机车黏着极限态动态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国重载列车的牵引吨位已达2万吨,随着9600 kW大功率机车投入使用,当轨道表面黏着条件较差,以及在曲线通过时牵引黏着力降低的条件下,机车牵引功率的充分发挥,受到轮轨间有效黏着利用的限制。黏着不足时轮对会产生刚性滑动现象,轮轨间的黏滑振动状态将影响机车黏着牵引,并产生复杂的动力学问题。研究轮轨黏着利用极限态时机车的动态性能,揭示黏着极限态机车的典型振动机理,合理匹配转向架参数,使机车充分发挥轮轨黏着性能并有效地改善驱动系统动态作用力。对铁路机车重载牵引具有理论意义和工程应用价值。本文的主要工作如下:
     (1)为了更好地表达机车打滑的物理过程,提出滑动率概念,通过引入摩擦系数的温度影响系数F以及Kalker权重系数K,修正小自旋非线性轮轨切向力计算程序,可得到不同轨面黏着条件时轮轨的黏滑特性曲线,能够体现机车驱动动力学研究中轮轨切向力特点。
     (2)建立单轮对驱动系统的简化动力学模型,根据平均滑动率和动态滑动率分析了黏着极限条件下轮对的黏滑振动稳定性及黏滑振动过程中轮对纵向振动规律。结果表明轮对黏滑振动稳定性取决于轮轨切向力系数的梯度特性,减小轮轨平均滑动率和动态滑动率是增加黏滑振动稳定性和提高机车恢复黏着能力的最根本途径。黏滑振动时,当轮对纵向振动频率为驱动系统扭转固有频率整数倍时,轮对纵向振动发生共振,并且为2倍时共振振幅最大。
     (3)研究机车打滑时驱动系统及轮对的自激振动,分析黏滑特性曲线梯度特性对驱动系统振动稳定性以及振动频率的影响。结果表明机车打滑过程中,轮轨黏着负斜率特性将使得系统不稳定,振动能量增加,并且激发出振动系统具有固有振动频率的振动。
     (4)建立弹性定位单轮对横向稳定性分析模型,考虑轮轨平均滑动率影响,研究了驱动工况下单轮对横向稳定性的基本规律。结果表明由于轮轨黏着的饱和特性,驱动工况下轮轨纵向切向力的增加会引起轮对摇头力矩减小,使得轮对横向稳定性增加,但纵向切向力增加引起横向切向力减小反而对轮对横向稳定性不利。
     (5)利用多刚体动力学软件SIMPACK和数值仿真软件SIMULINK,以HXDIB型机车为例,建立了机电、控制一体化的机车动力学仿真模型,其中驱动系统模型中考虑了轮轨黏滑特性曲线的负斜率特性、电机机械特性以及电传动控制策略的影响。以同一转向架内各轮对角速度及角加速度差判断轮对的黏着状态,通过计算黏着度利用模糊控制方法对机车实施黏着控制。结果表明,该方法可显著提高机车的黏着利用程度。
     (6)分析机车黏滑振动稳定性以及黏滑振动时轮对的纵向振动等基本规律。阐明黏滑振动机理并据此对机车驱动系统参数进行优化匹配。增大机车转向架结构参数如一系纵向定位刚度、联轴器扭转刚度、电机吊挂刚度和牵引杆纵向刚度有利于提高机车的黏着性能,并需要合理匹配电机吊挂刚度和轮对的一系纵向定位刚度,避免机车打滑时因轮对纵向共振而降低机车黏着性能。
     (7)根据建立的机电一体化的机车虚拟样机,并实施黏着控制,使机车工作在轮轨黏着极限工况。结果表明,轮轨处于黏着极限态,轮对的蛇行运动使得左右两侧车轮纵向滑动率容易进入黏滑特性曲线负斜率段,机车驱动系统能够激发具有固有振动频率的振动,并且轮对纵向振动与旋转振动相互耦合。通过比较分析各元部件的振动频率及其相互影响规律,总结避免机车驱动系统引发结构共振的参数匹配原则。
With high power locomotives being put into use, the full use of traction power is restricted by the effective utilization of the wheel/rail adhesion. The saturation and negative slope characteristics of adhesion cause locomotive some complex dynamic problems. Important theoretical and engineering applications can be made if the locomotive's dynamic behaviors under saturated adhesion are understood and the bogie structure parameters can be matched reasonably to improve traction force and to reduce the dynamic force. The main works of this paper are as follows:
     (1)In order to better express the physical process of the locomotive slip, we put forward the concept of slip rate and modify the W/R tangential force calculation program of Shen and Kalker simplified theory by introducing the temperature influence coefficient F of friction and the Kalker weight coefficient K. The different shapes of the wheel-rail adhesion curves can be obtain and that reflect the driving dynamics study of wheel-rail tangential force characteristics.
     (2)We use a simplified dynamic model with a single wheelset driving system to illuminate the mechanism and dynamic characteristics of the stick-slip vibration and the longitudinal vibration based on the concepts of mean and dynamic slip rates. The stick-slip vibration is a dynamic process alternating between stick state and slip state. The stability of this process depends on the positive and negative damping of the wheelset adhesion. We performed theoretical analysis on the stick-slip vibration according to the mean and the dynamic slip rate. It shows that decreasing the mean slip rate and the dynamic slip rate will improve the stability of the stick-slip vibration. When the stick-slip vibration occurs, the rotary and the longitudinal vibrations of the wheelset are coupled by the longitudinal tangential force. The longitudinal vibration frequencies of the wheel-set are integral multiples of the natural frequency of the driving system. The largest energy occurs at the frequency twice of the nature frequency.
     (3)We study the self-excited vibration of locomotive drive system under slip and the effect of negative slop of W/R adhesion on the vibration stability of drive system. The phase trajectory of the torsional vibration was drawn and verified to be a stable limit cycle which signifies self-excited vibration. Frequencies of torsional vibration with different combined operating modes were calculated, showing the vibration frequency is in exact accordance with natural frequency of drive system when the self-excited vibration happens.
     (4)A simplified dynamic model of single wheel set which average slip rate was taken into consideration was used to study the lateral stability of wheel set under driving mode. The hunting stability was analyzed on different adhesion modes between wheel and rail. The results show that the lateral stability of wheel set under driving is superior to that under coasting. The primary reason for improvement is the decreased yaw torque of the wheel set with gradient decreases of adhesion cure because of saturation.
     (5)A train system dynamics model integrated with the electromechanical and control system is established to simulate the stick-slip vibration phenomenon under saturated adhesion to verify the theoretical analysis. The model considers the negative slope characteristic of wheel-rail adhesion on large slippage, magnetic saturation and torque mechanical property of the pulling motor. A method of detecting the differences of the biggest and smallest value of different axis angular velocity and acceleration in the same bogie and real time calculating the adhesiveness of wheel-rail to control motor by fuzzy control strategy was put forward. The simulation results show:the adhesion control can make the wheel-rail effective adhesive coefficient maintain peak of adhesion to improve the performance of locomotive traction under different rail surface and running condition. The hunting of wheel-set cause fluctuation of the adhesiveness and their main frequencies are identical.
     (6)A train system dynamics model integrated with the electromechanical and control system is established to simulate the stick-slip vibration phenomenon under saturated adhesion to verify the theoretical analysis. The simulation result shows that:increasing the longitudinal axle guidance stiffness, the motor suspension stiffness, and the drawbar longitudinal stiffness is beneficial to improve the locomotive adhesion performance and the stability of the stick-slip vibration. When the stick-slip vibration occurs, the main frequencies of the wheelset longitudinal vibration are equal to the motor pitching frequency and its integral multiples. Therefore, it requires to optimization the matching of the motor suspension stiffness and the longitudinal axle guidance stiffness to avoid the longitudinal resonance of the structure.
     (7)According to the established the virtual prototype locomotive integration of mechanical and electrical and adhesion control model and making the locomotive to worke on saturated adhesion conditions. The results show that the natural vibration frequency of the locomotive can be excitated on the saturated adhesion easily compare to the coast condition. The frequencies of locomotive drive system and their mutual influence are analyzed. We sum up the parameter matching principle of drive system to avoid resonance on the saturated adhesion condition.
引文
[1]Breyer W. SGP investigates torsional vibrations in driven axles. Rallways Gazette International. 1978,8.
    [2]黄伟.高速动力车黏滑振动稳定性分析.铁道学报,1994(3).
    [3]赵金光.DF11G型机车轮对踏面剥离成因探讨.内燃机车,2006年5月,第5期:25-27.
    [4]金学松,刘启跃.轮轨摩擦学.北京:中国铁道出版社,2004.
    [5]张斌,付秀琴.铁路车轮、轮箍踏面剥离的类型及形成机理.中国铁道科学,2001,22(2):73-78.
    [6]D.H. Stone, B. R.Rajkumar. Theoretical and experim-ental study of wheel spalling in heavy haul hopper cars. Tenth International Wheelset Congress,1992,92:1-8.
    [7]张波.钢轨波磨的模拟实验研究.西南交通大学硕士学位论文,2001.
    [8]Stempina G. Ueber das dynamische Verhalten von Lokomotivetreibachsen bei Antrieb durch Drehstrom-Asynchron-Fahrmotoren. Ph.D. Muenchen Deutschland,1978.
    [9]Zobory, Istvan.Dynamic processes in the drive systems of railway traction vehicles in the presence of excitation caused by unevennesses in the track[J]. Vehicle System Dynamics, v 14, n 1-3, Jun,1985, p 33-39
    [10]Hirotsu, Tetsuji. Self-excited vibration during slippage of parallel cardan drives for electric railcars[J]. JSME International Journal, v 30, n 266, Aug,1987, p 1304-1310
    [11]Pawelczyk, Marek. Influence of some excitations on rotary motion perturbations of electric locomotive drive system. Vehicle System Dynamics, v 16, n 1,1987, p 1-16
    [12]Curt A.Swenson.AC Traction Locomotives for Heavy Haul.The Fifth International Heavy Haul Railway conference.Beijing, China.1993.
    [13]Polach, Oldrich.Influence of locomotive tractive effort on the forces between wheel and rail.20th International Congres of Theoretical and Applied Mechanics,2000, p 7-22
    [14]Muller S.; Kogel R. Numerical simulation of roll-slip oscillations in locomotive drives. Zeitschrift fur Angewandte Mathematik und Mechanik.2001.v81.Suppl.p:s61-64.
    [15]Leva S, Morando A P, Colombaioni P. Dynamic Analysis of a High-Speed Train. Vehicular Technology,2008,57(1):107-119.
    [16]孙翔.高黏着利用机车的系统设计.西南交通大学学报,1994年第3期.
    [17]孙翔.机车的传动、驱动、控制与黏着.铁道学报,1994,16(增刊)
    [18]吴永芳.电传动机车驱动系统动力学初步研究.成都:西南交通大学硕士学位论文.1998.
    [19]吴永芳.架悬式驱动系统振动稳定性分析.铁道学报,1992,2.
    [20]吴永芳.机车动轮驱动系统的机电耦合分析.内燃机车.1992,3.
    [21]张红军,陈喜红,孙永鹏.我国200km/h速度等级高速客运机车转向架平台设计分析.铁道学报.2007,29(4):101-106
    [22]罗赞,罗世辉,金鼎昌.架悬机车驱动装置悬挂参数及结构的研究.中国铁道科学,2005,26(5):57-60.
    [23]金学松,张立民.高速机车单轮对牵引力矩数值分析.机械工程学报,1999(6).
    [24]张卫华,周文祥,陈良麒.高速轮轨黏着机理试验研究,铁道学报,2000(4).
    [25]李江结,马健,彭浑水.机车黏着控制的基本原理和方法.机车电传动.2002(6).
    [26]汪进军.列车黏着控制系统的滑行检测及控制方法研究.交通运输.2006(7).
    [27]王辉,肖建.机车模糊黏着控制及其仿真研究.机车电传动.2002(3).
    [28]廖双晴.基于虚拟样机技术的机车黏着控制仿真平台研究.成都:西南交通大学硕士学位论文.2005.
    [29]万广.机车黏着控制技术现状与发展.机车电传动,1996(3).
    [30]王辉.基于多分辩率分析的模糊系统理论及其在机车黏着控制中的应用.成都:西南交通大学博士论文.2003.
    [31]王德志,詹斐生,余也艺.轮轨黏着机制和黏着控制.铁道部科学研究院科学技术情报研究所.1990
    [32]R.Rizzo,D.Iznnuzzi.Indirect friction force identification for application in traction electric drives. Mathematics and Computers in Simulation.2002.
    [33]S.Senini, F.Finders, W.Oghanna.Dynamic Simulation of Wheel Rail interaction for Locomotive traction studies. http://www.ieeexplore. ieee.org.1992.
    [34]Kadowaki S, Ohishi K, Yasukawa S. et al. Anti-skid re-adhesion control based on disturbance observer considering air brake for electric commuter train. Advanced Motion Control, 2004,25(1):607-612
    [35]Shimizu Y, Ohishi K, Sano T, et al. Anti-slip/skid Re-adhesion Control Based on Disturbance Observer Considering Bogie Vibration, Power Conversion Conference-Nagoya,2007. PCC'072-5 April 2007:1376-1381
    [36]Kadowaki S, Ohishi K, Miyashita I. Anti-skid re-adhesion control using tangential force estimator based on disturbance observer for electric commuter train.2004,16(2):1124-1129.
    [37]孙琼.高速铁路轮轨黏滑特性及其试验研究.北京:中国铁道科学研究院博士论文.1998.
    [38]F.W.Carter. On the action of locomotive driving wheel, Proc. Roy. Soc. Ser.A, V.112, p.151,1926
    [39]H.Fromm. Berechnung des Schlupfes beim Rollen deformierbarer Scheiben. Zeitschrift fur angewandte Mathematik und Mechanik. p.27,1927
    [40]K.L.Johnson. Surface interaction between elastically loaded bodies under tangential forces, Proc. Roy. Soc. Ser.A, V.230,p.531,1958
    [41]J.Vermeulen, K.L.Johnson. Contact of nonspherical bodies transmitting tangential forces. J. of Applied Mechanics, V.31, p.338,1964
    [42]D.J.Heines, E.Ollerton. Contact stress distributions on elliptical contact surfaces subjected to radial and tangential forces, Proc. Inst. Mech. Engrs., V.179, Part 3,1963
    [43]J. J. Kalker. On the rolling contact of two elastic bodies in the presence of dry friction. Thesis Delft, 1967
    [44]J. J. Kalker. On the rolling contact of two elastic bodies in the presence of dry friction:Numerical Results, Delft progress Report 64,1967
    [45]J.J.Kalker著,李自力译.三维弹性体的滚动接触.西南交通大学出版社,1993
    [46]Z.Y.Shen, J.K.Hedrick, J.A.Elkins. Acomparison of alternative creep-force models for rail vehicle dynamic analysis. In:The dynamics of vehicle, Ed. J.K.Hedrick, Proc. Of the 8th IAVSD Symposium, MIT, Cambridge, MA.,Swets and Zeitlinger, Lisse, the Netherlands, p.591,1984
    [47]C.Liu, B.Paul. Rolling contact with friction and non-hertzian pressure distribution. Trans. ASME, J. of Appl.Mech., V.56, p.50,1989
    [48]K.L.Johnson著,徐秉业等译.接触力学,高等教育出版社,1992.
    [49]J.P.Pascal, G.Sauvage. New method for reducing the multi-contact wheel/rail problem to one equivalent rigid contact patch. Proc.12th IAVSD Symposium, Lyon,1991
    [50]J.Piotrowski. A theory of wheel-set forces for two-point contact between wheel and rail, Vehicle System Dynamics, V.11,1982
    [51]GWang, K.Knothe. The influence of inertia forces on steady state rolling contact. Acta Mechanica, V.79,p.221,1989
    [52]S.E.Newland. On the time-dependent spin creep of a railway wheel. J. of Mech. Eng. Sci., V.24, p.55, 1982
    [53]K.Knothe, A.Groβ-Thebing. High-frequency contact mechanics:the derivation of frequency dependent creep coefficients. Proc. of the Inst. Mechanics and Engineering, V.198, p.167,1984
    [54]K.Knothe, A.Groβ-Thebing. A derivation of frequency dependent creep coefficients based on an elastic half-space model. Vehicle System Dynamics, V.15, p.133,1986
    [55]A.Groβ-Thebing. Frequency-dependent creep coefficients for three-dimensional rolling contact problems. Vehicle System Dynamics, V.18, p.359,1989
    [56]A.Groβ-Thebing. A lineare modellierung des instationaren Rollkontaktes von Rad und Schiene. Dissertation, TU Berlin,1993
    [57]A.Groβ-Thebing, K.Knothe, K.Hempelmann. Wheel-rail contact mechanics for short wavelengths rail irregularities. Proc.12th IVASD Sym., Lyon, France, Aug.25-30,1991
    [58]N.Kikuchi, J.T.Oden. Contact problems in elasticity:a study of variational inequalities and finite element methods. SIAM Studies in applied Mathematics, Philadephia,1988
    [59]J.T.Oden, J.A.C.Martins. Models and computational methods for dynamic friction phinomena. Computational methods in applied mechanical engineering, V.52, p.527,1985
    [60]J.Padovan, S.Tovichakchaikul. Finite element analysis of steadily moving contact fields. Computer and Structures, V.18, No.2, p.191,1984
    [61]K.L. Johnson. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane. J. of applied mechanics, V.25, p.339,1958
    [62]T.Y.Poon. An experimental study of the shear traction distribution in rolling with spin. Wear, V.10, No.1,p.61,1967
    [63]A.J.C.Lee, E.Ollerton. The photoelastic investigation of rolling with spin. VD-Berichte, No.103, p.25,1966
    [64]S.Kumar, B.R.Rajkumar, C.A.Sciammarella. Experimental investigation of dry frictional behaviour in rolling contact under traction and braking conditions. Friction and Traction,7th Leeds-Lyon Sym. on Tribology, Leeds,1980, p.207
    [65]王夏秋,刘钟华:JD—1轮轨摩擦学模拟试验机.西南交通大学出版社.1989
    [66]X.Q.Wang. Experimental study of behaviour of adhesion and creep between wheel and rail. Proc. of 1st International Sym. on Tribology, Ed. Y.S.Jin, Beijing,1993, p.541
    [67]T.Ohyama. Tribological studies on adhesion phenomena between wheel and rail at high speeds. Wear, V.114, p.263,1991
    [68]KOANSOK B, KEIJI K, TSUNAMITSU N. An experimental investigation of transient traction characteristics in rolling-sliding wheel/rail contacts under dry-wet conditions [J]. Wear,2007, 263(1-6):169-179.
    [69]金雪岩,刘启跃,王夏秋.轮轨黏着-蠕滑特性试验研究.铁道学报.2000.1
    [70]张卫华,周文祥,陈良麒.轮轨黏着机理试验研究.铁道学报.2000.2
    [71]张卫华,黄丽湘,陈建政.具有水介质条件下的轮轨黏着特性试验研究.铁道学报.1999.4
    [72]金学松,沈志云.轮轨滚动接触力学的发展.力学进展.2001.1
    [73]裴有福,金元生,温诗铸.轮轨黏着的影响因素及其控制措施.国外铁道车辆.1995.2
    [74]V.Sergeant,昊胜红.影响黏着利用的因素.变流技术与电力牵引.2000.6
    [75]陈泽深.轮轨间黏着机理的再论识.铁道机车车辆.1995.1
    [76]E.Niccolini, Y.Berthier. Wheel-rail adhesion:laboratory study of "natural" third body role on locomotives wheels and rails. Wear.2005(258).
    [77]大野薰,王成功.轮轨表面的污染及黏着.国外铁道车辆.1989.1
    [78]伴巧,叶娟.水膜对轮轨黏着的影响.国外内燃机车.2000.6
    [79]杨翊仁,张继业,赵华.水介质对轮轨黏着特性的影响.铁道学报.2004.2
    [80]O. Polach. A fast non-steady state creep force model based on the simplified theory. Vehicle System Dynamics Supplement 33(1999),pp.728-739.
    [81]王福天.车辆系统动力学.上海:上海铁道大学出版社.2004.
    [82]Ertz M, Knothe M. Thermal stresses and shakedown in wheel/rail contact. Archive of Applied Mechanics.2003,72(10):1521-1533.
    [83]Polack 0. Afast wheel-rail force calculation computer code. Vehicle System Dynamics,1999, 33(sup.):728-739.
    [84]姚远,张红军,罗赞,金鼎昌.机车传动系统扭转-轮对纵向耦合振动分析.第十届中国科协年会论文集.2008
    [85]姚远,张红军,罗赟,金鼎昌.机车打滑时轮对纵向振动研究.机械工程学报,2009(),7.
    [86]罗世辉,金鼎昌,陈清.轮对纵向振动与机车车辆相关问题研究.铁道学报,2005,27(3):26-34.
    [87]马卫华.轮对纵向振动及其相关动力学影响研究成都:西南交通大学博士论文,2007.
    [88]孙翔.万向轴驱动机车的黏着机理探讨.内燃机车.1985.5
    [89]刘学毅,印洪.钢轨波形磨耗的影响因素及减缓措施.西南交通大学学报,2002,37(5):10-14.
    [90]WU W X, SMITH J H, BRICKLE B V. The effects of misaligned wheelsets and rolling surface conditions on the formation of rail corrugations. Proceedings of the Second Miniconference on Contact Mechanics and Wear of Rail/Wheel Systems, Budapest,1996:333-340.
    [91]任少云,包继华,张建武等.牵引车在大负荷拖载工况下传动系自激振动建模与仿真研究.振动与冲击,2005,24(6):95-101.
    [92]郑联珠,张友坤,李俊明等.轮式车辆动力传动系自激振动研究(Ⅲ).农业工程学报,1997,13(1):39-44.
    [93]泽深,王成国.铁道车辆动力学与控制.北京:中国铁道出版社,2004.
    [94]姚远,张红军,陈康.机车打滑时传动系统的自激扭转振动.西南交通大学学报(自然科学版),2008,43(6):762-766.
    [95]姚远,张红军,罗赟,金鼎昌.机车传动系统扭转与轮对纵向耦合振动稳定性.交通运输工程学报.2009,2.
    [96]黄成荣,詹斐生.机车非线性横向稳定性分析的数值分叉方法.铁道学报,1994,16(2):1-5.
    [97]曾京.车辆系统的蛇行运动分叉及极限环的数值计算.铁道学报.1996,18(3).
    [98]王开云,翟婉明,封全保.机车牵引状态下曲线通过导向特性研究.中国铁道科学,2006,27(2):71-76.
    [99]姚远,张红军,罗赟.驱动工况单轮对横向稳定性研究.西南交通大学学报.2010.2
    [100]王秋允.200km/h等级机车整体驱动系统方案研究.成都:西南交通大学硕士学位论文.2007.
    [101]王秋允,张红军.机车电机主动齿轮轴轴承布置分析.机车电传动.2007.1
    [102]罗赟,陈国胜,张红军.HXD1型电力机车转向架设计的探讨.2009.4
    [103]王书林,赵茜.电力牵引控制系统.北京:中国电力出版社.2005.
    [104]汤蕴缪,张奕黄花菜,范瑜.交流电机动态分析.北京:机械工业出版社.2005.
    [105]YAMASHITA M, WATANBE T. A readhesion control method without speed sensor for electric railway vehicles Electric Machines and Drives Conference. IEMDC'03. IEEE International, 2003:291-296.
    [106]连级三.电力牵引控制系统.北京:中国铁道出版社.1994.
    [107]T.X.Mei, J.h.Yu, D.a.wilson. Wheelset dynamics and wheel slip detection. In:Proc. Of 2006 International Symposium on Speed-up and Service technology for Railway and Maglev System,Chengdu, 2006, Chengdu:Southwest Jiaotong University Press,2006:229-235.
    [108]Ohishi K, Ogawa Y. Adhesion Control of Electric Motor Coach Based on Force Control Using Disturbance Observer. IEEE/IES AMC'2000, Nagoya,2000:328-328.
    [109]Ohishi K, Nakano K, I.Miyashita. Anti-Slip Control of Electric Motor Coach Based on Disturbance Observer. IEEE/AMC'98, Coimbra.1998:580-585.
    [110]Sun K, Uk H, Hak K, eta. Re-adhesion Control with Estimated Adhesion Force Coefficient for Wheeled Robot Using Fuzzy Logic. IEEE/IECON'2004, Pusan.2004:2530-2535.
    [111]王辉,肖建.机车模糊黏着控制及其仿真研究.机车电传动.2002,27(3):19-23.
    [112]黄景春,肖建.基于二维云模型的机车黏着控制及其仿真研究.机车电传动.2007,32(1):11-14.
    [113]宋雷鸣.动车组传动与控制.北京:中国铁道出版社:2007:211-212.
    [114]姚远,张红军,罗赞,金鼎昌.基于虚拟样机的黏着控制研究.铁道学报.2010.3
    [115]姚远,张红军,罗赞,金鼎昌.黏滑振动理论及其在铁路机车中的应用.机械工程学报.2010.6
    [116]M.Lange, A.Groβ-Thebing, K.Knothe, M.Stiebler:"Simulating the traction drive of a locomotive in the development of an adhesion controller", In:The dynamics of vehicles on road and on tracks, Proc. of the 14th IAVSD Sym., Ann Arbor, Michigan, USA, Aug.21-25,1995
    [117]M.Lange, A.Groβ-Thebing, M.Stiebler:"Simulation model of a locomotive traction drive for the development of a non-linearity observer", China-Germany Sym. on high speed railway vehicle track system dynamics, p.50, Ed. Q.R.He & K.Knothe, Beijing, China,1996
    [118]姚远,张红军,罗赞.CRH5型动车万向轴扭转振动.中国铁道科学,2009,30(2):82-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700