浸矿微生物群落基因组芯片的构建与评估及其在酸性环境中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采矿活动使金属硫化矿大量暴露于地表,经过自然与生物的氧化作用导致酸性矿坑水(AMD)的产生,并造成严重的环境污染。酸性矿坑水通常含有高浓度的金属离子与硫酸盐,在AMD这样的极端环境中仍然生存着多种微生物。这些微生物主要是细菌与古菌,它们的活动促进AMD的形成,同时这些微生物对金属的生物浸出以及环境的生物治理也具有重要的意义。
     理解微生物群落的结构,组成和环境适应性有助于阐述微生物与矿石以及AMD环境的生物与非生物因素之间的内在联系。AMD环境相比许多生态环境更加简单,这使得我们可以更加深入地研究微生物群落结构和功能与地理化学变量之间的关系。生物浸出过程中,微生物群落组成以及种群比例受矿石种类与浸出条件影响较大。
     因此,研究酸性矿坑水中的微生物群落结构及其功能活动具有重要的意义。本文利用基因芯片技术对微生物群落的多样性进行了研究。构建并评估了适用于微生物群落结构解析的群落基因组芯片,优化了芯片杂交检测的技术方法,探索了它们在AMD环境微生物群落分析上的应用。
     传统的微生物群落结构研究方法是以培养性状为依据,此类方法可以提供微生物群落多样性以及物种发育史等信息,但是其工作量巨大,对于群落多样性的描述与量化仍有其局限性。迅速发展的以核酸(基因)为基础的分子生物学技术使微生物群落研究有了显著的进展。分子生物学技术的应用过程对目标基因的选择是非常重要的,16SrRNA或rDNA是微生物多样性分析常用的基因,但它有识别能力的限制以及不能直接反应微生物的代谢与生理特征的缺陷。
     目前常用的各种分子生物学分析方法都有这样那样的缺点,没有一种合适的方法可以用来同时快速、适时、准确、灵敏地检测环境微生物群落的多样性。基因芯片是最近发展起来的基因组研究技术之一,现已表明它是在基因组规模上研究基因表达和调控的一种强有力的研究工具,同时它也是研究原核和真核生物基因多态性的极好方法。基因芯片技术可以同时但它在环境微生物研究中的应用尚处于起步阶段,目前已有功能基因组芯片(FGA)、系统发育寡核苷酸芯片(POA)和群落基因组芯片(CGA)等三种基因芯片被用于环境微生物基因表达分析、比较基因组分析和混合微生物群落的分析。
     本文构建并评估适用于菌种鉴定与群落分析的群落基因组芯片。CGA是用51株纯培养微生物的整个DNA基因组构建的,根据可培养的微生物来研究环境微生物群落。此方法类似于反向样品基本组探针法(RSGP),RSGP法是一种利用基因组DNA杂交来鉴定微生物的方法。为了确定此种类型芯片在研究环境微生物多样性的潜在作用,我们就其杂交特异性、检测灵敏度和定量性能进行了研究。在特定实验条件下,CGA的特异性实验表明目的DNA与同种细菌存在特异性杂交,同属之间不存在非特异性杂交,即CGA可区分属内菌种的染色体基因组。对于标记的纯培养基因组DNA,CGA的检测灵敏度大约为0.2 ng,对于混合培养物,检测灵敏度大约为5 ng。对于纯培养微生物,CGA具有定量特性,实验表明在0.2 ng至2000 ng的一定浓度范围内,DNA量与杂交信号强度之间存在明显的线性关系(r~2=0.985)。当将来自与五种微生物的基因组DNA以不同浓度混合并选取五个浓度梯度进行杂交实验,DNA量与杂交信号强度之间显著相关(r~2=0.95)。使用CGA分别杂交AMD环境样品与生物浸出系统样品,杂交结果显示CGA可以有效分辨两者之间微生物群落结构的差异性。CGA表明基因组芯片技术可以根据微生物基因型的变异应用于确定微生物群落的特性。评估微生物的群落组成和结构要求对单个目的种群进行定量分析,通过检测标记的目的DNA浓度和杂交信号强度的关系来探索CGA作为定量工具的杂交能力。所以,群落基因组芯片是一种特异、灵敏和具有定量能力的微生物生态研究的方法。
Mining activities result in the formation of a widespread environmental problem known as acid mine drainage (AMD), which results from chemical and biological oxidation of exposed sulfide minerals. AMD have high concentration of sulfate and toxic metals. A surprisingly wide diversity of microorganisms populate AMD environments. These organisms, mostly bacteria and archaea, can form a chemautotrophically-based biosphere in the subsurface and their activity increases the rate of AMD formation and may be responsible for the bulk of AMD generated.
     The intention of understanding the structure, composition, and adaptive responses of microbial community is to elucidate the factors by examining the interactions of microorganisms and mineral and the biotic and abiotic characteristics of AMD environment. The notable simplicity of AMD environments may permit a more fundamental understanding of biogeochemical interactions and feedbacks and microbial communities structure and function than is possible through study of more complex ecosystems. The composition and proportion of microbes could be influenced by the mineral and the condition of bioleaching systems.
     Culture-independent methods have provided a detailed understanding of the full diversity and phylogeny of organisms populating AMD and bioleaching systems. However, the detection, characterization, and quantification of microbial population diversity in various environments are formidable tasks. Microarray-based genomic technology provides the opportunity to identify thousands of microbial genes or populations simultaneously and the high-throughput advantages necessary for comprehensive characterization of complex microbial community overcomes the limitations of traditional microbial characterization. However, applications of this technology to the characterization of microbial communities are still limited, mainly because of the inherent unknown and miscellaneous composition of these samples. There are several types of microarrays has been successfully applied to microbial ecology research, such as functional gene array (FGA), community genome array (CGA) and phylogenetic oligonucleotide array (POA).
     This research have been developed and evaluated a community genome array (CGA) for bacterial detection and microbial community analysis of acid mine drainage and bioleaching systems. Community genome array (CGA) consisting of whole genomic DNA is used as a probe for identifying microorganisms within the context of microbial communities isolated from 51 closely or distantly related representative bacterial strains. This approach is similar to the Reverse Sample Genome Probing (RSGP) methodology but modification. Based on the results of microarray hybridization, specificity tests with representation pure cultures indicated that the probes on the arrays appeared the be specific to their corresponding target genomic DNA. Cross-hybridization occurred between strains of the same species, but little cross-hybridization was observed among different species. The detection limit was estimated to be approximately 0.2 ng with genomic DNA from a single pure culture bacterial and 5 ng with mixed genomic DNA from mixtures of known amounts of different species' genomic DNA. In addition, strong linear relationships were observed between hybridization signal intensity and the target DNA concentrations from 0.2 ng to 2000 ng for pure cultures and a mixture of DNA template (r~2=0.95 to 0.985). Application of this type of the microarray revealed differences in microbial community composition. The results indicate that this technology has potential as a specific, sensitive and quantitative tool for detection and identification of acidophilic microorganism and the microbial community in acid mine drainage and bioleaching systems, although more work is needed to improve.
引文
[1] Johnson, D.B., Kevin, B. and Hallberg, K.B., The microbiology of acidic mine waters[J]. Research in Microbiology, 2003, 154: 466-473.
    
    [2] Baker, B.J. and Banfield, J.F., Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology, 2003,44: 139-152.
    [3] Silverman, M.P. and Ehrlich, H.L., Microbial formation and degradation of minerals[C]. In: Advances in Applied Microbiology (Umbreit, W.W., Ed.), 1964, 6: 153-206. Academic Press, NewYork.
    [4] Rawlings, D.E., Heavy metal mining using microbes[J]. Annu. Rev. Microbiol., 2002,56:65-91.
    [5] Rawlings, D.E., Dew, D. and Plessis, C, Biomineralization of metal containing ores and concentrates[J]. Trends Biotechnol, 2003, 21: 38-44.
    [6] Boon, M. and Heijnen, J.J., Mechanisms and rate limiting steps in bioleaching of sphalerite, chalcopyrite, and pyrite with Thiobacillus ferrooxidans[C]. In: Biohydrometallurgy Technologies (Torma, A.E., Wey, J.I. and Lakshmanan, V.L., Eds.), Vol. Bioleaching Processes, 1993, 217.
    [7] Suzuki, I., Microbial leaching of metals from sulfide minerals[J]. Biotechnology advances, 2001,19: 119-132.
    [8] Johnson, D.B., Biodiversity and ecology of acidophilic microorganisms[J]. FEMS Microbiology Ecology, 1998, 27: 307-317.
    [9] Hallberg, K.B., Johnson, D.B., Biodiversity of acidophilic prokaryotes[J]. Adv. Appl. Microbiol., 2001, 49: 37-84.
    [10] Leduc, L.G. and Ferroni, G.D., The chemolithotrophic bacterium Thiobacillus ferrooxidans[J]. FEMS Microbiol., 1994, 14: 103-120.
    
    [11] Pronk, J.T., Meijer, W.M., Hazeu, W., et al., Growth of Thiobacillus ferrooxidanson formic acid[J]. Appl. Environ. Microbiol., 1991, 57: 2057-2062.
    
    [12] Pronk, J.T., de Bruyn, J.C., Bos, P., Kuenen, J.G., Anaerobic growth of Thiobacillus ferrooxidans[J]. Appl. Environ. Microbiol., 1992, 58: 2227-2230.
    [13] Das, A., Mishra, A.K., Roy, P., Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans[J]. FEMS Microbiol. Lett., 1992, 97: 167-172.
    [14] Ohmura, N., Sasaki, K., Matsumoto, N., Saiki, H., Anaerobic respiration using Fe~(3+), S~0, and H_2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans[J]. J. Bacteriol., 2002,184: 2081-2087.
    [15] Johnson, D.B., Biodiversity and ecology of acidophilic microorganisms [J]. FEMS Microbiology Ecology, 1998,27: 307-317.
    [16] Schleper, C., Puehler, G., Kuhlmorgen, B., et al., Life at extremely low pH[J]. Nature, 1995,375:741-742.
    [17] Lopez-Archilla, A.I., Marin, I. and Amils, R., Microbialecology of an acidic river: biotechnological applications[C]. In: Biohydrometallurgical Processing II (Vargas, T., Jerez, C.A., Wiertz, J.V. and Toledo, H., Eds.), 1995, 63-74. University of Chile, Santiago.
    
    [18] Norris, P.R., University of Warwick, UK, personal communication.
    [19] Johnson, D.B. and Rang, L., Ejects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal[J]. J. Gen. Microbiol., 1993, 139: 1417-1423.
    [20] Dufresne, S., Bousquet, J., Boissinot, M., et al., Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium[J]. Int. J. Syst. Bacteriol., 1996,46: 1056-1064.
    [21] Brock, T.D. and Gustafson, J., Ferric iron reduction by sulfur- and iron-oxidizing bacteria[J]. Appl. Environ. Microbiol., 1976, 32: 567-571.
    [22] Gyure, R.A., Konopka, A., Brooks, A., et al., Microbial sulfate reduction in acidic (pH 3) stripmine lakes[J]. FEMS Microbiol. Ecol., 1990, 73: 193-202.
    [23] Segerer, A.H., Neuner, A., Kristjansson, J.K., et al., Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic, thermophilic sulfur-metabolizing archaebacteria[J]. Int. J. Syst. Bacteriol., 1986, 36: 559-564.
    [24] Segerer, A.H., Langworthy, T.A. and Stetter, K.O., Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatarafields[J]. Syst. Appl. Microbiol., 1988,10: 161-171.
    [25] Segerer, A.H., Trincone, A., Gahrtz, M., et al., Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales[J]. Int. J. Syst. Bacteriol., 1991, 41: 495-501.
    [26] Cox, J.C., Nicholls, D.G. and Ingledew, W.J., Transmembrane electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferrooxidans[J]. Biochem. J., 1979, 178: 195-200.
    [27] Brassuer, G., Brusella, P., Bonnefoy, V., et al., The bc1 complex of the iron-grown acdiphilic chemolithorophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bcl complex[J]. Biochim. Biophys. Acta., 2002, 1555: 37- 43.
    [28] Elbehti, A., Brasseur, G., Lemesle-Meunier, D., First evidence for existence of an uphill electron transfer through the bcl and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans[J]. J. Bacteriol., 2000, 182: 3602-3606.
    [29] Rawlings, D.E., Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005,4: 13.
    [30] Appia-Ayme, C., Guiliani, N., Ratouchniak, J., et al., Characterization of an operon encoding two c-type cytochromes an aa3-type cytochrome oxidase, and rusticyanin in Acidithiobacillus ferrooxidans ATCC33020[J]. Appl. Environ. Microbiol., 1999, 65: 4781-4787.
    [31] Yarzabal, A., Brasseur, G., Appia-Ayme, C., et al., The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein[J]. J. Bacteriol., 2002, 184: 313-317.
    [32] Yarzabal, A., Brasseur, G. and Bonnefoy, V., Cytochromes c of Acidithiobacillus ferroxidans[J]. FEMS Microbiol. Lett., 2002, 209: 189-195.
    [33] Cox, J.C. and Boxer, D.H., The purification and some properties of rusticyanin, a blue copper protein involved in iron (II) oxidation from Thiobacillus ferroxidans[J]. Biochem. J., 1978,174: 497-502.
    [34] Rohwerder, T. and Sand, W., The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.[J]. Microbiology, 2003,149: 1699-1709.
    [35] Kusano, T., Takeshima, T., Sugawara, K., et al., Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe (II) oxidase[J]. J. Biol. Chem., 1992, 267: 11242-11247.
    [36] Blake, R.C., Schute, E.A., Waskovsky, J., et al., Respiratory components in acidophilic bacteria that respire on iron[J]. Geomicrobiol. J., 1992, 10: 173-192.
    [37] Blake, R.C., Schute, E.A., Greenwood, M.M., et al., Enzymes of aerobic respiration on iron[J]. FEMS Microbiol. Rev., 1993, 11: 9-18.
    [38] Boon, M., Brasser, H.J., Hansford, G.S., et al., Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferroxidans[J]. Hydrometallurgy, 1999, 53: 57-72.
    [39] Hansford, G.S., Recent developments in modeling the kinetics of bioleaching[C]. In Biomining: Theory, Microbes and Industrial Processes Edited by: Rawlings DE. Berlin: Springer-Velag, 1997: 153-175.
    [40] Rawlings, D.E., Tributsch, H. and Hansford, G.S., Reasons why 'Leptospirilium'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology, 1999, 145: 5-13.
    [41] Pronk, J.T., Meulenberg, R., Hazeu, W., et al., Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli[J]. FEMS Microbiol. Rev., 1990, 75: 293-306.
    [42] Schippers, A., Rohwerder, T. and Sand, W., Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal[J]. Appl. Microbiol. Biotechnol., 1999, 52: 104-110.
    [43] Ramrez, P., Guiliani, N., Valenzuela, L., et al., Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds or metal sulphides[J]. Appl. Environ. Microbiol., 2004, 70: 4491-4498.
    
    [44] Brassuer, G, Levican, G, Bonnefoy, V., et al., Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremely acidophilic chemoautotrophic Acidithiobacillus ferrooxidans[J]. Biochim. Biophys. Acta., 2004, 1656: 114-126.
    [45] Wakai, S., Kikumoto, M., Kanao, T., et al., Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1[J]. Biosci. Biotechnol. Biochem., 2004, 68:2519-2528.
    [46] Lewis, A.J. and Miller, J.D.A., Stannous and cuprous ion oxidation by Thiobacillus ferwoxidans[J]. Can. J. Microbiol., 1977, 23: 319-324.
    [47] Nielsen, A.M. and Beck, J.V., Chalcocite oxidation coupled to carbon dioxide fixation by Thiobacillus ferrooxidans[J]. Science, 1972, 175: 1124-1126.
    [48] DiSpirito, A.A. and Tuovinen, O.H., Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans[J]. Arch. Microbiol., 1982, 133: 28-32.
    [49] Sugio, T., Hirayama, K. and Inagaki, K., Molybdenum oxidation by Thiobacillus ferrooxidans[J]. Appl. Environ. Microbiol., 1992, 58: 1768-1771.
    [50] Silver, S. and Phung, L.T., Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Appl. Environ. Microbiol., 2005, 71: 599-608.
    [51] Yarzabal, A., Brasseur, G. and Bonnefoy, V., Cytochromes c of Acidithiobacillus ferroxidans[J]. FEMS Microbiol. Lett, 2002, 209: 189-195.
    [52] Drobner, E, Huber, H. and Stetter, K.O, Thiobacillus ferrooxidans, a facultative hydrogen oxidizer[J]. Appl. Environ. Microbiol, 1990, 56: 2922-2923.
    [53] Norris, P.R, Barr, D.W. and Hinson, D, Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite[C]. In: Biohydrometallurgy: Proceedings of the International Symposium, Warwick 1987 (Norris, P.R. and Kelly, D.P, Eds.), 1988, pp.43-59. Science and Technology Letters, Kew, UK.
    [54] McGinness, S. and Johnson, D.B, Grazing of acidophilic bacteria by a flagellate protozoan[J]. Microbiol. Ecol., 1992, 23: 75-86.
    [55] Johnson, D.B. and Roberto, F.F, Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals[C]. In: Biomining: Theory, Microbes and Industrial Processes (Rawlings, D.E, Ed.), 1997, pp.259-280. Springer-Verlag/ Landes Bioscience, Georgetown, TX.
    [56] Hallmann, R, Friedrich, A, Koops, H. P, et al., Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching[J]. Geomicrobiol. J, 1992, 10: 193-206.
    [57] Norris, P.R, Acidophilic bacteria and their activity in mineral sulfide oxidation[C]. In: Microbial Mineral Recovery (Ehrlich, H.L. and Brierley, C.L., Eds.), 1990, 3-27. McGraw Hill, New York, NY.
    [58] Clark, D.A. and Norris, P.R, Acidimicrobium ferrooxidans gen. nov, sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species[J]. Microbiology, 1996,141:785-790.
    [59] Amann R.I. and Ludwig Schleifer K.H, Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol. Rev, 1995,59: 143-169.
    [60] Dunbar J, White S, Forney L.J. et al, Genetic diversity through the looking glass: effect of enrichment bias[J]. Appl. Environ. Microbiol, 1997, 63: 1326-1331.
    [61] Amann, R., Who is out there? Microbial aspects of biodiversity[J]. Syst. Appl. Microbiol.,2000,23:1-8.
    [62] Stach J.E.M., Bathe S., Clapp J.P., et al., PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods[J]. FEMS Microbiol. Ecol., 2001, 36:139-151.
    [63] Liu, W.T., Marsh T., Cheng H., et al, Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Appl. Eviron. Microbiol., 1997, 63: 4516-4522.
    [64] Sekiguchi H., Tomioka N., T.N, et al., A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis [J]. Biotechnol. Lett., 2001, 23: 1205-1208
    [65] Bond, PL., Smriga, S.P. and Banfield, J.F., Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site[J]. Appl. Environ. Microbiol., 2000, 66: 3842-3849.
    [66] Clegg, C.D., Ritz, K. and Griffiths, B.S., %G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands [J]. Appl. Soil Ecol., 2000, 14: 125-134.
    [67] Theron, J. and Cloete, T.E., Molecular techniques for determining microbial diversity and community structure in natural environments [J]. Crit. Rev. Microbiol., 2000,26: 37-57.
    [68] Gonzalez, J.M. and Moran, M.A., Numerical dominance of the class proteobacteria in coastal sea water[J]. Appl. Eviron. Microbiol., 1997, 63: 4237-4242.
    [69] Sykes P.J., Neoh S.H., et al, Quantification of targets for PCR by use of limiting dilution[J]. Bio. Techniques, 1992, 13: 444-449.
    
    [70] Siebert, P.D. and Larrick, J.W., Competitive PCR[J]. Nature, 1992, 359: 557-558.
    [71] Gilliland, G, Perrin, S., Blanchard, K., et al., Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction[J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 2725-2729.
    [72] Lee, S.Y., Bollinger, J., Bezdicek, D., et al., Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method [J]. Appl. Environ. Microbiol., 1996, 62: 3787-3793.
    [73] Leser, T.D., Boye, M. and Hendriksen., N.B., Survival and activity of Pseudomonas sp. strain B13 (FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton[J]. Appl. Environ. Microbiol., 1990, 61: 1201-1207.
    [74] Becker, K., Pan, D. and Whitely, C.B., Real-time quantitative polymerase chain reaction to assess gene transfer[J]. Hum. Gene Ther., 1999, 10: 2559-2566.
    [75] Higgis, J.A., et al., 5' nuclease PCR assay to detect Yersinia pesits[J]. J. Clin. Microbiol., 1998, 36: 2284-2288.
    [78] Fuchs, T., Burggraf, S., Stetter, K.O., et al., Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeon, isolated from a uranium mine in Germany[J]. Syst. Appl. Microbiol., 1995,18: 560-566.
    [77] Zhou, J., Microarrays for bacterial detection and microbial community analysis[J]. Current Opinion in Microbiology, 2003, 6: 288-294
    [78] Wei, Y., Lee, J.M., Richmond, C, et al, High-density microarray-mediated gene expression profiling of Escherichia coli[J]. J. Bacteriol., 2001, 183: 545-556.
    [79] Ye, R. W., Tao, W., Bedzyk, L., et al., Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions[J]. J. Bacteriol., 2000, 182: 4458-4465.
    [80] Zhou, J. and Thompson, D.K., Challenges in applying microarrays to environmental studies[J]. Curr. Opin. Biotechnol., 2002, 13: 204-207.
    [81] Zhou, J. and Thompson, D.K., Microarrays: applications in environmental microbiology[C]. In Encyclopedia of Environmental Microbiology, Edited by Bitton G. New Youk: John Wiley & Sons, 2002, 14: 1968-1979.
    [82] Wu, L., Thompson, D.K., Li, G, et al. Development and evalution of functional gene arrays for detection of selected genes in the environmental studies in microbiology[J]. Appl. Environ. Microbiol., 2001, 67: 5780-5790.
    [83] Maidak, B.L., Olsen, G.J., Larsen, N., et al., The RDP (Ribosomal Database Project) [J]. Nucleic Acids Res., 1997,25: 109-111.
    [84] Cho, J.C. and James, M.T., Quantitative detection of microbial genes by using DNA microarrays[J]. Appl. Environ. Microbiol., 2002, 68(3): 1425-1430.
    [85] Kemp, W.M., Sampoo, P., Garber, J., et al., Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planctonic respiration and physical exchange processes[J]. Mar. Ecol. Prog. Ser., 1992, 85: 137-152.
    [86] Small, J., Call, D.R., Brockman, F.J., et al., Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays[J]. Appl. Environ. Microbiol., 2001,67:4708-4716.
    [87] Becker, K., Pan, D. and Whitely, C.B., Real-time quantitative polymerase chain reaction to assess gene transfer[J]. Hum. Gene Ther., 1999, 10: 2559-2566.
    [88] Bavykin, S.G., Akowski, J.P., Zakhariev, V.M., et al., Portable system for microbial sample preparation and oligonucleotide microarray analysis[J]. Appl. Environ. Microbiol., 2001, 67: 922-928.
    [89] Urakawa, H., Noble, P.A., Fantroussi, S., et al., Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses[J]. Appl. Environ. Microbiol., 2002, 68: 235-244.
    [90] Wu, L., Thompson, D.K., Liu, X., et al., Microarray-based whole-genome hybridization reveals species-/strain-specific differentiation and relatedness[R]. 102th American Society for Microbiology General Meeting, Salt Lake City, UT, U.S.A.
    [91] Fawcett, P., Eichenberger, P., Losick, R., et al., The transcriptional profile of early to middle sporulation in Bacillus subtilis[J]. Proc. Natl. Acad. Sci., USA, 2000, 97: 8063-8068.
    [92] Sugio, T., Hirayama, K., Inagaki, K., Molybdenum oxidation by Thiobacillus ferrooxidans[J]. Appl. Environ. Microbiol., 1992, 58: 1768-1771.
    [93] Drobner, E., Huber, H., Stetter, K.O., Thiobacillus ferrooxidans, a facultative hydrogen oxidizer[J]. Appl. Environ. Microbiol., 1990, 56: 2922-2923.
    [94] Dopson, M., C. Baker-Austin, Koppineedi, P.R., Bond, P.L., Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic microorganisms[J]. Microbiology-SGM, 2003,149:1959-1970.
    [95] Dunbar, J., Takala, S.M., Barns, J.A., Davis, Kuske, C.R., Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning[J]. Appl. Environ. Microbiol., 1999, 65: 1662-1669.
    [96] Hallberg, K.B., K. Coupland, S. Kimura, Johnson, D.B., Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities[J]. Appl. Environ. Microbiol., 2006, 72: 2022-2030.
    [97] Nielsen AM, Beck JV: Chalcocite oxidation coupled to carbon dioxide fixation by Thiobacillus ferrooxidans[J]. Science, 1972, 175: 1124-1126.
    [98] Rudi, K., Skulberg, O.M., Skulberg, R., et al., Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization[J]. Appl. Environ. Microbiol., 2000 , 66: 4004-4011.
    [99] Gao, H., Yang, Z.K., Gentry, T.Z., et al., Microarray-based analysis of microbial community RNAs by whole-community RNA amplification[J]. Appl. Environ. microbiol., 2007, 73: 563-571.
    [100] Wu, L., Liu, X., Schadt, C.W., et al., Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification[J]. Appl. Environ. microbiol., 2006, 72: 4931-4941.
    [101] Amann, R.I., Ludwig, W., Schleifer, K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol. Rev., 1995,59:143-169.
    [102] Voordouw, G., Voordouw, J.K., Westlake, D.W.S., et al., Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples[J]. Appl. Environ. Microbiol., 1991, 57: 3070-3078.
    [103] Voordouw, G., Voordouw, J.K., Westlake, D.W.S., et al., Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing[J]. Appl. Environ. Microbiol., 1992, 58: 3542-3552.
    [104] Voordouw, G., Jack, T.R., Westlake, D.W.S., et al., Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters[J]. Appl. Environ. Microbiol., 1993, 59: 4101-4114.
    [105] Shen, Y., Stehmeier, L.G., Voordouw, G., Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing[J]. Appl. Environ. Microbiol., 1998, 64: 637-645.
    [106] Bagwell, C.E., Lovell, C.R., Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability[J]. Appl. Environ. Microbiol., 2000, 66: 4625-4633.
    [107] DeRisi, J.L., Iyer, V.R., Brown, P.O., Exploring the metabolic and genetic control of gene expression on a genomic scale[J]. Science, 1997, 278: 680-686.
    [108] Schena, M., Davis, R.W., Brown, P.O., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science, 1995, 270: 467-470.
    [109] Chee, M., Morris, M.S., Fodor, S.P.A., et al., Accessing genetic information with high-density DNA arrays[J]. Science, 1996, 274: 610-614.
    [110] DeRisi, J., Brown, P.O., Trent, J.M., et al., Use of a cDNA microarray to analyse gene expression patterns in human cancer[J]. Nat. Genet., 1996,14: 457-460
    [111] Wodicka, L., Ho, M.H., Lockhart, J., et al., Genome-wide expressionmonitoring in Saccharomyces cerevisiae[J]. Nature Biotech., 1997, 15: 1359-1367.
    [112] Zhang, L., Zhou, W., Kinzler, K.W., et al., Gene expression profiles in normal and cancer cells[J]. Science, 1997,276: 1268-1272.
    [113] de Saizieu, A., Certa, U., Mous, J., et al., Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays[J]. Nat. Biotech., 1998, 16: 45-48.
    [114] Shalon, D., Smith, S.J., Brown, P.O., A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization[J]. Genome Res., 1996, 6: 639-645.
    [115] Guschin, D.Y., Mobarry, B.K., Mirzabekov, A.D., et al., Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology[J]. Appl. Environ. Microbiol., 1997, 63: 2397-2402.
    [116] Hughes, T.R., Mao, M., Lefkowitz, S.M., Ziman, M., et al., Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer [J]. Nat. Biotechnol., 2001,19: 342-347.
    [117] Verdnick, D., Handran, S. and Pickett, S., Key considerations for accurate microarray scanning and image analysis[C]. In: Kamberova, G. (Ed.), DNA Image Analysis: Nuts and Bolts. DNA Press, Salem, Mass, 2002, 83-98.
    [118] Loy, A., Lehner, A., Lee, N., et al., Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment[J]. Appl. Environ. Microbiol., 2002, 68: 5064-5081.
    [119] Franke-Whittle, I.H., Klammer, S.H. and Insam, H., Design and application of an oligonucleotide microarray for the investigation of compost microbial communities[J]. J. Microbiol. Methods, 2005, 62: 37-56.
    [120] Emily, S.Y., Li and Wen-Tso Liu, DNA microarray technology in microbial ecology studies-Principle, applications and current limitations [J]. Microbes Environ. 2003, 18: 175-187.
    [121] Bodrossy, L., Murrell, J.C., Sessitsch, A., Development and validation of a diagnostic microbial microarray for methanotrophs[J]. Environ. Microbiol., 2003, 5: 566-582.
    [122]Koizumi,Y.,Kelly,J.J.,Stahl,D.A.,et al.,Parallel characterization of anaerobic toluene-and ethylbenzene-degrading microbial consortia by PCR denaturing gradient gel electrophoresis,RNA-DNA membrane hybridization,and DNA microarray technology[J].Appl.Environ.Microbiol.,2002,68:3215-3219.
    [123]Peplies,J.,Glockner,F.O.,Amann,R.,Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes[J].Appl.Environ.Microbiol.,2003,69:1397-1407.
    [124]Rhee,S.K.,Liu,X.D.,Zhou,J.Z.,et al.,Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-Mer oligonucleotide microarrays[J].Appl.Environ.Microbial.,2004,70:4303-4317.
    [125]Zhou,J.Z.,Bruns,M.A.,Tiedje,J.M.,DNA recovery from soils of diverse composition[J].Appl.Environ.Microbiol.,1996,62:316-322.
    [126]尹华群.在铜矿矿坑水微生物群落结构与功能研究中基因芯片技术的发展和应用[D].长沙:中南大学,2007.
    [127]Schena,M.,Heller,R.A.,Davis,R.W.,et al.,Microarrays:biotechnology's discovery platform for functional genomics[J].TIBTECH,1998,16:301-306.
    [128]Ramsay,G.,DNA chips:state-of-the art[J].Nat.Biotech.,1998,16:40-44.
    [129]Hughes,S.,Done,S.,Squire,J.,et al.,The use of while genome amplification in the study of human disease[J].Prog.Biophys.Mol.Biol.,2005,88:173-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700