高粱耐盐碱种质资源筛选及木质素合成相关基因鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于石油、天然气和煤炭等不可再生能源的常年开采而逐渐面临资源枯竭,全球正遭遇着越来越严重的能源危机。我国地域广阔、人口众多,资源丰富,但人均资源则相对匮乏,随着我国经济的高速发展,对能源需求量巨大,能源危机更为突出。因此,探索可再生、可持续、无污染、高效清洁的新能源已成为我国乃至全球科学家重点研究的目标之一。生物乙醇作为唯一一种能以液态形式存在的新能源,是我国现阶段最有可能实现产业化生产的主要生物能源产品之一,也是我国生物能源产业发展的重点。以粮食和油料作物为原料来生产乙醇可能会威胁国家粮油食品安全,而植物纤维素则是一种非常有潜力、前景广阔的生物乙醇的生产原料。我国有大量的盐碱地、荒地、次生退化土壤,因此结合我国国情,充分利用好这些宜耕边际性土地,筛选、培育适应性好、抗逆性强、具有较高生物量的能源作物高粱等,为生物乙醇生产提供大量优质原料具有重要意义。
     高梁具有C4植物的高光合效率,抗逆性强,生长期短,适应性广。即使在贫瘠、盐碱、干旱土地上种植也有较高产量和生物量。此外高粱基因组较小,有丰富的种质资源和生物信息学资源,又有大量EMS诱发的突变体,因此有必要选择出其中的耐盐碱种类进行深入研究、分析,培育出能在盐碱地、旱地正常生长发育的能源高粱新品系,对大量黄/褐中脉突变体的研究,有利于从分子机理上了解木质素代谢的调控,为进一步通过基因工程改良能源高粱创造条件。
     植物通过光合作用将绝大部分有机物转化为细胞壁成分,其主要成分为纤维素、半纤维素、木质素。木质素的水解产物影响纤维素酶对纤维素的水解效率,使纤维素转化为乙醇的成本提高。因此有必要系统认识高粱木质素合成及其基因表达调控的分子机制,分离木质素合成调控的关键基因。多种作物黄/褐色中脉(bmr)突变体的木质素含量明显降低,是研究木质素合成及调控的良好试验材料。但是至今为止,仅对少数bmr突变体与木质素合成的关系有所了解,大多数的突变体还有待于进一步研究。
     为了寻找耐盐碱的高粱品种,本论文对美国农业部收集的高梁种质资源进行筛选,获得抗盐碱种质材料,为在盐碱地发展能源植物提供了有用的实验材料;本论文同时通过抑制性差减(SSH)技术分别构建13种bmr突变体混合体与BTx623野生型对照的正、反向差减文库;从正反向文库中挑选cDNA片段制作基因芯片,分析其表达模式;根据基因的表达模式,从中筛选与木质素合成及调控相关的EST片段,并进一步克隆了部分差异表达基因;初步鉴定了这些基因的功能,为高粱及其它能源植物细胞壁成分的改良,培育低木质素的新种类提供了有益的线索。
     具体研究内容及结果包括:
     1.高粱耐盐性种质资源筛选
     根据美国农业部植物研究服务署(USDA-ARS)种植资源系统(National Plant Germplasm System)所收集管理的高粱信息,我们在其收集的1200多份甜高粱中选取锤度大于10,蔗糖含量高于4的甜高粱717份,及四万多份粒用高粱中高度大于2,5米,整齐度小于2.5的粒用高粱4222份,重新编号,进行大规模、高强度(150-200mmol/L NaCl)、长时间(25-40天)的耐盐性筛选。通过对甜高粱的两轮耐盐性筛选,共得到了耐盐株系83个,移栽成活65个株系,其中46个株系收到种子;对普通高粱进行耐盐碱筛选,并移种大田或花盆312个株系,大多数完成生活周期并获得了种子。
     在东营盐碱地中播种了31种筛选得到的耐盐甜高粱,结果表明碱地中甜高粱的出苗率略高于盐碱地。但其总生物量差异不大,盐碱地单株平均重量比碱地高。多数甜高粱在盐碱地中的锤度高于碱地。不同甜高粱的单株种子产量在盐碱地和碱地差异很大。盐碱地生长的甜高粱比同时播种在碱地的甜高粱提早成熟5-7天。
     2.利用SSH和cDNA芯片技术分析bmr突变体和野生型高粱BTx623的表达差异
     为了研究高粱bmr突变体细胞壁合成代谢及调控机制,我们用抑制性差减(SSH)文库和cDNA芯片联用的方式检验了bmr突变体和野生型高粱BTx623的差异表达基因。共得到153个差异表达基因,其中43个在bmr突变体中上调表达,110个基因在bmr突变体中表达受抑制。我们对其中12个差异表达基因进行半定量RT-PCR验证,结果证明了基因芯片数据是正确的。差异表达基因根据功能不同可分为11类:代谢、光合作用、遗传信息的加工、胁迫响应、蛋白命运、信号转导、转运、木质素合成、细胞过程和移动性、发育和调节及其它,其中代谢类的差异表达基因数量最多。光合作用类别的17个差异表达基因中,16个在bmr突变体中的表达都受到抑制,这一点和部分bmr突变体生物量减少的表型相一致。结果,我们从高粱bmr突变体中找到了一批差异表达基因,其中的CYP基因在bmr突变体中表达下调,这与bmr突变体中木质素含量降低一致;而木质素合成的苯基丙烷途径中的一个C4H基因,在bmr突变体中表达上调,该结果可能预示高粱的三个C4H在合成细胞壁的过程中,其功能有所分化;MYB.NAC.Lim等转录因子的表达在bmr突变体和野生型中没有明显的差异,但却发现bHLH转录因子在多个bmr突变体中明显上调表达。本文进一步对这3个基因进行了结构、表达分析及功能的初步鉴定。
     3.高粱木质素合成代谢相关基因的功能鉴定SbHLH的功能研究
     SbHLH是13种bmr突变株系与野生型SSH筛选和芯片杂交后得到的表达上调最高的一个转录因子,该基因信号在芯片杂交结果中重复出现达6次之多,表明其可能是多种bmr变体共有的一个调节信号。RT-PCR结果表明,7个bmr变体的叶片在7叶期该基因的表达也明显上调。SbHLh在根、茎、叶中有不同的转录活性,在叶中表达量最高,茎中的表达量最低,这与该器官的木质化程度有密切关系。在酵母菌中,全长SbHLH具有转录激活活性,表明它是一个转录因子;缺失N端低复杂性区时,即使HLH结构域完整存在也没有转录活性,说明该低复杂性区对HLH结构域及转录激活功能的重要性;C端缺失不能影响其转录激活能力。通过该蛋白偶联GFP,基因枪法转化洋葱表皮,结果表明该基因表达产物定位在细胞核。在拟南芥中过表达SbHLH后,转基因拟南芥的表型在幼苗期没有明显变化,也能正常完成的生长周期,但在后期由于茎伸长,过表达系比野生型容易发生倒伏。6周龄的冰冻切片染色结果及木质素含量测定表明,过表达拟南芥茎的木质素含量比野生型和空载体对照明显降低,木质素合成途径和类黄酮/花青素合成途径中部分相关基因的表达受到不同程度的抑制,如]DAL1,4CL,CCR1, HCT, COMT, CHI, UGT等基因。因此,SbHLH很可能是苯基丙烷代谢途径的转录抑制因子。
     SbCYP功能研究
     SbCYP基因在多个bmr突变体的7叶期中均呈现下调表达的趋势;与之相反,该基因在野生型高粱(BTx623)的5叶期到7叶期的表达呈上调趋势。在拟南芥中过表达SbCYP后,转基因拟南芥能完成正常的生长发育周期但在6周龄时的茎中,木质素含量和野生型拟南芥没有明显差异,不过在8周龄过表达的拟南芥株系茎中,木质素含量则明显升高;同时部分木质素合成相关基因(PAL1,4CL1, CCoAOMT, CCR1等基因)也被诱导表达,这些结果说明SbCYP参与了木质素的合成或调控。SbCYP的调控模式在bmr突变体与野生型高粱中明显不同,这可能是造成bmr突变体木质素含量降低的原因之一,也可能是受到其它上游基因(例如SbHLH)调控后出现的效应。
     SbC4H功能研究
     SbC4H基因在多个bmr突变体中都呈现出上调表达的趋势。将SbC4H生拟南芥中过表达后,在6周龄的转基因拟南芥,其茎中的木质素的含量较野生型明显降低,同时SbC4H过表达拟南芥中的部分木质素合成相关基因(例如4CL1,4CL, F5H1)的表达受到一定的抑制。
     总之,通过对高粱bmr突变体和野生型高粱中的差异表达基因SbHLH, SbCYP和SbC4H在木质素合成中的功能研究,发现他们在木质素合成及调控中起着重要作用,实验结果丰富了我们对bmr突变体以及木质素合成调控的认识,也为进一步的能源作物的细胞壁改良提供了理论基础和候选基因。
We are facing more and more serious energy crisis due to exhaustion of fossil fuel reserves, such as coal, crude oil and natural gas。This situation is worse in China owing to the larger population, fewer resources per capita and more energy demand. Thus, it becomes increasingly necessary to the development of renewable, sustainable, clean and efficient energy sources. As the only renewable energy source of liquid fuel, ethanol is the most promising type of renewable energy sources in future and has received lots of attention in China. Increased exploitation of biomass energy from starch or oil crops will threaten food supplies through competition for land, which make lignocellulosic biomass a kind of ideal bioenergy resource. The presence of abundant of saline-alkali and marginal soils in China makes it very meaningful to exploit biomass resources not only produce sufficient biomass for converting to biofuels but also with stress-resistance which suitable for growing on the soils.
     As a C4plant, sorghum accumulates a significantly greater amount of carbon during photosynthesis than do C3plants. Most importantly, sorghum shows high tolerance to drought and low nutrition, which makes it possible for grown on lean soils and still achieves high yields. The availability of genome sequence informations and abundant number of germplasms together with a great deal of bmr mutants make sorghum not only a bioenergy crop which can be grown in salty and dry land, but also a model of lignin synthesis and regulation research.
     Plant cell walls comprise most of the dry body mass synthesized through photosynthesis, which mainly comprised of cellulose, semicellulose and lignin. The lignin in lignocellulosic biomass can lower the efficiency of converting cellulose to ethanol, thus, understanding the molecular mechanisms of lignin biosynthesis and regulation and identifying key genes related to lignin content is necessary for genetically improving the feedstock quality of bioenergy crops with lower lignin content. The brown-midrib (bmr) is a kind of genetic mutations found in a few species which often associated with reduced lignin biosynthesis. This genetic mutation may serve as a model of developing strategies for manipulating lignin content. Although the reduced lignin content in the bmr mutant plant is evidenced, at present very little is known concerning where the bmr mutations occur in the lignin biosynthesis pathway. In order to identify saline and alkali resistant sources in sorghum, we have completed a project on evaluation of the entire U.S. sorghum germplasm collections. Meanwhile, we have constructed forward and reverse subtracted cDNA library with bmr mutants and wild-type sorghum. Thousands of cDNA sequences have been selected from the SSH cDNA libraries and then were used to print cDNA microarrays for transcript analysis. According to the transcript profiling, we identified some differently expressed genes involved in lignin synthesis and regulation. Subsequent characterization and functional analysis of their role involved in cell wall biosynthesis will benefit for genetically improvement of cell wall components of sorghum and other bioenergy crops.
     The main results of this work are summarized as follows.
     1. Screening for salt-resistant germplasm line of sorghum
     We have evaluated the salt resistance of717out of1200sweet sorghums and4222out of more than40,000grain sorghums in U.S. sorghum germplasm collections (treatment for25-40d under150-200mmol/L NaC1). For sweet sorghums, we obtained83salt-resistant lines,65of which survived after transplant in field or pots and46of them got seeds. For grain sorghums, we found312salt-resistant lines, and most of them can finish the life cycle.
     A total of31salt-resistant sweet sorghum lines were planted in the alkali field and saline-alkali land. The rate of germination in alkali field is higher than that in saline-alkali field. The overall biomass of sweet sorghums in the two kinds of field is almost the same, but the individual one of seedling in saline-alkali field is higher. The brix degree of most sweet sorghums in saline-alkali field is higher than that in alkali field. The seed yields of each sweet sorghum line in these two kinds of field are very different, with the mature time of sorghums in saline-alkali field is5-to-7-day earlier.
     2. Identification of differentially expressed genes in sorghum (Sorghum bicolor L.) brown midrib mutants using cDNA subtraction and microarray analysis
     For dissecting genes involved in the cell wall metabolism that leading to the brown midrib phenotypes and their regulatory mechanisms in sorghum, suppression subtractive hybridization (SSH) combined with cDNA microarray profiling was performed to identify the differentially expressed genes in13sorghum bmr mutants. A total of153differentially expressed genes were identified, of which43genes showed up-regulated expression while the other110down-regulated in the bmr mutants. The expression pattern of12candidate genes through semi-quantitive RT-PCR confirmed the accuracy of the data from microarray analysis. All the differentially expressed cDNAs with significant protein homology could be classified into11functional groups: metabolism, photosynthesis, genetic information processing, stress responsive, protein fate, signal transduction, transport, lignin synthesis, cell process and mobility, development and regulation, and others. The most abundant group in the differentially expressed genes was metabolism. In the photosynthesis category,16of the17differentially expressed genes were down-regulated which coincident with the yield reduction phenotype of some bmr mutants. A few amount of differently expressed lignin synthesis related genes were identified, of which the expression of CYP was repressed in the bmr mutants which might responsible for the reduction of lignin content of the bmr mutants. However, the expression of another lignin biosynthetic gene cinnamic acid4-hydroxylase (C4H) was enhanced in the bmr mutants, which might indicated that monolignol biosynthesis from L-phenylalanine might occur by more than one route. No differentially expressed MYB, NAC and Lim transcription factors were found in the bmr mutants, however, the expression of a bHLH transcription factor was up-regulated in several bmr mutants. We then dissected the function of these three genes in lignin biosynthesis and regulation.
     3. Functional analysis of lignin biosynthesis related genes in sorghum
     Functional analysis of SbHLH
     SbHLH was one of the most up-regulated transcription factors identified from SSH and microarray analysis and it showed obviously up-regulated expression in7of the13bmr mutants at7leaf stage. SbHLH appears six times in cDNA microarray analysis, which might indicated that SbHLH may be involved in lignin-biosynthesis regulation of several bmr mutants.The SbHLH showed different expression levels in roots, stems and leaves, with the highest level in leaves and lowest in roots, which correlated with the lignified degree of different organs. The full length SbHLH showed transcriptional activation activity in yeast which proved it a transcription factor. The deletion of the low complex N terminal region will lead to the lost of transcriptional activation activity even though the HLH domain is intact, which indicated the importance of this region to the activity of this transcription factor. Contrary, the deletion of the C terminal has no effect on the transcriptional activation activity of SbHLH. Transient expression of SbHLH-GFP fusion gene in onion epidermal cells indicated that SbHLH was located in the nucleus. Transgenic Arabidopsis overexpressing SbHLH showed no phenotypic alterations and could finish normal life cycle. However, the lignin content was reduced in the stem of transgenic plants. The overexpression of SbHLH down-regulated the expression of several genes of the lignin pathway and flavonoid/anthocyanin biosynthesis, such as PAL1,4CL, CCR1, HCT, COMT, CHI, UGT. Together, these results suggest that the sorghum SbHLH is a transcription factor repressing the phenylpropanoid biosynthetic pathway in Arabidopsis.
     Functional analysis of SbCYP
     The expression of SbCYP was down-regulated in several bmr mutants at7-leaf-stage; however, it was up regulated in wild sorghum BTx623from5-leaf-stage to7-leaf-stage. Transgenic Arabidopsis plants overexpressing SbCYP could finish normal life cycle, with obviously increased lignin content in8-week stem although no obvious lignin content changes was observed in6-week stem. The overexpression of SbCYP induced the expression of several lignin biosynthesis related genes such as PAL1,4CL1, CCoAOMT and CCR1, which suggest that the sorghum SbCYP may contribute to the lignin biosynthesis and/or regulation. The differential expression of this gene between wild sorghum and bmr mutants would partly explain the lower lignin content of the bmr mutant, although this might due to the regulation of upper genes in the regulatory network (for example SbHLH).
     Functional analysis of SbC4H The expression of SbC4H was up-regulated in several bmr mutants. The involvement of the
     sorghum SbC4H in the lignin biosynthesis was investigated by overexpressing in Arabidopsis thaliana where the lignin content was reduced in6-week stem of transgenic plants when compared with wild type plants. The overexpression of SbC4H in Arabidopsis down-regulated the expression of several lignin biosynthesis genes such as4CL1,4CL and F5H1.
     In conclusion, the differently expressed genes in bmr mutants, SbHLH, SbCYP and SbC4H, may be part of the lignin biosynthesis and regulatory network according to the functional analysis. Furthermore, all the results have not only enriched our knowledge about the bmr mutant, lignin biosynthesis and regulation, but also provide new resources and theoretical basis for genetic improvement of lignocellulosic biomass with improved bioethanol production.
引文
1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9:1859-1868
    2. Abelson PH. (1998) A third technological revolution. Science,279 (5359):2019-2025
    3. Abdulrazzak, N., Pollet, B., Ehlting, J., Larsen, K., Asnaghi, C., Ronseau, S., Proux, C., Erhardt, M., Seltzer, V., Renou, J-P., Ullmann, P., Pauly, M., Lapierre, C., Werck-Reichhart, D.(2006) A coumaroylester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiology 140,30-48.
    4. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. The Plant Cell 16:3098-3109.
    5. Agron, P.G., Macht, M., Radnedge, L., Skowronski, E.W., Miller, W., Andersen, G.L. (2002)Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. FEMS Microbiol. Lett.211,175-182
    6. Akopyants, N.S., Fradkov, A., Diatchenko, L., Hill, J.E., Siebert, P.D., Lukyanov, S.A., Sverdlov, E.D., Berg D.E. (1998) PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. USA.95, 13108-13113
    7. Amoutzias GD, Veron AS, Weiner J Ⅲ, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24: 827-835
    8. Anterola, A.M., Lewis, N.G.(2002)Trends in lignin modification:a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61,221-294.
    9. Baldwin D., Crane V., Rice D. (1999) A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol.2:96-103.
    10. Barriere Y, Ralph J, Mechin V, Guillaumie S, Grabber JH, ArgillierO, Chabbert B. Lapierre C (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. Ⅱ. Lessons from brown-midrib mutants. Comptes Rendus Biologie 327:847-860
    11. Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, Van Montagu M, InzC D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479-1490.
    12. Baucher M, Bernard-Vailhe MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J (1999) Downregulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437-447.
    13. Bedon, F., C. Levasseur, et al. (2009). Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. Plant Cell Rep 28(5):787-800.
    14. Bernhardt, C., Zhao, M., Gonzalez, A., Lloyd, A., and Schiefelbein, J. (2005). The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:291-298.
    15. Bhargava, A., S. D. Mansfield, et al. (2010). MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol.
    16. Biomass as Feedstock for a bioenergy and bioproducts industry:the technical feasibility of a billion-ton annual supply April 2005
    17. Bird,R.Mck.,and M.G.Neuffer. (1987) Induced mutations in maize..Plant Breeding Reviews (5).New York:Van Nostrand Reinhold,139-180.
    18. Bittering T S, Cantrell R P, Axtell J D. (1981) Allelism tests of the brown midrib nmtants of sorghum. J. Hered.,72:147-148.
    19. Blee K, Choi JW, O'Connell AP, Jupe SC, Schuch W, Lewis NG, Bolwell GP.Collaborators Lewis NG. (2001) Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry.57(7):1159-66.
    20. Blee KA, Choi JW, O'Connell AP, Schuch W, Lewis NG, Bolwell GP. (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry. Sep;64(1):163-76.
    21. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279-291
    22. Bout S, Vermerris W. (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics.;269(2):205-14.
    23. Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Htl locus of Petunia hybrida. Plant J 19:441-451
    24. Casler M D, Pederson J F, Undersander D J.(2003) Forage yield and economic losses associated with the brown midrib trait in sudan grass. Crop Sci.,43:782-789.
    25. Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM. (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J. 28(3):257-70.
    26. Chapple CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413-1424
    27. Chars J.W.Y F., Goodwin P H., (1999) The molecular genetics of virulence of Xanthomonas campestris. Biotechnol. Advances.17:489-508.
    28. Chemey J H, Moore K J, Volenec, et al. (1986) Rate and extent of digestion of cell wall conlponents of brown midrib sorghum species. Crop Sci.,26:1055-1059.
    29. Chen L, Auh CK, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA Wang ZY (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437-449.
    30. Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W. (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol.118(1):125-35.
    31. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S. (2001) High-throughput screening for induced point mutations. Plant Physiol. 126(2):480-4.
    32. Coleman HD, Park JY, Nair R, Chapple C, Mansfield SD. (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3'-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci U S A.18;105(11):4501-6.
    33. Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B., Lewis, N.G.(2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64, 1097-1112.
    34. Cristillo A.D., Bierer B.E. (2002) Identification of novel targets of immunosuppressive agents by cDNA-based microarray analysis. J Biol Chem 277:4465-4476
    35. Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, GoVner D, Boerjan W, Boudet AM, Rochange S (2005) Metabolite reveals a role for atypical cinnamyl alcohol dehydrogenase CADI in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol Biol 59:753-759
    36. Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A-M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52:263-285.
    37. David J. Millar, Marianne Long, Georgina Donovan, Paul D. Fraser, Alain-Michel Boudet, Saida Danoun, Peter M. Bramley, G. Paul Bolwell (2007)Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids Phytochemistry 68,1497-1509
    38. Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D., Siebert P.D. (1996) Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probe and libraries. Proc. Natl. Acad. Sci. USA.93,6025-6030
    39. DOE to Invest $34 Million in Enzymes for Cellulosic Ethanol Production http://www.energy.gov/February 27,2008
    40. DOE to Invest $114 Million in Small-Scale Cellulosic Biorefineries http://www.energy.gov/ January 29,2008
    41. Douglas C J. (1996) Phenylpropaniod metabolism and lignin biosynthesis:from weeds to trees. Trends in Plant Sci, (1)171-178
    42. Duek, P.D., and Fankhauser, C. (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci.10:51-54.
    43. Ehlting J, Buttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E. (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms.Plant J.19(1):9-20.
    44. Ehlting, J., Hamberger, B., Million-Rousseau, R., Werck-Reichhart, D., (2006) Cytochromes P450 in phenolic metabolism. Phytochemistry Reviews 5,239-270.
    45. Ehlting, J., V. Sauveplane, et al. (2008). An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8:47.
    46. Ermolaeva, O.D., Sverdlov, E.D. (1996) Subtractive hybridization, a technique for extraction of DNA sequences distinguishing two closely related genomes:critical analysis. Genet. Anal. 13,49-58
    47. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414-427
    48. Fangming Xiao, Xiaoyan Tang, et al, (1999) Isolation of potato genes that are induced during all early stage of the hypersensitive response to Phytophthora infestans. Mol Plant Microbe Interact,12:356-361
    49. Fodor S.P.A., Read J.L., Pirrung MC, et al. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science.251:767-773
    50. Fornale'S, Sonbol FM, Maes T, Capellades M, Puigdomenech P, Rigau J, Caparro's-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809-823.
    51. Fornale, S., X. Shi, et al. (2010). ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64(4):633-644.
    52. Frank Bedon, Caroline Levasseur, Jacqueline Grima-Pettenati, Armand Se'guin John MacKay. (2009) Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants Plant Cell Rep 28:787-800
    53. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chappie C. (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J.22(3):223-34.
    54. Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33-45
    55. Fukasawa-Akada T, Kung S, Watson JC (1996) Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol 30:711-722.
    56. Goffner D, JoVroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, Boudet AM (1992) PuriWcation and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48-53
    57. Goffner D, Van Doorsselaere J, Yahiaoui N, Samaj J, Grima-Pettenati J, Boudet AM (1998) A novel aromatic alcohol dehydrogenase in higher plants:molecular cloning and expression. Plant Mol Biol 36:755-765
    58. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553-567.
    59. Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L. (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana:effects on phenotype, lignins and cell wall degradability.Planta.217(2):218-28.
    60. Grand C, Parmentier P, Boudet A, Boudet AM (1985) Comparison of lignins and of enzymes involved in ligniWcation in normal and brown midrib (bm3) mutant.. Physiol Veg 23:905-911
    61. Gremski K, Ditta G, Yanofsky MF (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134:3593-3601
    62. Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543-553.
    63. Guillaumie S, Pichon M, Martinant JP, Bosio M, Goffner D, Barriere Y (2007) Differential expression of phenylpropanoid and related genes in brown-midrib bml, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226:235-250.
    64. Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier MT, Schuch W (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6:339-350.
    65. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bml)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545-553.
    66. Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB BZIP and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155-171.
    67. Hawkins SW, Boudet AM (1994) PuriWcation and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus gunnii. Plant Physiol 104:75-84
    68. Hazon SP。Scott-Craig JS, Walton JD. (2002) Cellulose syilthase-like genes of rice. Plant Physiol.128(2):336-40.
    69. He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methylteransferase. Crop Sci 43:2240-2251
    70. Hirschhorn J.N., Sklar P, Lindblad-Toh K., et al. (2000) SBE-TAGS:an array-based method for efficient single-nucleotide polymorphism genotyping. Proc Natl Acad Sci USA, 97:12164-12169
    71. Hoffmann L, Maury S, Martz F, Geoffroy L P, and Legrand M. (2002) Purification, cloning and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem,278:95-103
    72. Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276-279
    73. Hoogwijk, M. et al. (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25,119-133
    74. Houghton, R.A. (1990) The future-role of tropical forests in affecting the carbon-dioxide concentration of the atmosphere. Ambio 19,204-210
    75. Houghton, R. et al. (1991) Current land use in the tropics and its potential for sequestering carbon. In technical workshop to explore options for global forestry management, p.127, International Institute for Environment and Development
    76. Hu WJ, Kawaoka A, Tsai CJ, Lung J, Osakabe K, Ebinuma H, Chiang VL. (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci USA.95(9):5407-12.
    77. Hu WJ, HardinSA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotech 17:808-812.
    78. Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis deWned by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045-10050
    79. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD. (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars:improved chemical savings and reduced environmental toxins. J Agric Food Chem.8;51(21):6178-83.
    80. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C,Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 15:6150-6161.
    81. Jones L, Ennos AR, Turner SR.(2001) Cloning and characterization of irregular xylem4(irx4):a severely lignin-deficient mutant of Arabidopsis. Plant Journal.26(2): 205-216.
    82. Jornvall H, Persson B, Ktook M, Adrian S, Gonzalez-Duarte R, JeVery J, Ghosh D (1995) Short-chain dehydrogenases/reductases. Biochemistry 34:6003-6013
    83. Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU (2008) SCREAM/ICE 1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20:1775-1785
    84. Kanazawa K, Goodman MM, O'Malley DM (1999) Genetic and biochemical analysis of maize CAD. Plant and Animal Genome VII conference, poster P264
    85. Kawagoe Y, Delmer D P(1997a) pathway and genes in involved in cellulose biosynthesis. Genet Eng,19:63-87
    86. Kawagoe Y, Delmer D P(1997b) Cotton CesAl has a LIM-like Zn binding domain in the N-terminal cytoplasmic region. Plant Physio,114:85
    87. Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K, Ebinuma H. (2000) Functional analysis of tobacco LIM protein Ntliml involved in lignin biosynthesis. Plant J. 22(4):289-301.
    88. Kennan A., Aherne A., Palf A., et al. (2002) Identification of an IMPDHI mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho-mice. Hum Mol Genet, 11:547-558
    89. Kiribuchi K, Sugimori M, Takeda M, Otani T, Okada K, Onodera H, Ugaki M, Tanaka Y, Tomiyama-Akimoto C, Yamaguchi T, et al (2004) RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helixloop-helix protein. Biochem Biophys Res Commun 325: 857-863
    90. Ko JH, Han KH. Park S. Yang J. (2004) Plant body weight-induced seconaary growth in Arabidopsis and its transcription phenotype revealed by whole-transcrlptome profiting, Plant Physiol,135:1069-1083.
    91. Kokubo A, Kuraishi S, Sakurai N.(1989) Culm strength of barley:Correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physio 1.91: 876-882.
    92. Kokubo A., Sakurai N. Kuraishi S, et al. (1989) Culm brittleness of barley(Hordeum vulgare L.)mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol.,97:509-514
    93. Kolmark H. G,(1953) Hereditas,34,270-276.
    94. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364-373
    95. Kong L, Anderson JM, et al (2005) Induction ofwheat defense and Stress-related genes in response to Fusarium graminearum. Genome,48(1):29-40
    96. Kuc J, Nelson OE. (1964) The abnormal lignlns produced by the brown-midrib mutants of maize. Archives of Biochemistry and Biophysics,105:103-113.
    97. Kuc J, Nelson OE, Flanagan P (1968) Degradation of abnormal lignins in the brown-midrib mutants and double mutants of maize. Phytochemistry 7:1435-1436
    98. Lapierre C, Tollier MT, Monties B (1988) A new type of constitutive unit in lignins from the corn bm3 mutant. CR Acad Sci Ser 3307:723-728
    99. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153-163.
    100. Larkin, J.C. (1994). Isolation of a cytochrome P450 homologue preferentially expressed in developing inflorescences of Zea mays. Plant Mol. Biol.25,343-353.
    101. Lechtenberg V L'MuUer L D, Bauman L F, et al. (1972) Laboratory and in vitro evaluation of inbred and F2 population of brown midrib of Zea Mays. Agronomy Journal,64(5): 657-660.
    102. Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis. Genome Res 11:754-770
    103. Lee D, Meyer K, Chapple C, Douglas CJ. (1997) Antisense suppression of 4-coumarate: coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell.9 (11):1985-98.
    104. Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating levels. Plant Cell 20:337-352
    105. Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetic and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405-430.
    106. Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569-581.
    107. Li, Y., et al., (2003) BRITTLE CULM1, Which Encodes a COBRA-Like Protein, Affects the Mechanical Properties of Rice Plants. The Plant Cell,15:2020-2031.
    108. Lisitsyn, N.A. (1995) Representational difference analysis:finding the differences between genomes. TIG.11,304-307
    109. Lu H, Zhao YL, Jiang XN. (2004) Stable and specific expression of 4-coumarate:coenzyme A ligase gene (4CL1) driven by the xylem-specific Pt4CL1 promoter in the transgenic tobacco.Biotechnol Lett.26(14):1147-52.
    110. Luda Diatchenko, Yun-Fai Chris Lau, et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc Natl Acad Sei USA,93:6025-6030
    111. Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86:7092-7096
    112. Marina A Naoumkina, XianZhi He and Richard A Dixon (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology,8:132
    113. Marita JM, Ralph J, Hatfield RD, Chapple C. (1999) NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc Natl Acad Sci U S A. 26;96(22):12328-32.
    114. Marita J M, Palph J, Hatfield R D, etal. (2003) Structural and compositional modifications in lignin of transgenic alfalfa downregulated in caffeic acid 3-0-methyltransferase and caffeoyl coenzyme A 3-0-methyltrallsferase..Phytochemistry,62(1):53-65
    115. Marita JM, Vermerris W, Ralph J, Hat Weld RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51:1313-1321
    116. McCallum CM, Comai L, Greene EA, Henikoff S. (2000) Targeted screening for induced mutations. Nat Biotechnol.18(4):455-7
    117. Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477-1480
    118. Meyer K, Cusumano JC, Somerville C, Chapple CC (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci USA 93:6869-6874
    119. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619-6623
    120. Mili R, Koji K, Hidemasa B, et al. (2001) Delineating developmental and metaboilic pathways in vivo by expression profiling using the PIKEN set of 18186 full-length enriched mouse cDNA arrays. Proc Natl Acad Sci USA,98(5):2199-2204
    121. Morrow SL, Mascia P, Self KAAltschuler M (1997) Molecular characterization of a brown-midrib3 deletion mutation in maize. Mol Breed 3:351-357
    122.Nadeau, J.A., Zhang, X.S., Li, J., and O'Neill, S.D. (1996). Ovule development: Identification of stage-specific and tissue-specific cDNAs. Plant Cell 8,213-239.
    123. Nagira Y, Shimamura K, Hirai S, Shimanuki M, Kodama H, Ozeki Y (2006) Identification and characterization of genes induced for anthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots using suppression subtractive hybridization, cDNA microarrays, and RNAi techniques. J Plant Res 119:217-230.
    124. Nair PM, Vining LC (1965) Cinnamic acid hydroxylase in Spinach. Phytochemistry 4:161-168
    125. Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis REF1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544-554
    126. Nedelkina, S., Jupe, S.C., Blee, K.A., Schalk, M., Werck-Reichhart, D., Bolwell, G.P., (1999) Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from French bean:engineering expression in yeast. Plant Molecular Biology 39, 1079-1090.
    127. Nelson D, (2006) Plant cytochrome P450s from moss to poplar. Phytochem Rev,5:193-204.
    128. Nobutaka Mitsuda, Motoaki Seki, Kazuo Shinozaki, and Masaru Ohme-Takagi (2005) The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence。The Plant Cell, Vol.17,2993-3006,
    129. OECD-FAO Agricultural Outlook 2008-2017 2008.7
    130. Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959-2968
    131. Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507-520.
    132. Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G. (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta.;229(1):115-27.
    133. Park SJ, Huang YH, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932-947.
    134. Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterisation of a pine MYB that regulates lignification. Plant J 36:743-754.
    135. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A.93(22):12637-42.
    136. Pedersen J F, Vogel K P. Funnell D L. (2005) Impact of reduced lignin on plant fitness. Crop Sci.,45:812-819.
    137. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C. (2002)Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol.20 (6):607-12.
    138. Piquemal J, Chamayou S, Nadaud I, Beckert M, Barriere Y, Milal, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, GoVner D, Pichon M (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675-1685
    139. Porter K S, Ax tell J D, Lechtenberg V L, et al. (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib(bmr)mutants of sorghum. Crop Sci.18:205-208.
    140. Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979-995.
    141. Provan GJ, Scobbie L, Chesson A (1997) Characterisation of lignin from CAD and OMT deficient bm mutant of maize. J Agric Food 73:133-142
    142. Radnedge, L., Gamez-Chin, S., Mccready, P.M., Worsham, P.L., Andersen, G.L. (2001) Identification of nucleotide sequences for the specific and rapid detection of Yersinia pestis. Appl. Environ. Microbiol.67,3759-3762
    143. Raes J, Rohde A, Christensen JH, Peer YV, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051-1071.
    144. Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MS, Chen F, Dixon RA. (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem.281(13):8843-53.
    145. Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol 11:1914-1922
    146. Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63-70
    147. Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D. (1999) Biochemical characterization, molecular cloning and expression of laccases a divergent gene family in poplar. Eur J Biochem.259(1-2):485-95.
    148. Reddy, M. S., F. Chen, et al. (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa(Medicago sativa L.). Proc Natl Acad Sci U S A 102(46):16573-16578.
    149. Richmond T. (2000) Higher plant cellulose synthases. Gffllome Biul.1(4):REVIEWS 3001.
    150. Richmond TA, Somerville CR. (2000) The cellulose synthase superfamily. plant Physiol, 124-495-498
    151.Riechmann JL,Meyerowitz EM. (1998) The AP2/EREBP family of plant transcription factors. Biol Chem.379:633-646
    152. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L,Pineda O, Ratcliffe OJ, Samaha RR, et al (2000) Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes.Science 290:2105-2110
    153. Robbins, M. P., F. Paolocci, et al. (2003). Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus. J Exp Bot 54(381):239-248.
    154. Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portoles S, Rodriguez-Concepcion M, Martinez-Garcia JF (2007) Interaction of shade avoidance and auxin responses:a role for two novel atypical bHLH proteins. EMBO J 26:4756-4767
    155. Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 119:101-110
    156. Russel DW, Conn EE (1967) The cinnamic acid 4-hydroxylase of pea seedlings. Arch Biochem Biophys 122:256-258
    157. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib 6 gene. Genetics 181:783-795.
    158. Sasaki Y, Asamizu E, Shibata D, et al. (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray:self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res.8:153-161.
    159. Satoshi Kimura and Tetsuo Kondo (2002) Recent progress in cellulose biosynthesis,115: 297-302
    160. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib 6 phenotype. Plant Physiol.150:584-595.
    161. Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229-238.
    162. Sattler SE, Funnell-Harris DL, Pedersen JF. (2010) Efficacy of Singular and Stacked brown midrib 6 and 12 in the Modification of Lignocellulose and Grain Chemistry. J Agric Food Chem.
    163. Saxena IM, Lin FC, Brown RM Jr. (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol.15(5):673-83.
    164. Saxena IM, Lin FC, Brown RM Jr. (1991) Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol Biol.16(6):947-54.
    165. Saxena IM, Brown RM Jr. (1995) Identification of a second cellulose synthase gene in Acetobacter xylinum. J Bacteriol.177(18):5276-83.
    166. Schena M, Shalon D, Davis R, et al. (1995) Quantitative monitoring of gene expression patterns with acomp lementary DNA microarray. Science,270 (5235):467470
    167. Schena M., Shalon D., Heller R., et al. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Pro Natl Acad Sci USA, 93:10614-10619
    168. Schena M, Heller R A, Theriault T P, et al. (1998) Microarrays:biotechnologyps discovery platform for functional Genomics. Trends Biotechnol,16 (7):301306
    169. Schoch G Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, and Werck-Reichhart D, (2001) CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem,276:36566-36574
    170. Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 31-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381:749-753
    171. Schuler M A. (1996) Plant cytochrome P450 monoxygenases. Crit Rev Plant Sci,15:234-284
    172. Schuler MA (1996) The role of cytochrome P450 monooxygenases in plantinsect interactions. Plant Physiol 112:1411-1419
    173. Schuler M, Duan H, Bilgin M, Ali S. (2006) Arabidopsis cytochrome P450s through the looking glass:a window on plant biochemistry.Phytochem Rev,5:205-237.
    174. Se'bastien Besseau, Laurent Hoffmann, Pierrette Geoffroy,Catherine Lapierre, Brigitte Pollet,and Michel Legrand. (2007) Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth The Plant Cell, Vol.19: 148-162
    175. Serna, L. (2007). bHLH proteins know when to make a stoma. Trends Plant Sci.12: 483-485.
    176. Sewalt VJH, Ni W, Blount JW, Jung HC, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41-50.
    177. Shi C, Koch G, Ouzunova M, Wenzel G, Zein I, Lubberstedt T (2006) Comparison of maize brown-midrib isogenic lines by cellular UV-microspectrophotometry and comparative transcript profiling. Plant Mol Biol 62:697-714.
    178. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A. (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell.17(7):2059-76.
    179. Siebert, P.D., Chenchik A., Kellogg D.E., Lukyanov, K.A., Lukyanov, S.A. (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res.23,1087-1088
    180. Singh, Rupinder; Rastogi, Smita; Dwivedi, Upendra N. (2010) Phenylpropanoid Metabolism in Ripening Fruits. Comprehensive Reviews in Food Science and Food Safety, Volume 9, Number 4, pp.398-416.
    181. Smith, C.G., Rodgers, M.W., Zimmerlin, A., Ferdinando, D., Bolwell, G.P., (1994) Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta 192,155-164.
    182. Smolen GA, Pawlowski L,Wilensky SE, Bender J (2002) Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress responsive genes in Arabidopsis. Genetics 161:1235-1246
    183. Sterky B Regan S, Karlsson J, Hertzberg M. (1998) Gone discovery in the wood-forming tissues of poplar:analysis of 5,692 expressed sequence tags. Proc Nail Acad Sci USA,95: 13330-13335
    184. Stocki, S.L., Babiuk, L.A., Rawlyk, N.A., Potter, A.A., Allan, B.J. (2002) Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E.coli K-12 MG1655 using suppression subtractive hybridization analysis. Microb. Pathogenesis.33, 289-298
    185. Sonbol F-M, Fornale S,Capellades M,Encina A,Tourino S(2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology,70-3,283-296
    186. Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. The Plant Cell 10:135-154.
    187. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003). Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol,133(1):73-83
    188. Tilman, D. et al. (2006) Carbon-negative biofuels from low-input highdiversity grassland biomass. Science 314,1598-1600
    189. Tmxter SR. Taylor N, Jones L. (2001) Mutations of the secondary cell wall. Plant Molecular Biology,47:209-219.
    190. Tobias CM, Chow K (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with ligniffication. Planta 220:678-688
    191. Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol 50:187-196
    192. Todd AR and Chris RS, (2000) The Cellulose Synthase Superfamily, Plant Physiol.124: 495-498
    193. Toshiro Ito and Elliot M. Meyerowitz. (2000) Overexpression of a Gene Encoding a Cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. The Plant Cell, Vol.12,1541-1550,
    194. Turner SR. Somerville CR. (1997) Collapsed xylem phenotype of Arabidopsis in the secondary cell wall. Plant Cell,19:689-701.
    195. Van den Berg N, Crampton BG, Hein I, Birch PRJ, Berger DK (2004) High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis. BioTechniques 37:818-824.
    196. Vermerris W, Boon JJ (2001) Tissue-speciWc patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). J Agric Food Chem 49:721-728
    197. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib 3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407-416
    198. Von Stein O.D., Thies, W.G., Hormann, M. (1997) A high through put screening for rarely transcribed differentially expressed gene. Nucleic Acids Res.25,13,2598-2602
    199. Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L. (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiate Proc Natl Acad Sci U S A.104(28):11856-61.
    200. Wang, H., U. Avci, et al. (2010). Mutation of WRK.Y transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci U S A 107(51):22338-22343
    201. Wang X, Cnops G, Vanderhaeghen R, Van Lijsebettens M. (2001) AtCSLD3, a cellulose synthase-ltke gene important for root hair growth in arabidopsis. Plant Phy.126(2):575.86.
    202. Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327-338.
    203. Welle S, Brooks A 1, Delehanty J M, Needier N, Thornton CA. (2003) Gene expression profile of aging in human muscle. Physiol Genomics,14:149-59
    204. Werck-Reichhart D (1995) Cytochromes P450 in phenylpropanoid metabolism. Drug Metabol Drug Interact 12:221-243
    205. World Energy Outlook 2007 world energy agency
    206. Wout B.JohnR M B. (2003) Lignin biosynthesis,Annu Rev Plant Biol,54(1):519-549
    207. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959-1966.
    208. Xu BY, Su W, Liu JH, Wang JB, Jin ZQ (2007) Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta 226:529-539.
    209. Xu Li, Nicholas D. Bonawitz, Jing-Ke Weng, and Clint Chapple.(2010) The Growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids The Plant Cell, Vol.22:1620-1632
    210. Xu, Z., D. Zhang, et al. (2009). Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3.
    211. YE Z H, KNEUSEI. R E, MATERN U. (1994) An alternative methylation pathway in lignin biosynthesis in Zinniaf. Plant Cell,6:1427-1439.
    212. Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120: 249-259
    213. Zhong R, Demura T, Ye ZH. (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell.18(11):3158-70. Epub 2006 Nov 17.
    214. Zhong R, Richardson EA, Ye ZH. (2007) Two NAC domain transcription factors, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta. 225(6):1603-11.
    215. Zhong RQ, Ye ZH (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028-1034.
    216. Zhong RQ, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell 20:2763-2782.
    217. Zhou J, Chan L, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. The Plant Cell 21:248-266.
    218.安伟,樊智翔,马海林,米小红,王计虎 EMS诱变技术及其在创造玉米新种质中的应用山西农业科学2008,36(12):37-39
    219.安学丽,蔡一林,王久光,王国强,孙海燕,化学诱变及其在农作物育种上应用恢农学报2003,17(3):239--242
    220.卞云龙等,褐色叶中脉突变体在青贮玉米中的应用玉米科学2006,14(2):4-5
    221.陈锋,徐艳花,董中东,许海霞,程西永,詹克慧,崔党群,TILLING技术的形成和发展及其在麦类作物中的应用麦类作物学报2010,30(1):1782182
    222.国家发展改革委坚持非粮为主发展生物燃料乙醇2006-12-18
    223.国家能源局《中国能源发展报告》(2009)
    224.金顺玉,卢孟柱,高健基因工程调控木质素生物合成研究现状及在竹子上改良的应用前景安徽农业科学.Journal of Anhui Am. Set.2008,36(20):8497-8499,
    225.李春秀毛白杨纤维素合成酶基因的克隆及功能鉴定2005博士论文
    226.黎大爵,廖馥荪甜高粱及其利用.北京:科学出版社,1992
    227.李文正,董霞,黄夸克等水杨酸诱导烟草基因表达cDNA文库的构建及初步分析.烟草农业科学,2005,1(2):119-121
    228.李益,胡尚连,卢学琴,蒋瑶,黄胜雄,李向前植物纤维素合成酶基因的进化分析华北农学报·2008,23(2):101.105
    229.李桢,王宏芝,李瑞芬,魏建华植物木质素合成调控与生物质能源利用Chinese bulletin of Botany 2009,44(3):262-272,Ⅵ
    230.梁新红,严天柱,刘邻渭.预处理方法对作物秸秆生物转化的影响.山西食品工业,2004(4):5-8.
    231.刘长斌,薛永常,聂会忠高等植物纤维素合酶超家族生命的化学2007,27-6
    232.刘晓娜等:木质素合成研究进展中国生物工程杂志China Biotechnology,2007,27(3):120 -12
    233.刘志宏,张璞,李桂英发展能源作物甜高梁促进生态文明建设农业科技通讯2009.6
    234.刘治先.玉米育种技术.玉米科学,1995,3(4):12-15.
    235.骆蒙,孔秀英,霍纳新,徐春晓,贾继增 白粉病菌诱导的小麦抑制差减文库构建与杂交点阵膜制备中国农业科学2003,36(1):49-53
    236.马惠平,赵永亮,杨光宇 诱变技术在作物育种中的应用.遗传,1998,20(6):41-43.
    237.马英红,王秀清,曾木圣,李冰,曾益新鼻咽癌组织差异表达cDNA序列的克隆与鉴定.癌症.2001.20(1),18-22
    238.史桂荣化学诱变剂在玉米育种上的应用.黑龙江农业科学,1994,(6):44-46.
    239.石嵘,马文丽,吴清华等用于SARS冠状病毒检测的60mer寡核昔酸基因芯片的设计及应用.科学通报,2003,48:1237-1241
    240.石元春,等中国生物质资源与产业化战略研究.中国工程院咨询项目报告,2006.
    241.王丽白腐菌处理铅污染废弃稻草及对铅钝化作用的研究.长沙:湖南大学,2006.
    242.王元东,等诱变育种在创造玉米新种质中的应用北京农业科学,1999,17(2):12.16
    243.温明炬,等中国耕地后备资源.北京: 中国大地出版社,2005.
    244.薛永常,李金花,卢孟柱,张绮纹木质素单体生物合成途径及其修订林业科学Vol.39,No.6,2003
    245.杨世琦,杨正礼,刘国强 国外生物能源与能源作物发展回顾 世磬袋业2009.7(总363 4-11
    246.赵华燕,魏建华,张景导,等抑制COMT与CCoAOMT调控植物木质素的生物合成.科学通报,2002,47(8):604-607.
    247.赵华燕,魏建华,宋艳茹木质素生物合成及其基因工程研究进展.植物生理与分子生物学学报,2004,30,361-370.
    248.张铭堂.诱变.科学农业,1996,44(1,2):37-52.
    249.中华人民共和国国务院新闻办公室,中国的能源状况与政策白皮书 2007年10月
    250.中华人民共和国国家发展和改革委员会网我国能源问题面临三大挑战 能源交通调查与研究2008-02-25
    251.朱保葛,路子显,耿玉轩,等.烷化剂EMS诱发花生性状变异的效果及高产突变系的选育.中国农业科学,1997,30(6):87-89.
    252.祝丽英,等甲基磺酸乙酯(EMS)在创造玉米新种质中的应用玉米科学,2000,8(1):19-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700