间为1.5h,Ce的掺杂量质量比为100:1.5时为佳;Nd掺杂Ti/TiO_2电极,热处理温度为540℃,热处理时间为1h,Nd的掺杂量质量比为100:1.0时,电极性能最佳;混合稀土(La、Ce、Nd及微量Fe)掺杂Ti/TiO_2电极,热处理温度为500℃,热处理时间为1.5h,混合稀土的掺杂量质量比以100:1.5时为佳。
     采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电子能谱(EDX)等检测分析方法对不同稀土掺杂Ti/TiO_2电极的涂层晶体结构、电极表面形貌、电极表面涂层的元素组成进行了表征及分析。结果表明,掺杂稀土后电极的表面凹凸感变小,表面更为平滑、致密,几乎没有裂缝,均匀一致的高密度小碎片结构提高了导电性和催化性能。掺杂后TiO_2电极的晶体结构主要为锐钛矿型。稀土的掺入使得晶相所对应的衍射峰强度变弱且峰形宽化,这说明适量稀土的掺杂使涂层表面TiO_2晶粒细化了,稀土元素较好地分散在TiO_2晶格内部,增加TiO_2吸引质子或电子的能力,提高TiO_2电极的导电性和电催化活性。
     本论文对油田废水的降解工艺进行了优化。得出最佳降解工艺参数为:混合稀土(La、Ce、Nd及微量Fe)掺杂Ti/TiO_2电极为阳极,Ti电极为阴极,电极浸入面积2cm2,电极间距1cm,以NaCl为电解质,浓度为0.2mol·L-1,pH=3~4,电解电压16.5V,电解时间60min。在最佳工艺条件下对油田废水CODcr的去除率平均达到87.3%。紫外光谱分析表明,降解过程中污染物直接矿化为CO2和H2O,无其它中间产物生成。
This paper focused on the preparation of rare earth-doped Ti/TiO_2 electrode and investigation on its characteristics. Taking oil-field wastewater as model substrate, the optimization of degradation processes was studied.
     The temperature of thermal treatment and the time of thermal treatment and the doping amount of rare earth were studied in detail, which were the main influence factors on the characteristics of electrodes. On the basis of the degradation of oil-field wastewater, the preparation conditions of the three kinds of electrodes were determined. The optimal temperature and time and the proportion of doping amount of Ce-doped Ti/TiO_2 electrode were 450℃, 1.5h and 100:1.5, respectively. The best temperature and time and the proportion of doping amount of Nd-doped Ti/TiO_2 electrode were 540℃, 1h and 100:1.0, respectively. The best temperature and time and the proportion of doping amount of La/Ce/Nd mischmetal-doped Ti/TiO_2 electrode were 500℃, 1.5h and 100:1.5, respectively.
     The micrograph and structure of the electrode surface and the element composition of surface layers were analyzed by SEM, EDX and XRD. The electrode surface became more smooth, more dense and almost no cracks after rare earth doping. The uniform of the high-density structure of the small debris may have a larger surface area and surface roughness, which was in favor of catalytic reactions. The crystal structure of TiO_2 electrode was anatase. Experimental results showed that doping of rare earth at a proper proportion was in favor of grain refining, it could increase the specific surface area of the coating and help to enhance the electrical conductivity and electro-catalytic ability of electrodes. Rare earth elements might be highly dispersed in TiO_2 internal lattice to increase the ability of attracting electrons or protons, and then to improve the catalytic activity of TiO_2 electrode.
     The degradation processes of oil-field wastewater were studied. The result indicated that the best effect was obtained when La/Ce/Nd mischmetal-doped Ti/TiO_2 electrode was anode. When electrode buried area and interval were 2cm2 and 1cm, electrolytic concentration of NaCl was 0.2mol·L-1, pH was 3-4, the electrolysis voltage was 16.5V and the electrolysis time was 60min, the best treatment process was obtained. The removal efficiency of CODcr were 87.3%. Under the best treatment process, contaminant was directly mineralized to CO2 and H2O without other intermediate substances.
引文
[1]王雅琼,王鹏,沙红霞,许文林,陆路德.RuO2含量对Ti/SnO2+Sb2O3/RuO2 +PbO2阳极性能的影响[J].稀有金属材料与工程,2007,36(3):424~427.
    [2]薛彩霞,梁镇海.Ti/SnO2+Sb2O4+CF/PbOx电极的制备及其性能研究[J].太原理工大学学报,2007,38(5):431~434.
    [3]冯玉杰,李效岩,尤宏.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [4] Bong-Ok Park, C.D.Lokhande, Hyung-Sang Park, et al. Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution[J]. Materials Chemistry and Physics, 2004, 87(1): 59-66.
    [5] C.P.De Pauli, S.Trasatti. Composite materials for electrocatalysis of O2 evolution IrO2+SnO2 in acid solution[J]. Journal of Electroanalytical Chemistry, 2002, 538(39): 145-151.
    [6] Ji-Ming Hu, Jian-Qing Zhang, Chu-Nan Cao. Oxygen evolution reaction on IrO2-based DSA type electrodes: kinetics analysis of Tafel lines and EIS[J]. International Journal of Hydrogen Energy, 2004, 29(8): 791-797.
    [7] Veronica Saez, Jose Gonzalez-García, Jesus Iniesta et al. Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound frequency[J]. Electrochemistry Communications, 2004, 6(8): 757-761.
    [8] Comninellis, Vercesi G P. Characterization of DSA-type oxygen evolving electrodes choice of coating[J]. Applied Electrochemistry, 1991, 21(4): 335-345.
    [9]黄永昌.钛基金属氧化物电极[J].腐蚀与防护,1999,20(5):251~257.
    [10] Isamu Kurisawa, Masaaki Shiomi, Shigeharu Ohsumi. Development of positive electrodes with an SnO2 coating by applying a sputtering technique for lead-acid batteries[J]. Journal of Power Sources, 2001, 95(1-2): 125-129.
    [11] Pramod S Patil. Versatility of chemical spray pyrolysis technique[J]. Materials Chemistry and Physics, 1999, 59( 3): 185-198.
    [12] B.Correa Lozano, CH.Conminellis, A.DeBattisti. Electrochemical properties of SnO2-Sb2O5 electrodes prepared by spray pyrolysis technique[J]. J.Applied Electrochemistry, 1996, 2(26): 683-688.
    [13] E. Elangovan, K. Ramesh, K. Ramamurthi. Studies on the structural and electrical properties of spray deposited SnO2:Sb thin films as a function of substrate temperature[J]. Solid State Communications, 2004, 130(8): 523-527.
    [14] Deliang He, Sun-il Mho. Electrocatalytic reactions of phenolic compounds at ferric ion Co-doped SnO2 electrodes[J]. Journal of Electroanalytical Chemistry, 2004, 568(56): 19-27.
    [15] M.E. Makgae, C.C. Theron, W.J. Przybylowicz, et al. Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol[J]. Materials Chemistry and Physics, 2005, 92(2-3): 559-564.
    [16] Ji-ming Hu, Jian-qing Zhang, Chu-nan Cao. Thermolytic formation and microstructure of IrO2+Ta2O5 mixed oxide anodes from chloride precursors[J]. Thermochimica Acta, 2003, 403(2): 257-266.
    [17] B.Correa-Lozano, CH.Comninellis, A.DeBattisti. Preparation of SnO2-Sb2O5 films by the spray pyrolysis technique[J]. Applied Electrochemistry, 1996, 52(26): 83-89.
    [18] Jaeyoung Lee, Hamilton Varela, Sunghyun Uhm, et al. Electrodeposition of PbO2 onto Au and Ti substrates[J]. Electrochemistry Communications, 2000, 2(9): 646-652.
    [19] Shahram Ghasemi, Mir Fazllolah Mousavi, Mojtaba Shamsipur. Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone: A morphological study[J]. Electrochimica Acta, 2007, 53(2): 459-467.
    [20] Serdar Abaci, Ugur Tamer, Kadir Pekmez, et al. Performance of different crystal structures of PbO2 on electrochemical degradation of phenol in aqueous solution[J]. Applied Surface Science, 2005, 240(1-4): 112-119.
    [21] D. Devilliers, M. T. Dinh Thi, E. Mahé, et al. Cr(III) oxidation with lead dioxide-based anodes[J]. Electrochimica Acta, 2003, 48(28): 4301-4309.
    [22] J.H.Grimim, D.G.Bessaeabov. Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor[J]. Applied Electrochemistry, 2000, 30(1-3): 293-302.
    [23] Yang Liu, Zhiying Li, Jinghong Li. IrO2 / SnO2 electrodes: prepared by sol-gel process and their electrocatalytic for pyrocatechol[J]. Acta Materialia, 2004, 52(3): 721-727.
    [24] Ailton J. Terezo , Ernesto C. Pereira. Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes[J]. Materials Letters, 2002, 53(4-5): 339-345.
    [25] Rolf Koole, Peter Liljeroth, Stefan Oosterhout, etc al. Chemisorption Determines the Photovoltage of a Ti/TiO_2/Au/Dye Internal Electron Emission Photovoltaic Cell[J]. The Journal of Physical Chemistry B, 2005, 109: 9205-9208.
    [26] Julija Sabataityt?, Ilona Oja, Frank Lenzmann, etc al. Characterization of nanoporous TiO_2 films prepared by sol-gel method[J]. Comptes Rendus Chimie, 2006, 9(5-6): 708-712.
    [27] Jari Aromaa, Olof Forsén. Evaluation of the electrochemical activity of a Ti-RuO2-TiO_2 permanent anode[J]. Electrochimica Acta, 2006, 51(27): 6104-6110.
    [28] S.M.A. Shibli, V.S. Dilimon. Development of TiO_2-supported nano-RuO2-incorporated catalytic nickel coating for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1104-1111.
    [29] Julian R. Osman, Joe A. Crayston, Allin Pratt. RuO2-TiO_2 mixed oxides prepared from the hydrolysis of the metal alkoxides[J]. Materials Chemistry and Physics, 2008, 110(2-3): 256-262.
    [30] A. Abdel Aal, Hanaa B. Hassan, M.A. Abdel Rahim. Nanostructured Ni-P-TiO_2 composite coatings for electrocatalytic oxidation of small organic molecules[J]. Journal of Electroanalytical Chemistry, 2008, 619-620: 17-25.
    [31]许效红,王民,候云,王栋,王弘,王卓.低压MOVCD生长TiO_2薄膜结构和电性能研究[J].功能材料,2002,33(3):312~314.
    [32]秦友兰,冯斌,王银峰.光纤TiO_2薄膜的制备及理化特性研究[J].功能材料,33(2):203~206.
    [33]何志,赵永年,邹广田,王学进.薄膜沉积过程中TiO_2的金红石相向锐钛矿相转变[J].光散射学报,1999,11(3):198~202.
    [34] H. El Hajjouji, F. Barjea, E. Pinellib, et al. Photochemical UV/TiO_2 treatment of olive mill wastewater (OMW)[J]. Bioresource Technology, 2008, 99(15): 7264-7269.
    [35]姚红军,汪荣昌,戎瑞芬,等.TiO_2薄膜氧敏特性研究[J].半导体学报,1997,18(10):761~764.
    [36] K.A.Vorotilov, E.V.Orlova, V.I.Petrovsky. Sol-gel TiO_2 films on silicon substrates[J]. Thin Solid Films, 1992, 207(1): 180-184.
    [37] S.Schilleretal, G. Beister, W. Sieber, et al. Influence of deposition parameters on the optical and structural properties of TiO_2 films produced by reactive d.c. plasmatron sputtering[J]. Thin Solid Films, 1981, 83(2): 239-245.
    [38] Ji Sun Ima, Min Il Kima, Young-Seak Lee. Preparation of PAN-based electrospun nanofiber webs containing TiO_2 for photocatalytic degradation[J]. Materials Letters, 2008, 62(21-22): 3652-3655.
    [39]徐光宪.稀土(上册)[M].北京:冶金工业出版社,1978.
    [40]和川二郎.稀土的最新应用技术[M].北京:化学工业出版社,1985.
    [41]季德春,李小年.稀土及其氧化物在催化中的作用[J].化工生产与技术,1999,6(4):23~29.
    [42]翁端,李梅,吴晓东.加强稀土在能源环境领域中的基础应用研究滞动轻稀土产业的发展[J].稀土,2002,23(6):71~76.
    [43]张勇,万金泉.工业废水污染控制方法的新进展[J].工业水处理,2001,21(1):9~12.
    [44]杨建红,刘业翔.稀土掺杂对DSA电极性能的影响[J].有色金属(冶金版),1993,4(2):326~333.
    [45]邹忠,李颉,丁凤其.稀土Eu掺杂对金属氧化物涂层阳极电催化性能的影响[J].中国有色金属学报,2001,11(1):91~94.
    [46]王运革,林纪筠.含稀土化合物的金属阳极涂层研究[J].华东师范大学学报(自然科学版),1995,20(4):60~64.
    [47]谢中,刘业翔.高温析氯电催化剂用稀土氧化物的性能[J].中国稀土学报,2000,18(1):31~34.
    [48]梁金生,金宗哲,等.稀土/纳米TiO_2的表面电子结构[J].中国稀土学报,2002,20(1):74~76.
    [49] Al-Futaisi Ahmed, Jamrah Ahmad, Yaghi Basma, et al. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman[J]. Journal of Hazardous Materials, 2007, 141(3): 557-564.
    [50] Machín-Ramírez C, Okoh A I, Morales D, et al. Slurry-phase biodegradation of weathered oily sludge waste[J]. Chemosphere, 2008, 70(4): 737-744.
    [51] Chen Guohua, He Gaohong. Separation of water and oil from water-in-oil emulsion by freeze/thaw method[J]. Separation and Purification Technology, 2003, 31(1): 83-89.
    [52] Poulopoulos S G, Voutsas E C, Grigoropoulou H P, et al. Stripping as a pretreatment process of industrial oily wastewater[J]. Journal of Hazardous Materials, 2005, 117(2-3): 135-139.
    [53]侯士兵,玄雪梅,贾金平,等.油田废水处理技术的研究与应用现状[J].上海化工,2003(9):11~14.
    [54] da Rosa Jailton J, Rubio Jorge. The FF (flocculation–flotation) process[J]. Minerals Engineering, 2005, 18(7): 701-707.
    [55] James-Smith Monica A, Alford Kile, Shah Dinesh O. Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size[J]. Journal of Colloid and Interface Science, 2007, 315(1): 307-312.
    [56] SU Delin, WANG Jianlong, LIU Kaiwen, et al. Kinetic performance of oil-field produced water treatment by biological aerated filter[J]. Chinese Journal of Chemical Engineering, 2007, 15(4): 591-594.
    [57] Nicolaisen Bjarne. Developments in membrane technology for water treatment[J]. Desalination, 2003, 153(1-3): 355-360.
    [58] Hayat S, Ahmad Iqbal, Azam Z M, et al. Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics[J]. Bioresource Technology, 2002, 84(2): 159-163.
    [59] Moosai Roshni, Dawe Richard A. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup[J]. Separation and Purification Technology, 2003, 33(3): 303-314.
    [60] Rubio J, Souza M L, Smith R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155.
    [61]唐善法,刘芬.气浮技术处理聚合物驱含油污水研究[J].石油天然气学报,2006,28(4):131~133.
    [62] Li Xiao-bing, Liu Jiong-tian, Wang Yong-tian, et al. Separation of oil from wastewater by column flotation[J]. Journal of China University of Mining and Technology, 2007, 17(4):546-551, 577.
    [63] Hami Malik L, Al-Hashimi M A, Al-Doori M M. Effect of activated carbon on BOD and CODcr removal in a dissolved air flotation unit treating refinery wastewater[J]. Desalination, 2007, 216(1-3): 116-122.
    [64] Ahmad A L, Sumathi S, Hameed B H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC[J]. Chemical Engineering Journal, 2006, 118(1-2): 99-105.
    [65] Zeng Defang, Wu Juanjuan, Kennedy John F. Application of a chitosan flocculant to water treatment[J]. Carbohydrate Polymers, 2008, 71(1): 135-139.
    [66] Pinotti A, Zaritzky N. Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes[J]. Waste Management, 2001, 21(6): 535-542.
    [67] Owen A T, Fawell P D, Swift J D. The preparation and ageing of acrylamide/acrylate copolymer flocculant solutions[J]. International Journal of Mineral Processing, 2007, 84(1-4): 3-14.
    [68] Zeng Yubin, Yang Changzhu, Zhang Jingdong, et al. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation[J]. Journal of Hazardous Materials, 2007, 147(3): 991-996.
    [69] Ca?izares Pablo, Martínez Fabiola, Lobato Justo, et al. Break-up of oil-in-water emulsions by electrochemical techniques[J]. Journal of Hazardous Materials, 2007, 145(1-2): 233-240.
    [70] Ofir E, Oren Y, Adin A. Comparing pretreatment by iron of electro-flocculation and chemical flocculation[J]. Desalination, 2007, 204(1-3): 87-93.
    [71] Yang Chen-Lu. Electrochemical coagulation for oily water demulsification [J]. Separation and Purification Technology, 2007, 54(3): 388-395.
    [72] Ivonne Linares-Hernández, Carlos Barrera-Díaz, Gabriela Roa- Morales, et al. A combined electrocoagulation–sorption process applied to mixed industrial wastewater[J]. Journal of Hazardous Materials, 2007, 144(1-2): 240-248.
    [73]任连锁,郑杰.电气浮处理油田废水技术研究与应用[J].小型油气藏,2006,11(1):58~61.
    [74] Jiang Jiaqian, Graham Nigel, AndréCecile. Laboratory study of electro-coagulation–flotation for water treatment[J]. Water Research, 2002, 36(16): 4064-4078.
    [75] Mostefa N Moulai, Tir M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions[J]. Centre Universitaire Yahia Fares, 2004, 161 (2): 115-121.
    [76] Murugananthan M, Bhaskar Raju G, Prabhakar S. Removal of sulfide, sulfate and sulfite ions by electro coagulation[J]. Journal of Hazardous Materials, 2004, 109(1-3): 37-44.
    [77]王东莉,梁政.电磁油田废水处理[J].设计与研究,2006,33(5):13~15.
    [78]刘佳鑫,龚萍.电磁脉冲水处理技术在重钢浊环水系统的应用[J].冶金动力,2007(4):59~61.
    [79]蔺爱国,刘培勇,刘刚,等.膜分离技术在油田含油污水处理中的应用研究进展[J].工业水处理,2006,26(1):5~8.
    [80] Yu Shuili, Lu Yan, Chai Baoxiang. Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes[J]. Desalination, 2006, 196(1-3): 76-83.
    [81] Song Chengwen, Wang Tonghua, Pan Yanqiu. Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment[J]. Separation and Purification Technology, 2006, 51(1): 80-84.
    [82] Um Mi-Jung, Yoon Seong-Hoon, Lee Chung-Hak. Flux enhancement with gas injection in crossflow ultrafiltration of oily wastewater[J]. Water Research, 2001, 35(17): 4095-4101.
    [83] Tomaszewska Maria, Orecki Aleksander, Karakulski Krzysztof. Treatment of bilge water using a combination of ultrafiltration and reverse osmosis[J]. Desalination, 2005, 185(1-3): 203-212.
    [84] Hua F L, Tsang Y F, Wang Y J, et al. Performance study of ceramic microfiltration membrane for oily wastewater treatment[J]. Chemical Engineering Journal, 2007, 128(2-3): 169-175.
    [85] Kriipsalu Mait, Marques Marcia, Nammari Diauddin R, et al. Bio-treatment of oily sludge: The contribution of amendment material to the content of target contaminants, and the biodegradation dynamics[J]. Journal of Hazardous Materials, 2007, 148(3): 616-622.
    [86] Sirianuntapiboon Suntud, Ungkaprasatcha Ongorn. Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems[J]. Bioresource Technology, 2007, 98(14): 2749-2757.
    [87]李恒进,田超,谢玉文.油田油田废水生化处理技术研究及应用[J].生产与环境,2006,6(8):27~29.
    [88] Li Qingxin, Kang Congbao, Zhang Changkai. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium[J]. Process Biochemistry, 2005, 40(2): 873-877.
    [89] Scholz W, Fuchs W. Treatment of oil contaminated wastewater in a membrane bioreactor[J]. Water Research, 2000, 34(14): 3621-3629.
    [90]王亭沂,周海刚,毕毅,唐永安.油田废水电化学绿色处理技术的应用与评价[J].石油工业技术监督,2007,1:18~20.
    [91]王新强,梁利平,谢娟.絮凝沉降-NaClO/活性炭氧化-吸附法处理采油废水实验研究[J].工业水处理,2006,26(12):60~62.
    [92]杨永军,郑树贵,朱成君.用化学组合工艺处理油田油田废水[J].石油化工腐蚀与防护,2006,23(2):1~4.
    [93] Benito JoséManuel, Ríos Guillermo, Ortea Enrique, et al. Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters[J]. Desalination, 2002, 147(1-3): 5-10.
    [94] Zhong Jing, Sun Xiaojuan, Wang Cheli. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration[J]. Separation andPurification Technology, 2003, 32(1-3): 93-98.
    [95] Li Yijiu, Wang Feng, Zhou Guoding. Aniline degradation by eletrocatalytic oxidation[J]. Chemosphere, 2003, 53(10): 1229-1234.
    [96] Koper Marc T M. Combining experiment and theory for understanding electrocatalysis[J]. Journal of Electroanalytical Chemistry, 2005, 574(2): 375-386.
    [97] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Research, 2003, 37(10): 2399-2407.
    [98] Trasatti S. Electrocatalysis: understanding the success of DSA[J]. Electrochimica Acta, 2000, 45(15-16): 2377-2385.
    [99]汪文兵,龙晋明,郭忠诚.钛基金属氧化物涂层电极的研究进展[J].电镀与涂饰,2006,25(7):46~48.
    [100] Santos Marcos R G, Goulart Marilia O F, Tonholo Josealdo, et al. The application of electrochemical technology to the remediation of oily wastewater[J]. Chemosphere, 2006, 64(3): 393-399.
    [101] Iniesta J, Michaud P A, Panizza M, et al. Electrochemical oxidation of phenol at boron-doped diamond electrode[J]. Electrochimica Acta, 2001, 46(23): 3573-3578.
    [102] Pacheco M J, Mor?o A, Lopes A, et al. Degradation of phenols using boron-doped diamond electrodes: A method for quantifying the extent of combustion[J]. Electrochimica Acta, 2007, 53(2): 629-636.
    [103] Bellagamba R, Michaud P A, Comninellis Ch, et al. Electro-combustion of polyacrylates with boron-doped diamond anodes[J]. Electrochemistry Communications, 2002, 4(2): 171-176.
    [104] Chen Guohua. Electrochemical technologies in wastewater treatment [J]. Separation and Purification Technology, 2004, 38(1): 11-41.
    [105]徐海生,肖传发,赵建宏,等.板框式电化学反应器流动规律及对反应的影响[J].化学反应工程与工艺,2006,22(1):27~32.
    [106] Nierhaus Thomas, Vanden Abeele David, Deconinck Herman. Direct numerical simulation of bubbly flow in the turbulent boundary layer of a horizontal parallel plate electrochemical reactor[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 542-551.
    [107] Sakairi Masatoshi, Yamada Masashi, Kikuchi Tastuya, et al. Development of three-electrode type micro-electrochemical reactor on anodized aluminum with photon rupture and electrochemistry[J]. Electrochimica Acta, 2007, 52(21): 6268-6274.
    [108] Perez M, Rodriguez-Cano R, Romero L I, et al. Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater[J]. Bioresource Technology, 2007, 98(18): 3456-3463.
    [109] De Francesco Maurizio, Costamagna Paola. On the design of electrochemical reactors for the treatment of polluted water[J]. Journal of Cleaner Production, 2004, 12(2): 159-163.
    [110] Szpyrkowicz L, Daniele S, Radaelli M, et al. Removal of NO3? from water by electrochemical reduction in different reactor configurations[J]. Applied Catalysis B:Environmental, 2006, 66(1-2): 40-50.
    [111] Yavuz Yusuf, Koparal A Sava?. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode[J]. Journal of Hazardous Materials, 2006, 136(2): 296-302.
    [112] Bannari A, Cirtiu C, Kerdouss F, et al. Turbulence intensity in an electrochemical cell: Effect on reactor performance[J]. Chemical Engineering and Processing, 2006, 45(6): 471-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700